|本期目录/Table of Contents|

[1]刘帅,王涛*,曾先贵,等.考虑月度降雨变化的多情景区域滑坡易发性评价——以湖南省长沙市为例[J].地球科学与环境学报,2025,47(05):944-961.[doi:10.19814/j.jese.2025.02034]
 LIU Shuai,WANG Tao*,ZENG Xian-gui,et al.Multi-scenario Regional Landslide Susceptibility Assessment Considering Monthly Rainfall Changes—A Case Study of Changsha City, Hunan Province, China[J].Journal of Earth Sciences and Environment,2025,47(05):944-961.[doi:10.19814/j.jese.2025.02034]
点击复制

考虑月度降雨变化的多情景区域滑坡易发性评价——以湖南省长沙市为例(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第05期
页码:
944-961
栏目:
工程地质与环境灾害
出版日期:
2025-10-01

文章信息/Info

Title:
Multi-scenario Regional Landslide Susceptibility Assessment Considering Monthly Rainfall Changes—A Case Study of Changsha City, Hunan Province, China
文章编号:
1672-6561(2025)05-0944-18
作者:
刘帅123王涛123*曾先贵4张帅123方亚其56
(1. 中国地质科学院地质力学研究所,北京 100081; 2. 自然资源部活动构造与地质安全重点实验室,北京 100081; 3. 自然资源部陕西宝鸡地质灾害野外科学观测研究站,陕西 宝鸡 721001; 4. 长沙市地质灾害监测评价中心,湖南 长沙 410019; 5. 湖南省地质灾害调查监测所,湖南 长沙 410029; 6. 湖南省地质灾害监测预警与应急救援工程技术研究中心,湖南 长沙 410004)
Author(s):
LIU Shuai123 WANG Tao123* ZENG Xian-gui4 ZHANG Shuai123 FANG Ya-qi56
(1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China; 2. Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Beijing 100081, China; 3. Observation and Research Station of Geological Disaster in Baoji, Shaanxi Province, Ministry of Natural Resources, Baoji 721001, Shaanxi, China; 4. Changsha Geological Hazard Monitoring and Evaluation Center, Changsha 410019, Hunan, China; 5. Geohazards Survey and Monitor Institute of Hunan Province, Changsha 410029, Hunan, China; 6. Hunan Geological Disaster Monitoring, Early Warning and Emergency Rescue Engineering Technology Research Center, Changsha 410004, Hunan, China)
关键词:
降雨 滑坡 易发性 随机森林模型 皮尔逊相关性 基尼系数 主控因子 湖南
Keywords:
rainfall landslide susceptibility random forest model Pearson correlation Gini coefficient main controlling factor Hunan
分类号:
P642.22
DOI:
10.19814/j.jese.2025.02034
文献标志码:
A
摘要:
针对单一情景的滑坡易发性评价难以揭示区域滑坡发育潜势时空变化的问题,在极端降雨事件频发的背景下,以湖南省长沙市为例,融合机器学习算法与空间矩阵动态叠加分析,开展考虑月度降雨变化的滑坡易发性多情景评价研究; 结合皮尔逊(Pearson)相关系数与随机森林基尼(Gini)系数筛选出高程、距河流距离、地形起伏度等15个地质环境因子,构建滑坡易发性影响因子体系; 通过随机森林模型建模,实现基于地质环境因子的静态易发性分区; 基于此,进一步综合多年平均月降水量数据,建立“地质环境本底-动态降雨诱发”双因素叠加模型,揭示了滑坡易发性呈现显著的季节性时空响应特征。结果表明:3月湖南省长沙市东部和西部同步形成滑坡极高易发区; 随着降雨增强,滑坡高易发区自3月至5月呈现向心性扩展态势,其中东部(浏阳市)扩展速率较西部(宁乡市)快20%,形成“东强西弱”的非对称扩展特征; 6月汛期峰值时,宁乡市滑坡极高易发区占比达36.3%,空间分布呈现双核心集聚特征; 7月至8月滑坡易发等级逐步下降; 9月滑坡易发等级骤降,滑坡极高易发区完全消退; 高程(贡献度为19.40%)、坡向(15.54%)、距一级河流的距离(13.35%)及地形起伏度(12.65%)是区域滑坡发育的主控因子,降水量变化显著改变了滑坡易发性的时空分布特征。
Abstract:
To address the limitation of single-scenario landslide susceptibility assessment in capturing the spatiotemporal variations of regional landslide development potential, a multi-scenario evaluation considering monthly rainfall changes in Changsha city of Hunan province was conducted by integrating machine learning algorithms and spatial matrix dynamic superposition analysis under the background of frequent extreme rainfall events; fifteen geoenvironmental factors, including elevation, distance to rivers and topographic relief, were selected by Pearson correlation and random forest Gini coefficients to construct a landslide susceptibility factor system; random forest(RF)model was applied to achieve static susceptibility zoning based on geoenvironmental factors; further, by incorporating multi-year average monthly rainfall data, a geoenvironmental background-dynamic rainfall triggering two-factor superposition model was established, revealing significant seasonal spatiotemporal response characteristics of landslide susceptibility. The results show that ① extremely high susceptibility zones of landslide form simultaneously in the eastern and western of Changsha city, Hunan province in March; ② with the increase of rainfall, the high susceptibility zones expand concentrically from March to May, with the east(Liuyang city)expanding 20% faster than the west(Ningxiang city), forming an asymmetric “east strong, west weak” expansion pattern; ③ by June during the peak flood season, Ningxiang city's extremely high susceptibility zones account for 36.3%, showing a dual-core agglomeration in spatial distribution; ④ susceptibility levels gradually decline from July to August and drop sharply in September, with extremely high susceptibility zones completely disappearing; ⑤ elevation(the contribution degree is 19.40%), slope aspect(15.54%), distance to primary rivers(13.35%), and topographic relief(12.65%)are identified as the main controlling factors of regional landslide development, while rainfall changes significantly alter the spatiotemporal distribution of landslide susceptibility.

参考文献/References:

[1] ALVIOLI M,MELILLO M,GUZZETTI F,et al.Implications of Climate Change on Landslide Hazard in Central Italy[J].Science of the Total Environment,2018,630:1528-1543.
[2] 殷跃平,高少华.高位远程地质灾害研究:回顾与展望[J].中国地质灾害与防治学报,2018,29(5):1-21.
YIN Yue-ping,GAO Shao-hua.Research on High-altitude and Long-runout Rockslides:Review and Pro-spects[J].The Chinese Journal of Geological Hazard and Control,2018,29(5):1-21.
[3] SEGONI S,NOCENTINI N,BARBADORI F,et al.A Novel Prototype National-scale Landslide Nowcasting System for Italy Combining Rainfall Thresholds and Risk Indicators[J].Landslides,2025,22(5):1341-1366.
[4] 陈 贺,付有旺.贡山县进藏通道群发性滑坡地质特征与降雨阈值[J].岩石力学与工程学报,2024,43(增2):3861-3871.
CHEN He,FU You-wang.Geological Characteristics and Rainfall Threshold of Multiple Landslides in the Passage into Tibet in Gongshan County[J].Chinese Journal of Rock Mechanics and Engineering,2024,43(S2):3861-3871.
[5] 易靖松,王 峰,程英建,等.高山峡谷区地质灾害危险性评价:以四川省阿坝县为例[J].中国地质灾害与防治学报,2022,33(3):134-142.
YI Jing-song,WANG Feng,CHENG Ying-jian,et al.Study on the Risk Assessment of Geological Disasters in Alpine Valley Area:A Case Study in Aba County,Sichuan Province[J].The Chinese Journal of Geologi-cal Hazard and Control,2022,33(3):134-142.
[6] 李 萍,李丽慧,刘昊磾,等.澜沧江流域重大水电工程扰动灾害风险评价[J].工程地质学报,2022,30(3):635-647.
LI Ping,LI Li-hui,LIU Hao-di,et al.Risk Assessment of Disturbance Disaster in Major Hydropower Engineering of Lancang River Basin[J].Journal of Engineering Geology,2022,30(3):635-647.
[7] 刘 帅,朱杰勇,杨得虎,等.不同降雨工况条件下的崩滑地质灾害危险性评价[J].地质科技通报,2024,43(2):253-267.
LIU Shuai,ZHU Jie-yong,YANG De-hu,et al.Geological Hazard Risk Assessment of Collapse and Landslide Under Different Rainfall Conditions[J].Bu-lletin of Geological Science and Technology,2024,43(2):253-267.
[8] 舒和平.融合降雨阈值和易发性的黄土滑坡预警研究[C]∥青年地学论坛理事会.第九届青年地学论坛论文集.兰州:青年地学论坛理事会,2024:358-359.
SHU He-ping.Research on Early Warning of Loess Landslides by Integrating Rainfall Threshold and Susceptibility[C]∥Council of Young Geoscience Forum.Proceedings of the 9th Young Geoscience Forum.Lanzhou:Council of Young Geoscience Forum,2024:358-359.
[9] WANG X M,DIAO M P,GUO H N,et al.Landslide Deformation Prediction and Automatic Warning by Coupling Machine Learning and Physical Models[J].Earth and Space Science,2024,11(6):e2023EA003238.
[10] LIN G,LAN H X,LI P,et al.Role of Rainfall Temporal Distribution on Effective Infiltration in the Loess Slope and Prediction Model[J].Engineering Geo-logy,2024,335:107541.
[11] CHENG Y X,GAN Y,SHI C M,et al.A Critical Analysis of Geological Hazard Risk Assessment Including Future Perspectives[J].Sustainability,2024,16(9):3701.
[12] LI L P,LAN H X,GUO C B,et al.A Modified Frequency Ratio Method for Landslide Susceptibility Assessment[J].Landslides,2017,14(2):727-741.
[13] YAO X,THAM L G,DAI F C.Landslide Susceptibi-lity Mapping Based on Support Vector Machine:A Case Study on Natural Slopes of Hong Kong,China[J].Geomorphology,2008,101(4):572-582.
[14] DENG H,WU X T,ZHANG W J,et al.Slope-unit Scale Landslide Susceptibility Mapping Based on the Random Forest Model in Deep Valley Areas[J].Remote Sensing,2022,14(17):4245.
[15] 吴润泽,胡旭东,梅红波,等.基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例[J].地球科学,2021,46(1):321-330.
WU Run-ze,HU Xu-dong,MEI Hong-bo,et al.Spatial Susceptibility Assessment of Landslides Based on Random Forest:A Case Study from Hubei Section in the Three Gorges Reservoir Area[J].Earth Science,2021,46(1):321-330.
[16] 刘 帅,王 涛,曹佳文,等.基于优化随机森林模型的降雨群发滑坡易发性评价:以西秦岭极端降雨事件为例[J].地质通报,2024,43(6):958-970.
LIU Shuai,WANG Tao,CAO Jia-wen,et al.Susceptibility Assessment of Precipitation-induced Mass Landslides Based on an Optimal Random Forest Mo-del:Taking the Extreme Precipitation Event in the Western Qinling Mountains as an Example[J].Geological Bulletin of China,2024,43(6):958-970.
[17] PRADHAN B.A Comparative Study on the Predictive Ability of the Decision Tree,Support Vector Machine and Neuro-fuzzy Models in Landslide Susceptibility Mapping Using GIS[J].Computers & Geosciences,2013,51:350-365.
[18] ERMINI L,CATANI F,CASAGLI N.Artificial Neural Networks Applied to Landslide Susceptibility Assessment[J].Geomorphology,2005,66(1/2/3/4):327-343.
[19] HAKIM W L,REZAIE F,NUR A S,et al.Convolutional Neural Network(CNN)with Metaheuristic Optimization Algorithms for Landslide Susceptibility Mapping in Icheon,South Korea[J].Journal of Environmental Management,2022,305:114367.
[20] DOU J,YUNUS A P,TIENBUI D,et al.Assessment of Advanced Random Forest and Decision Tree Algorithms for Modeling Rainfall-induced Landslide Susceptibility in the Izu-Oshima Volcanic Island,Japan[J].Science of the Total Environment,2019,662:332-346.
[21] MERGHADI A,YUNUS A P,DOU J,et al.Machine Learning Methods for Landslide Susceptibility Stu-dies:A Comparative Overview of Algorithm Perfor-mance[J].Earth-science Reviews,2020,207:103225.
[22] 楼鲜荭,孔存书,杨世勇,等.粉砂岩制砂取代河砂对砼强度的影响研究及意义:浏阳高坪沿甸村坳上组滑坡地质灾害治理工程实践[J].价值工程,2020,39(27):126-128.
LOU Xian-hong,KONG Cun-shu,YANG Shi-yong,et al.Research and Significance of Replacing River Sand with Silt Sand on Concrete Strength:The Engineering Practice of Landslide Geological Hazard Treatment in the Aoshang Group of Yandian Village,Gaoping,Liuyang[J].Value Engineering,2020,39(27):126-128.
[23] 长沙市自然资源和规划局.关于加强我市山体滑坡防治工作的建议答复[R].长沙:长沙市自然资源和规划局,2023.
Changsha Municipal Bureau of Natural Resources and Planning.Suggestions and Response to Strengthening the Prevention and Control of Landslides in Our City[R].Changsha:Changsha Municipal Bureau of Natural Resources and Planning,2023.
[24] YANG X,JIANG Y.Experimental Study on the Mechanical Properties of Weathered Granite Under Different Water Contents[J].Rock Mechanics and Rock Engineering,2018,51(10):3339-3351.
[25] AHMAD A,FARIDA M,JUITA N,et al.Soil Micromorphology for Modeling Spatial on Landslide Susceptibility Mapping:A Case Study in Kelara Subwatershed,Jeneponto Regency of South Sulawesi,Indonesia[J].Natural Hazards,2023,118(2):1445-1462.
[26] REICHENBACH P,ROSSI M,MALAMUD B D,et al.A Review of Statistically-based Landslide Susceptibi-lity Models[J].Earth-science Reviews,2018,180:60-91.
[27] ROSSI M,REICHENBACH P.LAND-SE:A Softwa-re for Statistically Based Landslide Susceptibility Zonation,Version 1.0[J].Geoscientific Model Development,2016,9(10):3533-3543.
[28] 唐辉明,鲁 莎.三峡库区黄土坡滑坡滑带空间分布特征研究[J].工程地质学报,2018,26(1):129-136.
TANG Hui-ming,LU Sha.Research on the Spatial Distribution Characteristics of Slip Zone of the Huangtupo Landslide in Three Gorges Reservoir Area[J].Journal of Engineering Geology,2018,26(1):129-136.
[29] DOU H Q,HE J B,HUANG S Y,et al.Influences of Non-landslide Sample Selection Strategies on Landsli-de Susceptibility Mapping by Machine Learning[J].Geomatics,Natural Hazards and Risk,2023,14(1):2285719.
[30] WANG Z P,CHEN J P,LIAN Z C,et al.Influence of Buffer Distance on Environmental Geological Hazard Susceptibility Assessment[J].Environmental Science and Pollution Research,2024,31(6):9582-9595.
[31] CHEN W,CHEN X,PENG J B,et al.Landslide Susceptibility Modeling Based on ANFIS with Teaching-learning-based Optimization and Satin Bowerbird Optimizer[J].Geoscience Frontiers,2021,12(1):93-107.
[32] BUI D T,TSANGARATOS P,NGUYEN V T,et al.Comparing the Prediction Performance of a Deep Lea-rning Neural Network Model with Conventional Machine Learning Models in Landslide Susceptibility Assessment[J].Catena,2020,188:104426.
[33] HUANG F M,CAO Z S,JIANG S H,et al.Landslide Susceptibility Prediction Based on a Semi-supervised Multiple-layer Perceptron Model[J].Landslides,2020,17(12):2919-2930.
[34] YILMAZ I.Landslide Susceptibility Mapping Using Frequency Ratio,Logistic Regression,Artificial Neural Networks and Their Comparison:A Case Study from Kat Landslides(Tokat:Turkey)[J].Computers & Geosciences,2009,35(6):1125-1138.
[35] YOUSSEF A M,POURGHASEMI H R,POURTAGHI Z S,et al.Landslide Susceptibility Mapping Using Random Forest,Boosted Regression Tree,Classification and Regression Tree,and General Linear Models and Comparison of Their Performance at Wadi Tay-yah Basin,Asir Region,Saudi Arabia[J].Landslides,2016,13(5):839-856.
[36] SHAREK D,MCCANN E,HUNTLEY-MOORE S.A Mixed-methods Evaluation of a Gender Affirmative Education Program for Families of Trans Young People[J].Journal of GLBT Family Studies,2020,16(1):18-31.
[37] FAN W,WEI X S,CAO Y B,et al.Landslide Susceptibility Assessment Using the Certainty Factor and Analytic Hierarchy Process[J].Journal of Mountain Science,2017,14(5):906-925.
[38] CANTARINO I,CARRION M A,GOERLICH F,et al.A ROC Analysis-based Classification Method for Landslide Susceptibility Maps[J].Landslides,2019,16(2):265-282.
[39] 黄发明,叶 舟,姚 池,等.滑坡易发性预测不确定性:环境因子不同属性区间划分和不同数据驱动模型的影响[J].地球科学,2020,45(12):4535-4549.
HUANG Fa-ming,YE Zhou,YAO Chi,et al.Uncertainties of Landslide Susceptibility Prediction:Diffe-rent Attribute Interval Divisions of Environmental Factors and Different Data-based Models[J].Earth Science,2020,45(12):4535-4549.
[40] GB/T 28592—2012,降水量等级[S].
GB/T 28592—2012,Grade of Precipitation[S].
[41] 黄发明,石 雨,欧阳慰平,等.基于证据权和卡方自动交互检测决策树的滑坡易发性预测[J].土木与环境工程学报,2022,44(5):43-51.
HUANG Fa-ming,SHI Yu,OUYANG Wei-ping,et al.Landslide Susceptibility Prediction Modeling Ba-sed on Weight of Evidence and Chi-square Automatic Interactive Detection Decision Tree[J].Journal of Ci-vil and Environmental Engineering,2022,44(5):43-51.
[42] SUN D L,WANG J,WEN H J,et al.Insights into Landslide Susceptibility in Different Karst Erosion Landforms Based on Interpretable Machine Learning[J].Earth Surface Processes and Landforms,2024,49(3):1006-1027.
[43] HUANG F M,XIONG H W,JIANG S H,et al.Mo-delling Landslide Susceptibility Prediction:A Review and Construction of Semi-supervised Imbalanced Theory[J].Earth-science Reviews,2024,250:104700.
[44] 长沙市应急管理局.望城区乌山街道黄花岭村山体滑坡应急处置情况通报[R].长沙:长沙市应急管理局,2024.
Department of Emergency Management of Changsha City.Bulletin on the Emergency Handling of the Landslide in Huanghualing Village,Wushan Sub-district,Wangcheng District[R].Changsha:Department of Emergency Management of Changsha City,2024.
[45] 浏阳市自然资源局.大瑶镇李畋村常春小区后山坍塌地质灾害调查报告[R].浏阳:浏阳市自然资源局,2020.
Liuyang Bureau of Natural Resources.Investigation Report on the Geological Disaster of the Collapse of the Rear Mountain of Changchun Community,Litian Village,Dayao Town[R].Liuyang:Liuyang Bureau of Natural Resources,2020.

相似文献/References:

[1]崔恒,郑西来,李琴,等.天然补给和人工抽水对地下咸水体的影响[J].地球科学与环境学报,2013,35(04):113.
 CUI Heng,ZHENG Xi-lai,LI Qin,et al.Effects of Natural Recharge and Artificial Pumping on Underground Saltwater[J].Journal of Earth Sciences and Environment,2013,35(05):113.
[2]邓通发,桂勇,罗嗣海,等.降雨条件下花岗岩残坡积土路堑边坡稳定性研究[J].地球科学与环境学报,2012,34(04):88.
 DENG Tong-fa,GUI Yong,LUO Si-hai,et al.Study on Slope Stability of Granite Residual Soil Cutting Excavation with Rainfall[J].Journal of Earth Sciences and Environment,2012,34(05):88.
[3]王志兵,邹永胜,李斌,等.桂东南花岗岩风化土与残余节理的微观结构及演化[J].地球科学与环境学报,2020,42(03):405.[doi:10.19814/j.jese.2019.10040]
 WANG Zhi-bing,ZOU Yong-sheng,LI Bin,et al.Micro-structure and Evolution of Relict Joints and Weathered Granite Soils in the Southeastern Guangxi, China[J].Journal of Earth Sciences and Environment,2020,42(05):405.[doi:10.19814/j.jese.2019.10040]
[4]祝艳波,韩宇涛,苗帅升,等.黄土-三趾马红土滑坡滑带土剪切力学特性影响因素[J].地球科学与环境学报,2021,43(04):744.[doi:10.19814/j.jese.2021.05024]
 ZHU Yan-bo,HAN Yu-tao,MIAO Shuai-sheng,et al.Influencing Factors on the Shear Strength of Sliding Zone of Loess-Hipparion Red Clay Landslide[J].Journal of Earth Sciences and Environment,2021,43(05):744.[doi:10.19814/j.jese.2021.05024]
[5]杨 玲,魏 静*,许子伏.基于平滑先验法-麻雀搜索算法-支持向量机回归模型的滑坡位移预测——以三峡库区八字门和白水河滑坡为例[J].地球科学与环境学报,2022,44(06):1096.[doi:10.19814/j.jese.2022.07043]
 YANG Ling,WEI Jing*,XU Zi-fu.Displacement Prediction of Landslide Based on SPA-SSA-SVR Model—Taking Bazimen and Baishuihe Landslides in Three Gorges Reservoir Area, China as Examples[J].Journal of Earth Sciences and Environment,2022,44(05):1096.[doi:10.19814/j.jese.2022.07043]
[6]张雪,魏云杰*,杨成生,等.云南昭通地区滑坡隐患InSAR广域识别与监测[J].地球科学与环境学报,2025,47(01):128.[doi:10.19814/j.jese.2024.04030]
 ZHANG Xue,WEI Yun-jie*,YANG Cheng-sheng,et al.InSAR Wide-area Identification and Monitoring of Landslide Hazards in Zhaotong Area of Yunnan, China[J].Journal of Earth Sciences and Environment,2025,47(05):128.[doi:10.19814/j.jese.2024.04030]
[7]祝艳波*,刘浩,韦佳龙,等.物理状态变化对三趾马红土蠕变特性的影响试验[J].地球科学与环境学报,2025,47(04):583.[doi:10.19814/j.jese.2025.02002]
 ZHU Yan-bo*,LIU Hao,WEI Jia-long,et al.Experiment on the Influence of Physical State Variation on the Creep Characteristics of Hipparion Red Clay[J].Journal of Earth Sciences and Environment,2025,47(05):583.[doi:10.19814/j.jese.2025.02002]

备注/Memo

备注/Memo:
收稿日期:2025-02-27; 修回日期:2025-04-07
基金项目:中国地质调查局地质调查项目(DD20221738,DD20230600204); 国家自然科学基金项目(42302333); 自然资源部科技人才工程项目(121106000000180039-2207); 湖南省地质灾害调查监测所合作科研项目(KJCGZH024)
*通信作者:王 涛(1982-),男,山东枣庄人,研究员,博士研究生导师,工学博士,E-mail:wangtaoig@cags.ac.cn。
通信作者:曾先贵(1980-),男,江西南丰人,工程师,E-mail:21196918@qq.com。
更新日期/Last Update: 2025-10-01