|本期目录/Table of Contents|

[1]李书兆,孙国栋,张安,等.低应力水平下颗粒土的边界面本构模型[J].地球科学与环境学报,2025,47(01):47-55.[doi:10.19814/j.jese.2024.08018]
 LI Shu-zhao,SUN Guo-dong,ZHANG An,et al.A Bounding Surface Model for Granular Soils Under Low Stress Level[J].Journal of Earth Sciences and Environment,2025,47(01):47-55.[doi:10.19814/j.jese.2024.08018]
点击复制

低应力水平下颗粒土的边界面本构模型(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第01期
页码:
47-55
栏目:
工程地质与环境灾害
出版日期:
2025-01-15

文章信息/Info

Title:
A Bounding Surface Model for Granular Soils Under Low Stress Level
文章编号:
1672-6561(2025)01-0047-09
作者:
李书兆1孙国栋1张安2王栋2*
(1. 中海石油(中国)有限公司北京研究中心,北京 100028; 2. 中国海洋大学 海底建设与保护山东省工程研究中心,山东 青岛 266100)
Author(s):
LI Shu-zhao1 SUN Guo-dong1 ZHANG An2 WANG Dong2*
(1. Beijing Research Center, CNOOC, Beijing 100028, China; 2. Shandong Engineering Research Center of Marine Exploration and Conservation, Ocean University of China, Qingdao 266100, Shandong, China)
关键词:
本构模型 颗粒土 理论建模 低应力水平 边界面 嵌锁强度 临界状态
Keywords:
constitutive model granular soil theoretical modeling low stress level bounding surface interlocking strength critical state
分类号:
TU43
DOI:
10.19814/j.jese.2024.08018
文献标志码:
A
摘要:
低应力条件下土体的力学行为因颗粒嵌锁效应显著增强,表现出更高的摩擦角和剪胀性,工程设计中忽视这些特性可能导致不准确分析甚至引发地质灾害。在SANISAND-04边界面模型基础上进行扩展,通过引入颗粒间嵌锁强度参数,对模型的屈服面、临界状态面、边界面和剪胀面进行了改进,提出了SANISAND-L模型,并采用两种不同嵌锁强度的颗粒土三轴剪切试验结果对该模型进行了验证。结果表明:改进后的SANISAND-L模型只增加了一个模型参数,不仅能准确反映低应力水平下颗粒土的峰值和临界状态内摩擦角的提升,同时也能在较高应力水平下保持适用性; 该模型参数能通过低应力条件下的临界状态强度数据直接拟合获得; 对模型进行验证发现其显示出较好的预测能力; 在2 kPa有效围压下,该模型对Toyoura砂土峰值内摩擦角的预测相对误差低于2%,显著优于未考虑嵌锁效应的SANISAND-04模型(后者相对误差超过25%)。该模型结构简洁、参数标定方便,可在SANISAND-04模型的代码基础上直接修改实现,有助于更加精准地进行浅基础承载力、海底管道铺设等浅部土层工程问题的有限元模拟。
Abstract:
Under low-stress conditions, the mechanical behavior of soils is significantly influenced by enhanced particle interlocking effects, leading to higher friction angles and more pronounced dilatancy. Neglecting these characteristics in engineering design may result in inaccurate analyses and even trigger geological hazards. The SANISAND-04 bounding surface model was extended by introducing a particle interlocking strength parameter, modifying the model's yield surface, critical state surface, bounding surface, and dilatancy surface; SANISAND-L model was built and the model was validated using triaxial shear test results on two types of granular soils with different interlocking strengths. The results show that SANISAND-L model with the addition of only one model parameter, accurately reflects the increased peak and critical state internal friction angles of granular soils under low-stress conditions while maintaining applicability under higher stress levels; this model's parameter can be directly calibrated from critical state strength data under low-stress conditions; this model validated demonstrates good predictive capability; for Toyoura sand, at an effective confining pressure as low as 2 kPa, the model achieves a predicted relative error of less than 2% for the peak internal friction angle, significantly outperforming SANISAND-04 model, which has relative errors exceeding 25%. The model features a simple structure and convenient parameter calibration, and can be directly implemented by modifying the code of SANISAND-04 model. It will facilitate more precise finite element simulations of shallow foundation bearing capacity, seabed pipeline installation, and other shallow soil layer engineering problems.

参考文献/References:

[1] FANNIN R J,ELIADORANI A,WILKINSON J M T,et al.Shear Strength of Cohesionless Soils at Low Stress[J].Géotechnique,2005,55(6):467-478.
[2] CAICEDO B,CHAPARRO M J,CASTILLO BETANCOURT J P,et al.A Micromechanical Model for Estimating the Shear Modulus and Damping Ratio of Loose Sands Under Low Stresses:Application to a Mars Regolith Simulant[J].Géotechnique,2024,DOI:10.1680/jgeot.23.00244.
[3] FUKUSHIMA S,TATSUOKA F.Strength and Deformation Characteristics of Saturated Sand at Extre-mely Low Pressures[J].Soils and Foundations,1984,24(4):30-48.
[4] HAN Y C,LIM H S,JEONG S S.The Strength and Deformation Characteristics of Jumunjin Sand Under Low Confining Stresses[J].Journal of the Korean Geotechnical Society,2014,30(2):33-42.
[5] GU L L,WANG Z,HOSOYA A H,et al.Dilatancy and Liquefaction Behaviour of Clean Sand at Wide Range of Confining Stresses[J].Journal of Central South University,2020,27(8):2394-2407.
[6] INDRARATNA B,IONESCU D,CHRISTIE H D.Shear Behavior of Railway Ballast Based on Large-Scale Triaxial Tests[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(5):439-449.
[7] YAO Y P,WANG N B,CHEN D.UH Model for Granular Soils Considering Low Confining Pressure[J].Acta Geotechnica,2021,16(6):1815-1827.
[8] DAFALIAS Y F,MANZARI M T.Simple Plasticity Sand Model Accounting for Fabric Change Effects[J].Journal of Engineering Mechanics,2004,130(6):622-634.
[9] DAFALIAS Y F,POPOV E P.A Model of Nonli-nearly Hardening Materials for Complex Loading[J].Acta Mechanica,1975,21(3):173-192.
[10] DAFALIAS Y F,POPOV E P.Plastic Internal Variables Formalism of Cyclic Plasticity[J].Journal of Applied Mechanics,1976,43(4):645-651.
[11] KRIEG R D.A Practical Two Surface Plasticity Theory[J].Journal of Applied Mechanics,1975,42(3):641-646.
[12] BEEN K,JEFFERIES M G.A State Parameter for Sands[J].Géotechnique,1985,35(2):99-112.
[13] WOOD D M,BELKHEIR K.Strain Softening and State Parameter for Sand Modelling[J].Géotechnique,1994,44(2):335-339.
[14] MANZARI M T,DAFALIAS Y F.A Critical State Two-surface Plasticity Model for Sands[J].Géotech-nique,1997,47(2):255-272.
[15] LI X S,DAFALIAS Y F.Dilatancy for Cohesionless Soils[J].Géotechnique,2000,50(4):449-460.
[16] TAIEBAT M,DAFALIAS Y F.SANISAND:Simple Anisotropic Sand Plasticity Model[J].International Journal for Numerical and Analytical Methods in Geomechanics,2008,32(8):915-948.
[17] PETALAS A L,DAFALIAS Y F,PAPADIMITRIOU A G.SANISAND-FN:An Evolving Fabric-based Sand Model Accounting for Stress Principal Axes Rotation[J].International Journal for Numerical and Analytical Methods in Geomechanics,2019,43(1):97-123.
[18] ZHANG A,DAFALIAS Y F,WANG D.SANISAND-H:A Sand Bounding Surface Model for High Pressures[J].Computers and Geotechnics,2023,161:105579.
[19] HONG Y,WANG X T,WANG L Z,et al.High-cycle Shakedown,Ratcheting and Liquefaction Behavior of Anisotropic Granular Material with Fabric Evolution:Experiments and Constitutive Modelling[J].Journal of the Mechanics and Physics of Solids,2024,187:105638.
[20] ZHANG A,DAFALIAS Y F,JIANG M J.A Bounding Surface Plasticity Model for Cemented Sand Under Monotonic and Cyclic Loading[J].Géotechnique,2023,73(1):44-61.
[21] ZHANG A,DAFALIAS Y F,WANG D.SANISAND-CH:A High-pressure Bounding Surface Model for Cemented Sand,Including Methane Hydrate-bearing Sediments[J].Computers and Geotechnics,2025,179:106986.
[22] VAN EEKELEN H A M.Isotropic Yield Surfaces in Three Dimensions for Use in Soil Mechanics[J].International Journal for Numerical and Analytical Me-thods in Geomechanics,1980,4(1):89-101.
[23] DAFALIAS Y F.Bounding Surface Plasticity Ⅰ:Ma-thematical Foundation and Hypoplasticity[J].Journal of Engineering Mechanics,1986,112(9):966-987.
[24] LOUKIDIS D,SALGADO R.Modeling Sand Response Using Two-surface Plasticity[J].Computers and Geotechnics,2009,36(1/2):166-186.
[25] LIMNAIOU T G,PAPADIMITRIOU A G.Bounding Surface Plasticity Model with Reversal Surfaces for the Monotonic and Cyclic Shearing of Sands[J].Acta Geotechnica,2023,18(1):235-263.
[26] LIU H Y,NAGULA S,JOSTAD H P,et al.Consi-derations for Using Critical State Soil Mechanics Based Constitutive Models for Capturing Static Liquefaction Failure of Tailings Dams[J].Computers and Geotechnics,2024,167:106089.

相似文献/References:

[1]赵法锁,戚炜,王艳婷.三向应力及湿度状态改变对 非饱和黄土力学特征的影响[J].地球科学与环境学报,2007,29(01):80.
 ZHAO Fa-suo,QI Wei,WA NG Yan-ting.Influence of Spherical Stress and Humidity State on Mechanical Property of Unsaturated Loess[J].Journal of Earth Sciences and Environment,2007,29(01):80.

备注/Memo

备注/Memo:
收稿日期:2024-08-17; 修回日期:2024-12-02
基金项目:国家自然科学基金项目(42302304,42025702); 山东省自然科学基金项目(ZR2022QD017); 中国海洋石油集团有限公司“十四五”重大科技项目(KJZX-2022-12-XNY-0100)
*通信作者:王 栋(1975-),男,山东潍坊人,教授,博士研究生导师,工学博士,E-mail:dongwang@ouc.edu.cn。
更新日期/Last Update: 2025-01-20