|本期目录/Table of Contents|

[1]李蕾*,吴明君,林冰艳,等.二氧化碳倍增对植物叶片15N自然丰度的影响[J].地球科学与环境学报,2024,46(03):298-306.[doi:10.19814/j.jese.2023.12003]
 LI Lei*,WU Ming-jun,LIN Bing-yan,et al.Effect of Carbon Dioxide Enrichment on 15NNatural Abundance of Leaves[J].Journal of Earth Sciences and Environment,2024,46(03):298-306.[doi:10.19814/j.jese.2023.12003]
点击复制

二氧化碳倍增对植物叶片15N自然丰度的影响(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第46卷
期数:
2024年第03期
页码:
298-306
栏目:
环境与可持续发展
出版日期:
2024-05-15

文章信息/Info

Title:
Effect of Carbon Dioxide Enrichment on 15NNatural Abundance of Leaves
文章编号:
1672-6561(2024)03-0298-09
作者:
李蕾*吴明君林冰艳孙嫣然徐艺宁汪旭明巩晓颖
(福建师范大学 地理科学学院/碳中和未来技术学院,福建 福州 350007)
Author(s):
LI Lei* WU Ming-jun LIN Bing-yan SUN Yan-ran XU Yi-ning WANG Xu-ming GONG Xiao-ying
(School of Geographical Sciences/School ofCarbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350007, Fujian, China)
关键词:
植物氮代谢 氮同化 15N自然丰度 CO2浓度 叶龄 氮利用效率 氮含量 稀释效应
Keywords:
plant N metabolism N assimilation 15N natural abundance CO2 concentration leaf age N-use efficiency N content dilution effect
分类号:
Q945
DOI:
10.19814/j.jese.2023.12003
文献标志码:
A
摘要:
大气CO2浓度上升通常会提高植物生产力并伴随叶片氮含量的下降。然而大气CO2如何影响叶片15N丰度及其相关机理还不清楚。以小麦和向日葵为实验材料,测定了两个CO2浓度(410与820 μmol?mol-1)处理下叶片的氮同位比值(δ15N)和氮含量。结果表明:小麦和向日葵叶片氮含量随CO2浓度升高呈下降趋势,然而δ15N对CO2浓度倍增的响应存在差异。在高CO2浓度处理下小麦叶片δ15N显著下降6.5‰,而向日葵叶片δ15N小幅上升2.1‰,且叶片和地上部生物量显著增加。基于此,小麦的氮营养特征符合氮同化受限假说,而向日葵符合稀释效应假说。小麦叶片δ15N随叶龄或者细胞年龄的增加而显著下降,因此在利用15N来研究植物氮代谢时需要区分叶龄的影响。整合分析结果表明,CO2浓度升高导致非豆科C3植物的δ15N显著下降达0.3‰,与小麦的研究结果相符。综上所述,限制硝态氮同化是CO2影响植物氮代谢和15N丰度的重要机制。
Abstract:
Plant productivity is enhanced by elevated atmospheric CO2 concentration, butNcontentof leafis reduced. How atmospheric CO2 affects leaf 15N compositionand the related mechanisms remain unclear. δ15N and N content of wheat and sunflower leaves were determined under two CO2concentration(410 and 820 μmol?mol-1)treatments. The results show that the N content of both species decreases withelevatedCO2 concentration, but the response of δ15N to CO2 enrichment is different between wheat and sunflower. Under high CO2concentration treatment,δ15N of wheat leaves decreases significantly by 6.5‰, while δ15N of sunflower leaves increases slightly by 2.1‰, accompanied by a significant increase in leaf mass and aboveground biomass. Therefore, Nnutrition characteristics of wheat are consistent withNassimilation limitation hypothesis, while the response of sunflower is consistent with dilution effect hypothesis. δ15N in wheat leaves decreases significantly with leaf aging and cell aging. Therefore, when using δ15N to infer environmental impacts on plant N metabolism, it is necessary to account for the leaf age effect. The results of meta-analysis show that δ15N of non-legume C3 plants decreases significantly by 0.3‰ under elevated CO2concentration,in line with our results on wheat plants. Thestudy shows that the inhibited N assimilation is an important mechanism related to the CO2 effect onNmetabolism and 15N content of plants.

参考文献/References:

[1] NOAA.Broken Record:Atmospheric Carbon Dioxide Levels Jump Again[R].Bouder:NOAA,2023.
[2]CIAIS P,SABINE C,BALA G,et al.Carbon and Other Biogeochemical Cycles[M]∥STOCKER T F,QIN D,PLATTNER G K,et al.Climate Change 2013:The Physical Science Basis.Cambridge:Cambridge University Press,2014:465-570.
[3]JENSEN R G.Activation of Rubisco Regulates Photosynthesis at High Temperature and CO2[J].PNAS,2000,97(24):12937-12938.
[4]LUO X Z,KEENAN T F,CHEN J M,et al.Global Variation in the Fraction of Leaf Nitrogen Allocated to Photosynthesis[J].Nature Communications,2021,12:4866.
[5]CHEN C,RILEY W J,PRENTICE I C,et al.CO2 Fertilization of Terrestrial Photosynthesis Inferred from Site to Global Scales[J].PNAS,2022,119(10):e2115627119.
[6]WANG S H,ZHANG Y G,JU W M,et al.Recent Global Decline of CO2 Fertilization Effects on Vegetation Photosynthesis[J].Science,2020,370:1295-1300.
[7]LEAKEY A D B,AINSWORTH E A,BERNACCHI C J,et al.Elevated CO2 Effects on Plant Carbon,Nitrogen,and Water Relations:Six Important Lessons from FACE [J].Journal of Experimental Botany,2009,60(10):2859-2876.
[8]NAKANO H,MAKINO A,MAE T.The Effect of Elevated Partial Pressures of CO2 on the Relationship Between Photosynthetic Capacity and N Content in Rice Leaves[J].Plant Physiology,1997,115(1):191-198.
[9]ARANJUELO I,IRIGOYEN J,NOGUES S,et al.Elevated CO2 and Water-availability Effect on Gas Exchange and Nodule Development in N2-fixing Alfalfa Plants[J].Environmental and Experimental Botany,2009,65(1):18-26.
[10]AINSWORTH E A,LONG S P.30 Years of Free-air Carbon Dioxide Enrichment(FACE):What Have We Learned About Future Crop Productivity and Its Potential for Adaptation? [J].Global Change Biology,2021,27(1):27-49.
[11]MASON R E,CRAINE J M,LANY N K,et al.Evidence,Causes,and Consequences of Declining Nitrogen Availability in Terrestrial Ecosystems[J].Science,2022,376:eabh3767.
[12]ZHAO H L,CHANG T G,XIAO Y,et al.Potential Metabolic Mechanisms for Inhibited Chloroplast Nitrogen Assimilation Under High CO2[J].Plant Physiology,2021,187(3):1812-1833.
[13]DUSENG E M E,DUARTE A G,WAY D A.Plant Carbon Metabolism and Climate Change:Elevated CO2 and Temperature Impacts on Photosynthesis,Photorespiration and Respiration[J].New Phytologist,2018,221(1):32-49.
[14]KEYS A J.The Re-assimilation of Ammonia Produced by Photorespiration and the Nitrogen Economy of C3 Higher Plants[J].Photosynthesis Research,2006,87(2):165-175.
[15]COSCHIGANO K T,MELO-OLIVEIR A R,LIM J, et al.Arabidopsis gls Mutants and Distinct Fd-GOGAT Genes:Implications for Photorespiration and Primary Nitrogen Assimilation[J].The Plant Cell,1998,10(5):741-752.
[16]BAUWE H,HAGEMANN M,FERNIE A R.Photorespiration:Players,Partners and Origin[J].Trends in Plant Science,2010,15(6):330-336.
[17]FOYER C H,NOCTOR G,HODGES M.Respiration and Nitrogen Assimilation:Targeting Mitochondria-associated Metabolism as a Means to Enhance Nitrogen Use Efficiency[J].Journal of Experimental Botany,2011,62(4):1467-1482.
[18]BUSCH F A,SAGE R F,FARQUHAR G D.Plants Increase CO2 Uptake by Assimilating Nitrogen via the Photorespiratory Pathway[J].Nature Plants,2018,4:46-54.
[19]BLOOM A J.Photorespiration and Nitrate Assimilation:A Major Intersection Between Plant Carbon and Nitrogen[J].Photosynthesis Research,2015,123(2):117-128.
[20]RUBIO-ASENSIO J S,BLOOM A J.Inorganic Nitrogen Form:A Major Player in Wheat and Arabidopsis Responses to Elevated CO2[J].Journal of Experimental Botany,2017,68(10):2611-2625.
[21]BLOOM A J,BURGER M,RUBIO-ASENSIO J S,et al.Carbon Dioxide Enrichment Inhibits Nitrate Assimilation in Wheat and Arabidopsis[J].Science,2010,328:899-903.
[22]BLOOM A J,BURGER M,BRUCE A K,et al.Nitrate Assimilation Is Inhibited by Elevated CO2 in Field-grown Wheat[J].Nature Climate Change,2014,4:477-480.
[23]方运霆,刘冬伟,朱飞飞,等.氮稳定同位素技术在陆地生态系统氮循环研究中的应用[J].植物生态学报,2020,44(4):373-383.
FANG Yun-ting,LIU Dong-wei,ZHU Fei-fei,et al.Applications of Nitrogen Stable Isotope Techniques in the Study of Nitrogen Cycling in Terrestrial Ecosystems[J].Chinese Journal of Plant Ecology,2020,44(4):373-383.
[24]KAHMEN A,WANEK W,BUCHMANN N.Foliar δ15N Values Characterize Soil N Cycling and Reflect Nitrate or Ammonium Preference of Plants Along a Temperate Grassland Gradient[J].Oecologia,2008,156(4):861-870.
[25]REICH P B,ELLSWORTH D S,WALTERS M B.Leaf Structure(Specific Leaf Area)Modulates Photosynthesis-nitrogen Relations:Evidence from Within and Across Species and Functional Groups[J].Functional Ecology,1998,12(6):948-958.
[26]CRAINE J M,ELMORE A J,WANG L X,et al.Isotopic Evidence for Oligotrophication of Terrestrial Ecosystems[J].Nature Ecology & Evolution,2018,2(11):1735-1744.
[27]YANG F,SCHÄUFELE R,LIU H T,et al.Gross and Net Nitrogen Export from Leaves of a Vegetative C4 Grass[J].Journal of Plant Physiology,2020,244:153093.
[28]KOLB K J,EVANS R D.Influence of Nitrogen Source and Concentration on Nitrogen Isotopic Discrimination in Two Barley Genotypes(Hordeum VulgareL.)[J].Plant,Cell & Environment,2003,26(9):1431-1440.
[29]EVANS R D.Physiological Mechanisms Influencing Plant Nitrogen Isotope Composition[J].Trends in Plant Science,2001,6(3):121-126.
[30]HU Y,GUY R D.Isotopic Composition and Concentration of Total Nitrogen and Nitrate in Xylem Sap Under Near Steady-state Hydroponics[J].Plant, Cell & Environment,2020,43(9):2112-2123.
[31]TCHERKEZ G.Natural 15N/14N Isotope Composition in C3 Leaves:Are Enzymatic Isotope Effects Informative for Predicting the 15N-abundance in Key Metabolites?[J].Functional Plant Biology,2011,38(1):1-12.
[32]CUI J,LAMADE E,FOUREL F,et al.δ15N Values in Plants are Determined by Both Nitrate Assimilation and Circulation[J].New Phytologist,2020,226(6):1696-1707.
[33]PANTIN F,SIMONNEAU T,MULLER B.Coming of Leaf Age:Control of Growth by Hydraulics and Metabolics During Leaf Ontogeny[J].New Phytologist,2012,196(2):349-366.
[34]WALLACE B C,LAJEUNESSE M J,DIETZ G,et al.OpenMEE:Intuitive,Open-source Software for Meta-analysis in Ecology and Evolutionary Biology[J].Methods in Ecology and Evolution,2017,8(8):941-947.
[35]VERONIKI A A,JACKSON D,VIECHTBAUER W,et al.Methods to Estimate the Between-study Variance and Its Uncertainty in Meta-analysis[J].Research Synthesis Methods,2016,7(1):55-79.
[36]LAJEUNESSE M J,ROSENBERG M R,JENNIONS M D.Handbook of Meta-analysis in Ecology and Evolution[M].Princeton:Princeton University Press,2013.
[37]SUN Y R,MA W T,XU Y N,et al.Short- and Long-term Responses of Leaf Day Respiration to Elevated Atmospheric CO2[J].Plant Physiology,2023,191(4):2204-2217.
[38]COUSINS A B,BLOOM A J.Influence of Elevated CO2 and Nitrogen Nutrition on Photosynthesis and Nitrate Photo-assimilation in Maize(Zea Mays L.)[J].Plant,Cell & Environment,2003,26(9):1525-1530.
[39]GONG X Y,SCHÄUFELE R,SCHNYDER H.Bundle-sheath Leakiness and Intrinsic Water Use Efficiency of a Perennial C4 Grass Are Increased at High Vapour Pressure Deficit During Growth[J].Journal of Experimental Botany,2017,68(2):321-333.
[40]KUYPERS M M M,MARCHANT H K,KARTAL B.The Microbial Nitrogen-cycling Network[J].Nature ReviewsMicrobiology,2018,16(5):263-276.
[41]CHEN K E,CHEN H Y,TSENG C S,et al.Improving Nitrogen Use Efficiency by Manipulating Nitrate Remobilization in Plants[J].Nature Plants,2020,6(9):1126-1135.
[42]耿雪琪,唐亚坤,王丽娜,等.氮添加增加中国陆生植物生物量并降低其氮利用效率[J].植物生态学报,2024,48(2):147-157.
GENG Xue-qi,TANG Ya-kun,WANG Li-na,et al.Nitrogen Addition Increases Biomass But Reduces Nitrogen Use Efficiency of Terrestrial Plants in China[J].Chinese Journal of Plant Ecology,2024,48(2):147-157.
[43]冯旭飞,雷长英,张玉洁,等.棉花花铃期叶片氮分配对光合氮利用效率的影响[J].植物生态学报,2023,47(11):1600-1610.
FENG Xu-fei,LEI Zhang-ying,ZHANG Yu-jie,et al.Effect of Leaf Nitrogen Allocation on Photosynthetic Nitrogen Use Efficiency at Flowering and Boll Stage of Gossypium spp[J].Chinese Journal of Plant Ecology,2023,47(11):1600-1610.
[44]冯兆忠,李 品,张国友,等.二氧化碳浓度升高对陆地生态系统的影响:问题与展望[J].植物生态学报,2020,44(5):461-474.
FENG Zhao-zhong,LI Pin,ZHANG Guo-you,et al.Impacts of Elevated Carbon Dioxide Concentration on Terrestrial Ecosystems:Problems and Prospective[J].Chinese Journal of Plant Ecology,2020,44(5):461-474.
[45]杨元合,石 岳,孙文娟,等.中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J].中国科学:生命科学,2022,52(4):534-574.
YANG Yuan-he,SHI Yu,SUN Wen-juan,et al.Terrestrial Carbon Sinks in China and Around the World and Their Contribution to Carbon Neutrality[J].Science China:Life Sciences,2022,52(4):534-574.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-12-04; 修回日期:2024-03-20
基金项目:国家自然科学基金项目(31870377,32120103005,32201277)
*通信作者:李 蕾(1986-),女,江西东乡人,实验师,E-mail:LL0710@fjnu.edu.cn。
更新日期/Last Update: 2024-05-30