|本期目录/Table of Contents|

[1]龚劲章,胡羽丰*.基于CYGNSS数据的黄河下游2020~2023年土壤湿度反演及其对极端降雨的响应[J].地球科学与环境学报,2025,47(03):513-525.[doi:10.19814/j.jese.2024.11037]
 GONG Jin-zhang,HU Yu-feng*.Soil Moisture Retrieved with CYGNSS Data in Lower Yellow River Region, China from 2020 to 2023 and Its Response to Extreme Precipitation Event[J].Journal of Earth Sciences and Environment,2025,47(03):513-525.[doi:10.19814/j.jese.2024.11037]
点击复制

基于CYGNSS数据的黄河下游2020~2023年土壤湿度反演及其对极端降雨的响应(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第03期
页码:
513-525
栏目:
黄河流域生态保护和高质量发展专刊(上)
出版日期:
2025-05-15

文章信息/Info

Title:
Soil Moisture Retrieved with CYGNSS Data in Lower Yellow River Region, China from 2020 to 2023 and Its Response to Extreme Precipitation Event
文章编号:
1672-6561(2025)03-0513-13
作者:
龚劲章123胡羽丰124*
(1.长安大学 地质工程与测绘学院,陕西 西安 710054; 2.黄土科学全国重点实验室,陕西 西安 710054; 3.长安大学 地学与卫星大数据研究中心,陕西 西安 710054; 4.长安大学 西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054)
Author(s):
GONG Jin-zhang123 HU Yu-feng124*
(1.School of Geological Engineering and Geomatics,Chang'an University,Xi'an 710054,Shaanxi,China; 2.State Key Laboratory of Loess Science,Xi'an 710054,Shaanxi,China; 3.Big Data Center for Geosciences and Satellites,Chang'an University,Xi'an 710054,Shaanxi,China; 4.Key Laboratory of Western China's Mineral Resources and Geological Engineering of Ministry of Education,Chang'an University,Xi'an 710054,Shaanxi,China)
关键词:
GNSS-R技术 土壤湿度 旋风全球导航卫星系统 GNSS-R RSC模型 降雨响应 黄河
Keywords:
GNSS-R technology soil moisture CYGNSS GNSS-R RSC model precipitation response Yellow River
分类号:
P333; P237
DOI:
10.19814/j.jese.2024.11037
文献标志码:
A
摘要:
黄河下游区域是我国重要的粮食生产基地,获取大范围高时空分辨率的土壤湿度有助于生态保护和精准农业发展,对推动黄河流域生态保护和高质量发展具有重要意义。目前,星载GNSS-R技术已经成为大范围地表土壤湿度反演的一个有效手段。基于旋风全球导航卫星系统(CYGNSS)的GNSS-R数据,首次提出利用CYGNSS卫星的相干比率参数表征地表粗糙度,提出了星载GNSS-R粗糙度衰减自修正土壤湿度反演模型,即GNSS-R RSC模型,并反演得到黄河下游区域2020~2023年的9 km空间分辨率地表土壤湿度。以SMAP土壤湿度数据作为参考,反演得到的土壤湿度产品均方根误差(RMSE)和相关系数(R)分别为0.051 cm3·cm-3和0.75。将该土壤湿度升尺度至36 km空间分辨率时,均方根误差为0.048 cm3·cm-3,相关系数为0.80,较36 km空间分辨率CYGNSS官方土壤湿度,均方根误差降低了50%,相关系数提高了73%。利用生成的土壤湿度产品进行降雨响应分析,结果显示该模型得到的土壤湿度与研究区域降雨季节变化趋势基本一致,月均降水量与土壤湿度相关系数为0.76,且在2021年河南“7·20”极端降雨事件中有较为敏感的响应。
Abstract:
The lower Yellow River region, a vital grain production area in China, requires high temporal-spatial resolution soil moisture(SM)data to support ecological conservation and precision agriculture. This is essential for advancing ecological protection and high-quality development in Yellow River Basin. Currently, spaceborne GNSS-R technology has emerged as an effective approach for large-scale soil moisture retrieval. Based on GNSS-R data from CYGNSS, the CYGNSS-derived coherency ratio was proposed to characterize the surface roughness, and GNSS-R RSC model, a spaceborne GNSS-R roughness attenuation self-correction soil moisture retrieval model, was proposed. Using this model, the soil moisture from 2020 to 2023 for the lower Yellow River region at a 9 km spatial resolution was derived. Using SMAP soil moisture data as the reference, the soil moisture product derived achieves a root mean square error(RMSE)of 0.051 cm3·cm-3 and a correlation coefficient(R)of 0.75. After upscaling the soil moisture data to a 36 km spatial resolution, the RMSE and R improve to 0.048 cm3·cm-3 and 0.80, respectively, representing a 50% reduction in RMSE and a 73% increase in R compared to the official CYGNSS soil moisture product at the same resolution. Precipitation response shows that the retrieval soil moisture product closely matches seasonal precipitation trends, with a monthly R of 0.76; the model also demonstrates high sensitivity to extreme precipitation events, such as the extreme rainstorm in Henan province in July 20th, 2021.

参考文献/References:

[1] 贾 燕,金双根,肖智宇,等.全球导航卫星系统反射测量土壤水分遥感:现状与机遇[J].武汉大学学报(信息科学版),2023,48(11):1784-1799.
JIA Yan,JIN Shuang-gen,XIAO Zhi-yu,et al.Soil Moisture Remote Sensing Using Global Navigation Satellite System-reflectometry:Current Status and Opportunity[J].Geomatics and Information Science of Wuhan University,2023,48(11):1784-1799.
[2] 杨 庆,李明星,郑子彦,等.7种气象干旱指数的中国区域适应性[J].中国科学:地球科学,2017,47(3):337-353.
YANG Qing,LI Ming-xing,ZHENG Zi-yan,et al.Re-gional Applicability of Seven Meteorological Drought Indices in China[J].Science China:Earth Sciences,2017,47(3):337-353.
[3] MCCOLL K A,ALEMOHAMMAD S H,AKBAR R,et al.The Global Distribution and Dynamics of Surface Soil Moisture[J].Nature Geoscience,2017,10(2):100-104.
[4] LI X J,WIGNERON J P,FAN L,et al.A New SMAP Soil Moisture and Vegetation Optical Depth Product(SMAP-IB):Algorithm,Assessment and Inter-comparison[J].Remote Sensing of Environment,2022,271:112921.
[5] WESTERN A W,BLÖSCHL G,GRAYSON R B.Geostatistical Characterisation of Soil Moisture Patterns in the Tarrawarra Catchment[J].Journal of Hydrology,1998,205(1/2):20-37.
[6] AL-KHALDI M M,JOHNSON J T,GLEASON S,et al.An Algorithm for Detecting Coherence in Cyclone Global Navigation Satellite System Mission Le-vel-1 Delay-Doppler Maps[J].IEEE Transactions on Geoscience and Remote Sensing,2021,59(5):4454-4463.
[7] JACKSON T J,COSH M H,BINDLISH R,et al.Va-lidation of Advanced Microwave Scanning Radiometer Soil Moisture Products[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(12):4256-4272.
[8] KURUM M.Quantifying Scattering Albedo in Microwave Emission of Vegetated Terrain[J].Remote Sen-sing of Environment,2013,129:66-74.
[9] KERR Y H,WALDTEUFEL P,WIGNERON J P,et al.The SMOS Mission:New Tool for Monitoring Key Elements of the Global Water Cycle[J].Proceedings of the IEEE,2010,98(5):666-687.
[10] ENTEKHABI D,NJOKU E G,O'NEILL P E,et al.The Soil Moisture Active Passive(SMAP)Mission[J].Proceedings of the IEEE,2010,98(5):704-716.
[11] 赵少华,秦其明,沈心一,等.微波遥感技术监测土壤湿度的研究[J].微波学报,2010,26(2):90-96.
ZHAO Shao-hua,QIN Qi-ming,SHEN Xin-yi,et al.Review of Microwave Remote Sensing on Soil Moisture Monitoring[J].Journal of Microwaves,2010,26(2):90-96.
[12] RUF C S,ATLAS R,CHANG P S,et al.New Ocean Winds Satellite Mission to Probe Hurricanes and Tro-pical Convection[J].Bulletin of the American Meteo-rological Society,2016,97(3):385-395.
[13] JING C,NIU X L,DUAN C D,et al.Sea Surface Wind Speed Retrieval from the First Chinese GNSS-R Mission:Technique and Preliminary Results[J].Remote Sensing,2019,11(24):3013.
[14] SONG D M,ZHANG Q Q,WANG B,et al.A Novel Dual-branch Neural Network Model for Flood Monitoring in South Asia Based on CYGNSS Data[J].Remote Sensing,2022,14(20):5129.
[15] UNWIN M J,PIERDICCA N,CARDELLACH E,et al.An Introduction to the HydroGNSS GNSS Reflectometry Remote Sensing Mission[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2021,14:6987-6999.
[16] LIU Q,ZHANG S C,LI W Q,et al.Using Robust Regression to Retrieve Soil Moisture from CYGNSS Data[J].Remote Sensing,2023,15(14):3669.
[17] YANG W T,GUO F,ZHANG X H,et al.An Impro-ved Method for Water Body Removal in Spaceborne GNSS-R Soil Moisture Retrieval[J].IEEE Transactions on Geoscience and Remote Sensing,2023,61:4701308.
[18] YANG C Z,MAO K B,SHI J C,et al.A Time-constrained and Spatially Explicit AI Model for Soil Moi-sture Inversion Using CYGNSS Data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2025,18:5100-5119.
[19] YANG W T,GUO F,ZHANG X H,et al.First Quasi-global Soil Moisture Retrieval Using Fengyun-3 GNSS-R Constellation Observations[J].Remote Sens-ing of Environment,2025,321:114653.
[20] CHEW C,REAGER J T,SMALL E.CYGNSS Data Map Flood Inundation During the 2017 Atlantic Hurricane Season[J].Scientific Reports,2018,8(1):9336.
[21] CHEW C,SMALL E,HUELSING H.Flooding and Inundation Maps Using Interpolated CYGNSS Reflectivity Observations[J].Remote Sensing of Environment,2023,293:113598.
[22] MA Z M,ZHANG S C,CAMPS A,et al.A Fast and Efficient Method to Estimate Inland Water Levels Us-ing CYGNSS L1 Data and DTMs:Application to Flo-ods,Lakes and Reservoirs Monitoring[J].Journal of Hydrology,2024,645:132258.
[23] CHEN C,YAN S H,YANG J,et al.An Inland Water Detection Method Based on CYGNSS[J].Remote Sensing Letters,2024,15(1):35-43.
[24] YANG T,CONG N.A Preliminary View of the CYGNSS Soil Moisture-vegetation Activity Linkage[J].Frontiers in Forests and Global Change,2023,6:1320432.
[25] CAMPS A,PARK H,PABLOS M,et al.Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2016,9(10):4730-4742.
[26] PILIKOS G,CLARIZIA M P,FLOURY N.Biomass Estimation with GNSS Reflectometry Using a Deep Learning Retrieval Model[J].Remote Sensing,2024,16(7):1125.
[27] ZHANG Y F,BU J W,ZUO X Q,et al.Vegetation Water Content Retrieval from Spaceborne GNSS-R and Multi-source Remote Sensing Data Using Ensemble Machine Learning Methods[J].Remote Sensing,2024,16(15):2793.
[28] CHEW C,SHAH R,ZUFFADA C,et al.Demonstrating Soil Moisture Remote Sensing with Observations from the UK TechDemoSat-1 Satellite Mission[J].Geophysical Research Letters,2016,43(7):3317-3324.
[29] CHEW C,SMALL E.Description of the UCAR/CU Soil Moisture Product[J].Remote Sensing,2020,12(10):1558.
[30] SANTI E,PETTINATO S,PALOSCIA S,et al.Soil Moisture and Forest Biomass Retrieval on a Global Scale by Using CYGNSS Data and Artificial Neural Networks[C]∥IGARSS.2020 IEEE International Geoscience and Remote Sensing Symposium.Waikoloa:IGARSS,2020:5905-5908.
[31] NABI M M,SENYUREK V,GURBUZ A C,et al.Deep Learning-based Soil Moisture Retrieval in CONUS Using CYGNSS Delay-Doppler Maps[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:6867-6881.
[32] 刘宏伟,余钟波,崔广柏.湿润地区土壤水分对降雨的响应模式研究[J].水利学报,2009,40(7):822-829.
LIU Hong-wei,YU Zhong-bo,CUI Guang-bo.Pattern of Soil Moisture Responding to Precipitation in Humid Area[J].Journal of Hydraulic Engineering,2009,40(7):822-829.
[33] 王少昆,赵学勇,左小安,等.科尔沁沙地小叶锦鸡儿灌丛下土壤水分对降雨响应的空间变异性[J].干旱区研究,2008,25(3):389-393.
WANG Shao-kun,ZHAO Xue-yong,ZUO Xiao-an,et al.Spatial Variability of the Response of Soil Moisture Content Under Caragana Microphylla Shrubbery to Rainfall in the Horqin Sand Land[J].Arid Zone Research,2008,25(3):389-393.
[34] 李 谦,郑锦森,朱 青,等.太湖流域典型土地利用类型土壤水分对降雨的响应[J].水土保持学报,2014,28(1):6-11.
LI Qian,ZHENG Jin-sen,ZHU Qing,et al.Response of Soil Moisture to Rainfall in Typical Land Use Ty-pes in the Taihu Basin[J].Journal of Soil and Water Conservation,2014,28(1):6-11.
[35] 沈志强,华 敏,卢 杰,等.西藏拉萨河谷山地土壤水分对降雨的响应[J].中国农村水利水电,2016(10):104-107,115.
SHEN Zhi-qiang,HUA Min,LU Jie,et al.Response of Soil Moisture to Precipitation in the Valley Mountain Lhasa,Tibet[J].China Rural Water and Hydropower,2016(10):104-107,115.
[36] 严清赟,王戴乐.CYGNSS信号对降水的时空响应及其驱动因子分析[J].武汉大学学报(信息科学版),2024,49(1):109-121.
YAN Qing-yun,WANG Dai-le.Spatiotemporal Response of CYGNSS Signals to Precipitation and Ana-lysis of Driving Factors[J].Geomatics and Information Science of Wuhan University,2024,49(1):109-121.
[37] ZHANG S C,MA Z M,LI Z H,et al.Using CYGNSS Data to Map Flood Inundation During the 2021 Extreme Precipitation in Henan Province,China[J].Remote Sensing,2021,13(24):5181.
[38] YANG W T,GAO F,XU T H,et al.Daily Flood Monitoring Based on Spaceborne GNSS-R Data:A Case Study on Henan,China[J].Remote Sensing,2021,13(22):4561.
[39] 司舒阳,李道西.黄河下游引黄灌区深层土壤含水率反演模型研究[J].人民黄河,2023,45(8):124-127,142.
SI Shu-yang,LI Dao-xi.Study on Inversion Model of Deep Soil Moisture Content in the Yellow River Diversion Irrigation Area[J].Yellow River,2023,45(8):124-127,142.
[40] 张亚楠,宋小宁,冷 佩,等.近20年黄河流域夏季土壤水分时空变化特征及驱动因素分析[J].中国科学院大学学报,2024,41(4):477-489.
ZHANG Ya-nan,SONG Xiao-ning,LENG Pei,et al.Temporal and Spatial Variation of Summer Soil Moisture and Its Driving Factors in Yellow River Basin During the Last 20 Years[J].Journal of University of Chinese Academy of Sciences,2024,41(4):477-489.
[41] IWAO K,NISHIDA K,KINOSHITA T,et al.Validating Land Cover Maps with Degree Confluence Project Information[J].Geophysical Research Letters,2006,33(23):2006GL027768.
[42] RUF C,CHANG P,CLARIZIA M P,et al.CYGNSS Handbook[M].Ann Arbor:Michigan Publishing,2016.
[43] CLARIZIA M P,RUF C S,JALES P,et al.Spacebor-ne GNSS-R Minimum Variance Wind Speed Estimator[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(11):6829-6843.
[44] RODRIGUEZ-ALVAREZ N,AKOS D M,ZAVOROTNY V U,et al.Airborne GNSS-R Wind Retrievals Using Delay-Doppler Maps[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(1):626-641.
[45] HUFFMAN G J, STOCKER E F, BOLVIN D T, et al.GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree×0.1 Degree V07[EB/OL].(2024-11-01)[2024-11-28].DOI:10.5065/SRTD-0R12.
[46] 张双成,郭沁雨,马中民,等.星载GNSS-R反演土壤湿度研究进展与思考[J].武汉大学学报(信息科学版),2024,49(1):15-26.
ZHANG Shuang-cheng,GUO Qin-yu,MA Zhong-min,et al.Research Advances and Some Thoughts on Soil Moisture Retrieval by Space-borne GNSS-R[J].Geomatics and Information Science of Wuhan University,2024,49(1):15-26.
[47] CLARIZIA M P,PIERDICCA N,COSTANTINI F,et al.Analysis of CYGNSS Data for Soil Moisture Retrieval[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2019,12(7):2227-2235.
[48] WAGNER K C,BYRD G D.Evaluating the Effectiveness of Clinical Medical Librarian Programs:A Syste-matic Review of the Literature[J].Journal of the Me-dical Library Association,2004,92(1):14-33.
[49] RODRIGUEZ-ALVAREZ N,MUNOZ-MARTIN J F,MORRIS M.Latest Advances in the Global Navigation Satellite System:Reflectometry(GNSS-R)Field[J].Remote Sensing,2023,15(8):2157.
[50] 刘南江,靳 文,张 鹏,等.2021年河南“7·20”特大暴雨灾害影响特征分析及建议[J].中国防汛抗旱,2022,32(4):31-37.
LIU Nan-jiang,JIN Wen,ZHANG Peng,et al.Analysis of Impact Characteristics and Suggestions on Disaster Reduction for “7·20” Extreme Rainstorm Disasters in Henan Province,2021[J].China Flood & Drought Management,2022,32(4):31-37.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-11-29; 修回日期:2025-01-16
基金项目:国家自然科学基金项目(42041006); 陕西省自然科学研究计划项目(2024JC-YBMS-197); 长安大学中央高校基本科研业务费专项资金项目(300102263203,300104240914); 陕西省地学大数据与地质灾害防治创新团队项目(2022)
*通信作者:胡羽丰(1989-),男,湖北应城人,长安大学副教授,工学博士,E-mail:yfhu@chd.edu.cn。
更新日期/Last Update: 2025-06-20