|本期目录/Table of Contents|

[1]张文杰*,钦祥澳.铁锰改性生物炭联合水泥稳定化-固化As(Ⅲ)污染土的修复机理[J].地球科学与环境学报,2025,47(06):1047-1056.[doi:10.19814/j.jese.2025.01022]
 ZHANG Wen-jie*,QIN Xiang-ao.Remediation Mechanism of Stabilization/Solidification of As(Ⅲ)-contaminated Soil Using Fe-Mn Modified Biochar and Cement[J].Journal of Earth Sciences and Environment,2025,47(06):1047-1056.[doi:10.19814/j.jese.2025.01022]
点击复制

铁锰改性生物炭联合水泥稳定化-固化As(Ⅲ)污染土的修复机理(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第06期
页码:
1047-1056
栏目:
环境与可持续发展
出版日期:
2025-11-15

文章信息/Info

Title:
Remediation Mechanism of Stabilization/Solidification of As(Ⅲ)-contaminated Soil Using Fe-Mn Modified Biochar and Cement
文章编号:
1672-6561(2025)06-1047-10
作者:
张文杰1*钦祥澳2
(1. 台州学院 建筑工程学院,浙江 台州 318000; 2. 上海大学 力学与工程科学学院,上海 200072)
Author(s):
ZHANG Wen-jie1* QIN Xiang-ao2
(1. School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China; 2. School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China)
关键词:
污染土 生物炭 铁锰氧化物 稳定化 固化 水泥 毒性浸出试验
Keywords:
arsenic contaminated soil biochar Fe-Mn oxides stabilization solidification cement toxicity leaching test
分类号:
TK6; X53
DOI:
10.19814/j.jese.2025.01022
文献标志码:
A
摘要:
稳定化-固化是治理重金属污染土最常用的方法,但使用传统药剂治理砷(As)效果不佳。使用铁锰改性生物炭(FMBC)作为稳定剂,通过氧化、吸附和共沉淀作用对污染土中的As进行稳定化,再使用水泥进行固化处理; 通过毒性浸出试验、无侧限抗压强度和pH测试、微观形貌及光谱分析研究了修复效果和机理。结果表明:在相同稳定剂和水泥掺量下,使用铁锰改性生物炭的修复效果明显优于单独使用铁锰氧化物(FMO)和生物炭(BC),对于As含量为2 000×10-6的污染土,7%铁锰改性生物炭和10%水泥掺量下的As浸出浓度降至1.7 mg·L-1,固定效率达98.18%; 铁锰改性生物炭中Fe(Ⅲ)充分水解释放出大量H+,降低了As在高碱性环境下的浸出风险; 铁锰改性生物炭促进了土中可交换态砷向铁锰氧化物结合态砷、残渣态砷的转化; 铁锰改性生物炭中的锰氧化物可将86.6%的As(Ⅲ)氧化为毒性和迁移性较低的As(Ⅴ),而铁氧化物/氢氧化物则具有强烈吸附和沉淀As的能力; 生物炭有效减少了铁锰氧化物的团聚,提供了更多的界面活性位点,从而提高了稳定化效果; 此外,铁锰改性生物炭促进了水泥水化产物的生成,增强了水合硅酸钙和钙矾石对As的吸附包封和离子交换。
Abstract:
Stabilization/Solidification is the most widely method for remediating heavy metal-contaminated soils, but traditional agents exhibit limited effectiveness for arsenic(As)immobilization. Fe-Mn modified biochar(FMBC)was employed as a stabilizer to immobilize As in contaminated soil through oxidation, adsorption, and coprecipitation, followed by cement-based solidification; the remediation effect and mechanisms were investigated via toxicity leaching test, unconfined compressive strength(UCS)and pH testing, microscopic morphology and spectroscopic analyses. The results show that FMBC outperforms both Fe-Mn oxide(FMO)and biochar(BC)under identical dosages of stabilizer and cement; for the contaminated soil with As content of 2 000×10-6, the As leaching concentration decreases to 1.7 mg·L-1(fixation efficiency is 98.18%)at 7% FMBC and 10% cement dosage, meeting the hazardous waste leaching threshold; while BC reduces the strength of solidified bodies, FMO enhances early hydration to improve strength; notably, FMBC mitigates As leaching risks under high alkalinity by releasing H+ via Fe(Ⅲ)hydrolysis; sequential extraction reveals that FMBC promotes the transformation of exchangeable As to iron-manganese oxide-bound and residual fractions; microscopic and spectroscopic analyses indicates that manganese oxides in FMBC oxidizes 86.6% of As(Ⅲ)to less toxic and mobile As(Ⅴ), while iron oxides/hydroxides exhibit strong adsorption and precipitation capacities for As; BC reduces FMO agglomeration effectively, providing additional interfacial active sites to enhance stabilization; furthermore, FMBC facilitates the formation of hydration products(e.g. calcium silicate hydrate and ettringite), strengthening the encapsulation and ion exchange for As immobilization. This study expands the application of BC in cement-based systems, and provides theoretical and technical support for FMBC-cement synergistic stabilization/solidification of As(Ⅲ)-contaminated soils.

参考文献/References:

[1] PHUNG D,CONNELL D,RUTHERFORD S,et al.Cardiovascular Risk from Water Arsenic Exposure in Vietnam:Application of Systematic Review and Meta-regression Analysis in Chemical Health Risk Assessment[J].Chemosphere,2017,177:167-175.
[2] YANG F,XIE S W,WEI C Y,et al.Arsenic Characteristics in the Terrestrial Environment in the Vicinity of the Shimen Realgar Mine,China[J].Science of the Total Environment,2018,626:77-86.
[3] MOON D H,WAZNE M,YOON I H,et al.Assessment of Cement Kiln Dust(CKD)for Stabilization/Solidification(S/S)of Arsenic Contaminated Soils[J].Journal of Hazardous Materials,2008,159(2/3):512-518.
[4] 杜延军,金 飞,刘松玉,等.重金属工业污染场地固化/稳定处理研究进展[J].岩土力学,2011,32(1):116-124.
DU Yan-jun,JIN Fei,LIU Song-yu,et al.Review of Stabilization/Solidification Technique for Remediation of Heavy Metals Contaminated Lands[J].Rock and Soil Mechanics,2011,32(1):116-124.
[5] 查甫生,刘晶晶,许 龙,等.水泥固化重金属污染土干湿循环特性试验研究[J].岩土工程学报,2013,35(7):1246-1252.
ZHA Fu-sheng,LIU Jing-jing,XU Long,et al.Cyclic Wetting and Drying Tests on Heavy Metal Contaminated Soils Solidified/Stabilized by Cement[J].Chinese Journal of Geotechnical Engineering,2013,35(7):1246-1252.
[6] DUARTE A L,DABOIT K,OLIVEIRA M L S,et al.Hazardous Elements and Amorphous Nanoparticles in Historical Estuary Coal Mining Area[J].Geoscience Frontiers,2019,10(3):927-939.
[7] LI J S,BEIYUAN J Z,TSANG D C W,et al.Arsenic-containing Soil from Geogenic Source in Hong Kong:Leaching Characteristics and Stabilization/Solidification[J].Chemosphere,2017,182:31-39.
[8] 彭风成,林书平,张风雷,等.铁系/石灰-水泥对砷污染土壤稳定化研究[J].环境科学与技术,2020,43(增1):122-127.
PENG Feng-cheng,LIN Shu-ping,ZHANG Feng-lei,et al.Study on Stabilization of Arsenic Contaminated Soil by Iron System/Lime-cement[J].Environmental Science & Technology,2020,43(S1):122-127.
[9] 郭华明,王焰新,李永敏.山阴水砷中毒区地下水砷的富集因素分析[J].环境科学,2003,24(4):60-67.
GUO Hua-ming,WANG Yan-xin,LI Yong-min.Analysis of Factors Resulting in Anomalous Arsenic Concentration in Groundwaters of Shanyin,Shanxi Pro-vince[J].Environmental Science,2003,24(4):60-67.
[10] AN B,ZHAO D Y.Immobilization of As(Ⅲ)in Soil and Groundwater Using a New Class of Polysaccharide Stabilized Fe-Mn Oxide Nanoparticles[J].Journal of Hazardous Materials,2012,211:332-341.
[11] LIN L N,GAO M L,QIU W W,et al.Reduced Arsenic Accumulation in Indica Rice(Oryza Sativa L.)Cultivar with Ferromanganese Oxide Impregnated Biochar Composites Amendments[J].Environmental Pollution,2017,231:479-486.
[12] ZHANG G S,LIU H J,QU J H,et al.Arsenate Uptake and Arsenite Simultaneous Sorption and Oxidation by Fe-Mn Binary Oxides:Influence of Mn/Fe Ratio,pH,Ca2+,and Humic Acid[J].Journal of Colloid and Interface Science,2012,366(1):141-146.
[13] SHI Y,XING Y F,SONG Z L,et al.Adsorption Performance and Its Mechanism of Aqueous As(Ⅲ)on Polyporous Calcined Oyster Shell-supported Fe-Mn Binary Oxide[J].Water Environment Research,2022,94(4):e10714.
[14] 李明玉,孙文静.黏土掺入生物炭后的持水特性及其影响机制[J].岩土力学,2019,40(12):4722-4730,4739.
LI Ming-yu,SUN Wen-jing.Water Retention Behavi-our of Biochar-amended Clay and Its Influencing Me-chanism[J].Rock and Soil Mechanics,2019,40(12):4722-4730,4739.
[15] XU Y Z,FANG Z Q,TSANG E P.In-situ Immobilization of Cadmium in Soil by Stabilized Biochar-supported Iron Phosphate Nanoparticles[J].Environmental Science and Pollution Research,2016,23:19164-19172.
[16] JIAO Y H,WANG T N,HE M C,et al.Simultaneous Stabilization of Sb and As Co-contaminated Soil by Fe-Mg Modified Biochar[J].Science of the Total Environment,2022,830:154831.
[17] CHEN T F,YANG Z Y,LIU H H,et al.Effect of Biochar Characteristics on Freeze-thaw Durability of Biochar-cement Composites[J].Journal of Building Engineering,2025,102:111959.
[18] ZHAO Z H,EL-NAGGAR A,KAU J,et al.Biochar Affects Compressive Strength of Portland Cement Composites:A Meta-analysis[J].Biochar,2024,6(1):21.
[19] GUPTA S,MAHMOOD A H.A Multi-method Investigation into Rheological Properties,Hydration,and Early-age Strength of Cement Composites with Admixtures Recovered from Inorganic and Bio-based Waste Streams[J].Construction and Building Materials,2022,347:128529.
[20] WANG L,CHEN L,TSANG D C W,et al.Biochar as Green Additives in Cement-based Composites with Carbon Dioxide Curing[J].Journal of Cleaner Production,2020,258:120678.
[21] WANG Q M,LI J S,XUE Q,et al.Immobilization and Recycling of Contaminated Marine Sediments in Cement-based Materials Incorporating Iron-biochar Composites[J].Journal of Hazardous Materials,2022,435:128971.
[22] HAN Y S,PARK J H,AHN J S.Aging Effects on Fractionation and Speciation of Redox-sensitive Me-tals in Artificially Contaminated Soil[J].Chemosp-here,2021,263:127931.
[23] ZHANG W J,LIN M F.Influence of Redox Potential on Leaching Behavior of a Solidified Chromium Contaminated Soil[J].Science of the Total Environment,2020,733:139410.
[24] TESSIER A,CAMPBELL P G C,BISSON M.Sequential Extraction Procedure for the Speciation of Parti-culate Trace Metals[J].Analytical Chemistry,1979,51(7):844-851.
[25] 张文杰,余海生,蒋墨翰.预氧化-稳定化-固化联合修复As(Ⅲ)污染土[J].岩土工程学报,2023,45(6):1231-1239.
ZHANG Wen-jie,YU Hai-sheng,JIANG Mo-han.Preoxidation-stabilization-solidification Combined Remediation of As(Ⅲ)-contaminated Soil[J].Chinese Journal of Geotechnical Engineering,2023,45(6):1231-1239.
[26] CHEN Y S,XU J H,LV Z Y,et al.Impacts of Biochar and Oyster Shells Waste on the Immobilization of Arsenic in Highly Contaminated Soils[J].Journal of Environmental Management,2018,217:646-653.
[27] MIRETZKY P,CIRELLI A F.Remediation of Arsenic-contaminated Soils by Iron Amendments:A Review[J].Critical Reviews in Environmental Science and Technology,2010,40(2):93-115.
[28] ZHANG H,MU S,CAI J S,et al.The Role of Iron in Cement Hydration Process:From Perspective of Che-mical Admixture[J].Thermochimica Acta,2023,722:179457.
[29] 张美一,WANG Yu,ZHAO Dong-ye,等.稳定化的零价Fe,FeS,Fe3O4纳米颗粒在土壤中的固砷作用机理[J].科学通报,2009,54(23):3637-3644.
ZHANG Mei-yi,WANG Yu,ZHAO Dong-ye,et al.Immobilization of Arsenic in Soils by Stabilized Nanoscale Zero-valent Iron,Iron Sulfide(FeS),and Magnetite(Fe3O4)Particles[J].Chinese Science Bulletin,2009,54(23):3637-3644.
[30] ZHANG W J,YU H S,HUANG J X,et al.Influence of pH on the Leaching Behavior of a Solidified Arsenic Contaminated Soil[J].Environmental Technology,2024,45(21):4169-4180.
[31] MOHAN D,PITTMAN JR C U.Arsenic Removal from Water/Wastewater Using Adsorbents:A Critical Review[J].Journal of Hazardous Materials,2007,142(1/2):1-53.
[32] YANG T T,XU Y M,HUANG Q Q,et al.Removal Mechanisms of Cd from Water and Soil Using Fe-Mn Oxides Modified Biochar[J].Environmental Resear-ch,2022,212:113406.
[33] REN Z S,WANG L,WANG H,et al.Solidification/Stabilization of Lead-contaminated Soils by Phosphogypsum Slag-based Cementitious Materials[J].Science of the Total Environment,2023,857:159552.
[34] ZHANG W J,JIANG M H.Efficient Remediation of Heavily As(Ⅲ)-contaminated Soil Using a Pre-oxidation and Stabilization/Solidification Technique[J].Chemosphere,2022,306:135598.
[35] YIN G C,SONG X W,TAO L,et al.Novel Fe-Mn Binary Oxide-biochar as an Adsorbent for Removing Cd(Ⅱ)from Aqueous Solutions[J].Chemical Engineering Journal,2020,389:124465.
[36] FLORES V H,PATIÑO F,ROCA A,et al.Alkaline Decomposition of Solid Solution of Ammonium-sodium Jarosite with Arsenic[J].Metals,2022,12(4):584.
[37] KANIE K,MURAMATSU A,SUZUKI S,et al.Influence of Sulfate Ions on Conversion of Fe(OH)3 Gel to β-FeOOH and α-Fe2O3[J].Materials Transactions,2004,45(3):968-971.
[38] KOMONWEERAKET K,CETIN B,AYDILEK A,et al.Geochemical Analysis of Leached Elements from Fly Ash Stabilized Soils[J].Journal of Geotechnical and Geoenvironmental Engineering,2015,141(5):04015012.
[39] KARIMIAN N,JOHNSTON S G,TAVAKKOLI E,et al.Mechanisms of Arsenic and Antimony Co-sorption onto Jarosite:An X-ray Absorption Spectroscopic Study[J].Environmental Science & Technology,2023,57(12):4813-4820.
[40] ZHANG W J,JIN D,YUAN J.Speciation Transformation and Release of Cr(Ⅵ)in a GGBS-NaOH Treated Soil Under Acidic Wet-dry Cycle:Leaching Characteristics and Microscopic Mechanisms[J].Journal of Cleaner Production,2024,456:142424.
[41] ZHOU Q W,LIAO B H,LIN L N,et al.Adsorption of Cu(Ⅱ)and Cd(Ⅱ)from Aqueous Solutions by Ferromanganese Binary Oxide-biochar Composites[J].Science of the Total Environment,2018,615:115-122.

相似文献/References:

[1]李付兰,倪萍,郭华明,等.松嫩平原含水层沉积物特征及其对砷赋存态分布的影响[J].地球科学与环境学报,2015,37(01):101.
 LI Fu-lan,NI Ping,GUO Hua-ming,et al.Characteristics of Aquifer Sediments in Songnen Plain and Their Influences on Distribution of Arsenic Occurrence Modes[J].Journal of Earth Sciences and Environment,2015,37(06):101.
[2]杨胜科,王文科,张威,等.砷污染生态效应及水土体系中砷的治理对策研究[J].地球科学与环境学报,2004,26(03):69.
 YANG Shen-ke,WANG Wen-ke,ZHANG Wei,et al.Study on ecosystem effect and the remediation methods of arsenic pollution in water and soil system[J].Journal of Earth Sciences and Environment,2004,26(06):69.

备注/Memo

备注/Memo:
收稿日期:2025-01-12; 修回日期:2025-05-19投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(52478353,41772300)
*通信作者:张文杰(1978-),男,山东胶州人,教授,工学博士,E-mail:zhwjlyl@163.com。
更新日期/Last Update: 2025-12-10