|本期目录/Table of Contents|

[1]李子乐,安永凯*,闫雪嫚.耦合敏感性分析与两阶段马尔科夫链蒙特卡洛算法的地下水污染溯源辨识[J].地球科学与环境学报,2024,46(05):702-710.[doi:10.19814/j.jese.2024.05006]
 LI Zi-le,AN Yong-kai*,YAN Xue-man.Coupled Sensitivity Analysis and Two-stage MCMC Algorithm for Groundwater Pollution Source Identification[J].Journal of Earth Sciences and Environment,2024,46(05):702-710.[doi:10.19814/j.jese.2024.05006]
点击复制

耦合敏感性分析与两阶段马尔科夫链蒙特卡洛算法的地下水污染溯源辨识(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第46卷
期数:
2024年第05期
页码:
702-710
栏目:
水资源与水文地质
出版日期:
2024-09-30

文章信息/Info

Title:
Coupled Sensitivity Analysis and Two-stage MCMC Algorithm for Groundwater Pollution Source Identification
文章编号:
1672-6561(2024)05-0702-09
作者:
李子乐12安永凯12*闫雪嫚3
(1. 长安大学 水利与环境学院,陕西 西安 710054; 2. 长安大学 旱区地下水文与生态效应教育部重点实验室, 陕西 西安 710054; 3. 西北大学 城市与环境学院,陕西 西安 710127)
Author(s):
LI Zi-le12 AN Yong-kai12* YAN Xue-man3
(1. School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; 2. Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China; 3. College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, Shaanxi, China)
关键词:
地下水 污染运移 溯源辨识 数值模型 两阶段马尔科夫链蒙特卡洛算法 敏感性分析 多层感知机 代理模型
Keywords:
groundwater pollution transport source identification numerical model two-stage MCMC algorithm sensitivity analysis MLP surrogate model
分类号:
X523
DOI:
10.19814/j.jese.2024.05006
文献标志码:
A
摘要:
为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数; 同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建地下水污染运移数值模型的代理模型,用以提高地下水污染溯源辨识的效率。为验证上述方法的有效性和可行性,开展了两个数值算例研究。结果表明:采用MLP方法构建的代理模型对地下水污染运移数值模型的逼近精度高,不仅能够有效提升地下水污染溯源辨识效率,还能保持良好的计算精度; 所提出的耦合敏感性分析与两阶段MCMC算法能够显著提升低敏感性污染源参数的辨识精度。
Abstract:
To achieve high-precision groundwater pollution source identification, the two-stage Markov Chain Monte Carlo(MCMC)algorithm was used to identify the pollution source parameters based on sensitivity analysis of pollution source parameters. At the same time, the surrogate model of the numerical model of groundwater pollution transport using multi-layer perceptron(MLP)method was explored to improve the efficiency of groundwater pollution source identification. Two numerical examples were implemented to verify the effectiveness and feasibility of the above methods. The results show that the surrogate models constructed by the MLP method has high approximation accuracy for the numerical model of groundwater pollution transport, which can not only effectively improve the efficiency of groundwater pollution source identification, but also maintain good calculation accuracy. The proposed coupled sensitivity analysis and two-stage MCMC algorithm can significantly improve the identification accuracy of pollution source parameters with low sensitivity.

参考文献/References:

[1] 吴延浩,江思珉,吴自军.地下水污染强度及渗透系数场的反演识别研究[J].水文地质工程地质,2023,50(4):193-203.
WU Yan-hao,JIANG Si-min,WU Zi-jun.Identification of Groundwater Pollution Intensity and Hydraulic Conductivity Field[J].Hydrogeology & Engineering Geology,2023,50(4):193-203.
[2] HOU Z Y,LU W X.Comparative Study of Surrogate Models for Groundwater Contamination Source Identification at DNAPL-Contaminated Sites[J].Hydrogeology Journal,2018,26(3):923-932.
[3] 闫雪嫚.基于贝叶斯理论的地下水DNAPLs污染源反演识别研究[D].长春:吉林大学,2021.
YAN Xue-man.Identification of DNAPLs-contaminated Groundwater Pollution Sources Based on Bayes Theory[D].Changchun:Jilin University,2021.
[4] AYVAZ M T.A Hybrid Simulation-optimization Approach for Solving the Areal Groundwater Pollution Source Identification Problems[J].Journal of Hydro-logy,2016,538:161-176.
[5] HAN K X,ZUO R,NI P C,et al.Application of a Genetic Algorithm to Groundwater Pollution Source Identification[J].Journal of Hydrology,2020, 589:125343.
[6] AN Y K,YAN X M,LU W X,et al.An Improved Bayesian Approach Linked to a Surrogate Model for Identifying Groundwater Pollution Sources[J].Hy-drogeology Journal,2022,30(2):601-616.
[7] BORAH T,BHATTACHARJYA R K.Development of an Improved Pollution Source Identification Model Using Numerical and ANN Based Simulation-optimization Model[J].Water Resources Management,2016,30(14):5163-5176.
[8] LUO J N,LI X L,XIONG Y,et al.Groundwater Pollution Source Identification Using Metropolis-hasting Algorithm Combined with Kalman Filter Algorithm[J].Journal of Hydrology,2023,626:130258.
[9] JIANG X,MA R,WANG Y X,et al.Two-stage Surrogate Model-assisted Bayesian Framework for Grou-ndwater Contaminant Source Identification[J].Journal of Hydrology,2021,594:125955.
[10] ZENG X K,WU J C,WANG D,et al.Assessing the Pollution Risk of a Groundwater Source Field at Western Laizhou Bay Under Seawater Intrusion[J].Environmental Research,2016,148:586-594.
[11] YAN X M,DONG W H,AN Y K,et al.A Bayesian-based Integrated Approach for Identifying Groundwater Contamination Sources[J].Journal of Hydrology,2019,579:124160.
[12] 安永凯,张岩祥,闫雪嫚.基于自适应多保真度Co-Kriging代理模型的地下水污染源反演识别[J].中国环境科学,2024,44(3):1376-1385.
AN Yong-kai,ZHANG Yan-xiang,YAN Xue-man.Identification of Groundwater Pollution Sources Based on Self-adaption Co-Kriging Multi-fidelity Surrogate Model[J].China Environmental Science,2024,44(3):1376-1385.
[13] 刘墉达,陈 喜,高 满,等.基于MCMC和ES-MDA方法的地下水数值模型非均质参数场及开采量的反演研究[J].水利学报,2023,54(10):1236-1247.
LIU Yong-da,CHEN Xi,GAO Man,et al.Inversion of Heterogeneous Parameters Field and Extraction Amount of Groundwater Numerical Model Based on MCMC and ES-MDA Methods[J].Journal of Hydraulic Engineering,2023,54(10):1236-1247.
[14] GUO J Y,LU W X,YANG Q C,et al. The Application of 0-1 Mixed Integer Nonlinear Programming Optimization Model Based on a Surrogate Model to Identify the Groundwater Pollution Source[J].Journal of Contaminant Hydrology,2019,220:18-25.
[15] CHANG Z B,GUO Z L,CHEN K W,et al.A Comparison of Inversion Methods for Surrogate-based Groundwater Contamination Source Identification with Varying Degrees of Model Complexity[J].Water Resources Research,2024,60(4):e2023WR036051.
[16] LAL A,DATTA B.Development and Implementation of Support Vector Machine Regression Surrogate Mo-dels for Predicting Groundwater Pumping-induced Saltwater Intrusion into Coastal Aquifers[J].Water Resources Management,2018,32(7):2405-2419.
[17] ZHOU Y C,LU Z Z.An Enhanced Kriging Surrogate Modeling Technique for High-dimensional Problems[J].Mechanical Systems and Signal Processing,2020,140:106687.
[18] MENGISTU T,GHALY W.Aerodynamic Optimization of Turbomachinery Blades Using Evolutionary Methods and ANN-based Surrogate Models[J].Optimization and Engineering,2008,9(3):239-255.
[19] LI J H,LU W X,WANG H,et al.Groundwater Contamination Source Identification Based on a Hybrid Particle Swarm Optimization-extreme Learning Machine[J].Journal of Hydrology,2020,584:124657.
[20] 后 锐,张毕西.基于MLP神经网络的区域物流需求预测方法及其应用[J].系统工程理论与实践,2005,25(12):43-47.
HOU Rui,ZHANG Bi-xi.A Method for Forecasting Regional Logistics Demand Based on MLP Neural Network and Its Application[J].Systems Engineering—Theory & Practice,2005,25(12):43-47.
[21] GHATE V N,DUDUL S V.Optimal MLP Neural Network Classifier for Fault Detection of Three Phase Induction Motor[J].Expert Systems with Applications,2010,37(4):3468-3481.
[22] 徐会军,陈洋波,李昼阳,等.基于LH-OAT分布式水文模型参数敏感性分析[J].人民长江,2012,43(7):19-23.
XU Hui-jun,CHEN Yang-bo,LI Zhou-yang,et al.Analysis on Parameter Sensitivity of Distributed Hyd-rological Model Based on LH-OAT Method[J].Yangtze River,2012,43(7):19-23.
[23] ZADEH F K,NOSSENT J,WOLDEGIORGIS B T,et al.A Fast and Effective Parameterization of Water Quality Models[J].Environmental Modelling & Software,2022,149:105331.
[24] 秦 萍,王 正,孙兆军,等.基于LH-OAT方法的VG模型参数敏感性分析[J].节水灌溉,2019(10):97-102.
QIN Ping,WANG Zheng,SUN Zhao-jun,et al.Sensitivity Analysis of VG Model Parameter Based on LH-OAT Method[J].Water Saving Irrigation,2019(10):97-102.
[25] 张双圣,强 静,刘汉湖,等.基于贝叶斯公式的地下水污染源识别[J].中国环境科学,2019,39(4):1568-1578.
ZHANG Shuang-sheng,QIANG Jing,LIU Han-hu,et al.Identification of Groundwater Pollution Sources Based on Bayes' Theorem[J].China Environmental Science,2019,39(4):1568-1578.
[26] YAN X M,LU W X,AN Y K,et al.Assessment of Parameter Uncertainty for Non-point Source Pollution Mechanism Modeling:A Bayesian-based Approach[J].Environmental Pollution,2020,263:114570.
[27] 梁识栋.高维参数水质模型参数不确定性分析方法研究[D].北京:清华大学,2016.
LIANG Shi-dong.Research on Parameter Uncertainty Analysis Method for Water Quality Model with High-dimensional Parameter Space[D].Beijing:Tsinghua University,2016.
[28] MUSTAFA S M T,NOSSENT J,GHYSELS G,et al.Integrated Bayesian Multi-model Approach to Quantify Input,Parameter and Conceptual Model Structure Uncertainty in Groundwater Modeling[J].Environmental Modelling & Software,2020,126:104654.
[29] WU W,REN J C,ZHOU X D,et al.Identification of Source Information for Sudden Water Pollution Incidents in Rivers and Lakes Based on Variable-fidelity Surrogate-DREAM Optimization[J].Environmental Modelling & Software,2020,133:104811.
[30] VRUGT J A.Markov Chain Monte Carlo Simulation Using the DREAM Software Package:Theory,Concepts,and MATLAB Implementation[J].Environmental Modelling & Software,2016,75:273-316.
[31] RIEDMILLER M,LERNEN A.Multi Layer Perceptron.Machine Learning Lab Special Lecture[R].Frei-burg:University of Freiburg,2014.
[32] 李含雪.基于气象数据和机器学习的土壤温度和水分预测模型构建[D].哈尔滨:东北农业大学,2022.
LI Han-xue.Construction of Soil Temperature and Moisture Prediction Model Based on Meteorological Data and Machine Learning[D].Harbin:Northeast Agricultural University,2022.

相似文献/References:

[1]崔恒,郑西来,李琴,等.天然补给和人工抽水对地下咸水体的影响[J].地球科学与环境学报,2013,35(04):113.
 CUI Heng,ZHENG Xi-lai,LI Qin,et al.Effects of Natural Recharge and Artificial Pumping on Underground Saltwater[J].Journal of Earth Sciences and Environment,2013,35(05):113.
[2]郭华明,郭琦,贾永锋,等.中国不同区域高砷地下水化学特征及形成过程[J].地球科学与环境学报,2013,35(03):83.
 GUO Hua-ming,GUO Qi,JIA Yong-feng,et al.Chemical Characteristics and Geochemical Processes of High Arsenic Groundwater in Different Regions of China[J].Journal of Earth Sciences and Environment,2013,35(05):83.
[3]李付兰,倪萍,郭华明,等.松嫩平原含水层沉积物特征及其对砷赋存态分布的影响[J].地球科学与环境学报,2015,37(01):101.
 LI Fu-lan,NI Ping,GUO Hua-ming,et al.Characteristics of Aquifer Sediments in Songnen Plain and Their Influences on Distribution of Arsenic Occurrence Modes[J].Journal of Earth Sciences and Environment,2015,37(05):101.
[4]贾超,张国荣,王嘉斌,等.地下水开采诱发地面沉降研究及其工程应用:以山东德州地区为例[J].地球科学与环境学报,2015,37(04):102.
 JIA Chao,ZHANG Guo-rong,WANG Jia-bin,et al.Study on Land Subsidence Induced by Groundwater Extraction and Its Engineering Application: Taking Dezhou Area of Shandong as an Example[J].Journal of Earth Sciences and Environment,2015,37(05):102.
[5]胡立堂,孙康宁,尹文杰.GRACE卫星在区域地下水管理中的应用潜力综述[J].地球科学与环境学报,2016,38(02):258.
 HU Li-tang,SUN Kang-ning,YIN Wen-jie.Review on the Application of GRACE Satellite in Regional Groundwater Management[J].Journal of Earth Sciences and Environment,2016,38(05):258.
[6]齐继祥,张之淦,彭玉荣,等.一种地下水14C测年沉淀法采样新程序及对以往测年成果可靠性的评估[J].地球科学与环境学报,2016,38(03):387.
 QI Ji-xiang,ZHANG Zhi-gan,PENG Yu-rong,et al.New Precipitation Method Sampling Procedure of 14C Dating of Groundwater and the Evaluation of the Formerly-obtained 14C Dating Results[J].Journal of Earth Sciences and Environment,2016,38(05):387.
[7]姜军,徐永,马媛.鄂尔多斯盆地都思兔河流域白垩系含水层特征及供水前景分析[J].地球科学与环境学报,2012,34(01):47.
 JIANG Jun,XU Yong,MA Yuan.Characteristics of Cretaceous aquifer and water supply prospect of Dusitu River Valley in Ordos Basin[J].Journal of Earth Sciences and Environment,2012,34(05):47.
[8]高存荣,王俊桃.中国69个城市地下水挥发性卤代烃污染检测与特征研究[J].地球科学与环境学报,2012,34(01):66.
 GAO Cun-rong,WANG Jun-tao.Investigation and research on volatile halogenated hydrocarbon contamination from groundwater in 69 cities of China[J].Journal of Earth Sciences and Environment,2012,34(05):66.
[9]邢丽娜,郭华明,魏亮,等.华北平原浅层含氟地下水演化特点及成因[J].地球科学与环境学报,2012,34(04):57.
 XING Li-na,GUO Hua-ming,WEI Liang,et al.Evolution Feature and Gensis of Fluoride Groundwater in Shallow Aquifer from North China Plain[J].Journal of Earth Sciences and Environment,2012,34(05):57.
[10]李树志,白国良,田迎斌.煤矸石回填地基的环境效应研究[J].地球科学与环境学报,2011,33(04):412.
 LI Shu-zhi,BAI Guo-liang,TIAN Ying-bin.Study on Environmental Effect of Foundation Backfilled with Coal Gangue[J].Journal of Earth Sciences and Environment,2011,33(05):412.

备注/Memo

备注/Memo:
收稿日期:2024-05-10; 修回日期:2024-07-07
基金项目:国家自然科学基金项目(42102287); 中国博士后科学基金项目(2020M683399); 陕西省自然科学基础研究计划项目(2023-JC-QN-0290)
*通信作者:安永凯(1991-),男,陕西汉中人,讲师,工学博士,E-mail:anyk666@chd.edu.cn.
更新日期/Last Update: 2024-10-01