|本期目录/Table of Contents|

[1]张 弛*,马浩哲,卢玮丽,等.土壤有机质在石英-水界面吸附与团聚行为的分子动力学模拟[J].地球科学与环境学报,2025,47(06):1057-1069.[doi:10.19814/j.jese.2025.05028]
 ZHANG Chi*,MA Hao-zhe,LU Wei-li,et al.Adsorption and Aggregation of Soil Organic Matter at the Quartz-water Interface: Insights from Molecular Dynamics Simulations[J].Journal of Earth Sciences and Environment,2025,47(06):1057-1069.[doi:10.19814/j.jese.2025.05028]
点击复制

土壤有机质在石英-水界面吸附与团聚行为的分子动力学模拟(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第06期
页码:
1057-1069
栏目:
环境与可持续发展
出版日期:
2025-12-10

文章信息/Info

Title:
Adsorption and Aggregation of Soil Organic Matter at the Quartz-water Interface: Insights from Molecular Dynamics Simulations
文章编号:
1672-6561(2025)06-1057-13
作者:
张 弛1*马浩哲1卢玮丽1杜少喜2任 蕊2周知宇1贾汉忠1
(1. 西北农林科技大学 资源环境学院,陕西 杨凌 712100; 2. 陕西省水工环地质调查中心,陕西 西安 710068)
Author(s):
ZHANG Chi1* MA Hao-zhe1 LU Wei-li1 DU Shao-xi2 REN Rui2 ZHOU Zhi-yu1 JIA Han-zhong1
(1. College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, China; 2. Shaanxi Hydrogeology Engineering Environment Geology Survey Center, Xi'an 710068, Shaanxi, China)
关键词:
土壤有机质 矿物-水界面 分子动力学 石英 纳米孔 吸附 团聚
Keywords:
soil organic matter mineral-water interface molecular dynamics quartz nanopore adsorption aggregation
分类号:
S153.6
DOI:
10.19814/j.jese.2025.05028
文献标志码:
A
摘要:
作为土壤中最丰富的原生矿物,石英界面对有机质的吸附行为是调控土壤有机碳循环与稳定性的关键地球化学过程。采用分子动力学模拟方法,探究不同石英表面((100)-α、(100)-β、(001)和(101))纳米孔中有机质的界面微观结构、团聚迁移行为及其构象动态变化特征等关键分子机制,阐明离子类型对有机质稳定性的调控作用。模拟过程为:基于CLAYFF力场(描述石英)和Amber99SB力场(描述有机质及离子),在Ca2+和Mg2+浓度为0.06 mol·L-1环境下开展了时间为300 ns的模拟。结果表明:范德华力虽然有助于有机质在石英界面的吸附和沉积,但是同时受到不稳定的氢键作用和静电排斥效应的影响; 此外,Ca2+通过内球配位作用形成致密且稳定的团聚体,以显著抑制有机质的扩散,而Mg2+则通过外球配位形成松散团聚结构,导致有机质具有更高的迁移能力。
Abstract:
As the most abundant primary mineral in soil, the interfacial behavior of soil organic matter(SOM)on quartz is a key geochemical process controlling the cycling and stability of soil organic carbon. Molecular dynamics simulations were employed to investigate the key molecular mechanisms, including the interfacial microstructure, aggregation-migration behavior, and conformational dynamics of SOM within nanopores of distinct quartz crystal surfaces((100)-α,(100)-β,(001), and(101)), and to elucidate the regulatory effects of ion types on SOM stability. The simulations were conducted using the CLAYFF force field for quartz and the Amber99SB force field for SOM and ions, with Ca2+ and Mg2+ concentrations of 0.06 mol·L-1 and a duration of 300 ns. The results show that although van der Waals interactions contribute to the adsorption and deposition of SOM on quartz surfaces, they are simultaneously affected by unstable hydrogen bonding and electrostatic repulsion effects. Furthermore, Ca2+ forms dense and stable aggregates through inner-sphere coordination, significantly inhibiting the diffusion of SOM; whereas Mg2+ forms loose aggregate structures through outer-sphere coordination, thereby resulting in higher migration capacity for SOM. This study provides molecular-level insights into the stabilization mechanisms of SOM in quartz nanopores and offers a theoretical basis for regulating the stability of soil carbon pools.

参考文献/References:

[1] LEHMANN J,KLEBER M.The Contentious Nature of Soil Organic Matter[J].Nature,2015,528:60-68.
[2] 宁川川,王建武,蔡昆争.有机肥对土壤肥力和土壤环境质量的影响研究进展[J].生态环境学报,2016,25(1):175-181.
NING Chuan-chuan,WANG Jian-wu,CAI Kun-zheng.The Effects of Organic Fertilizers on Soil Fertility and Soil Environmental Quality:A Review[J].Ecology and Environmental Sciences,2016,25(1):175-181.
[3] 刘亚龙,王 萍,汪景宽.土壤团聚体的形成和稳定机制:研究进展与展望[J].土壤学报,2023,60(3):627-643.
LIU Ya-long,WANG Ping,WANG Jing-kuan.Formation and Stability Mechanism of Soil Aggregates:Progress and Prospect[J].Acta Pedologica Sinica,2023,60(3):627-643.
[4] LI Y R,WANG K,DÖTTERL S,et al.The Critical Role of Organic Matter for Cadmium-lead Interactions in Soil:Mechanisms and Risks[J].Journal of Hazar-dous Materials,2024,476:135123.
[5] HUI K L,ZHANG P T,YUAN Y,et al.Variations in Organic Matter and Microbial Community Responses to Microplastic Stress at Different Soil Depths in Landfills[J].Journal of Cleaner Production,2025,521:146246.
[6] 卢玮丽.氮磷钾与有机质在石英/水界面吸附与扩散行为的分子动力学研究[D].杨凌:西北农林科技大学,2025.
LU Li-wei.Molecular Dynamics Study on Adsorption and Diffusion Behaviors of Nitrogen,Phosphorus,Potassium and Organic Matter at the Quartz/Water Interface[D].Yangling:Northwest A&F University,2025.
[7] HADDIX M L,PAUL E A,COTRUFO M F.Dual,Differential Isotope Labeling Shows the Preferential Movement of Labile Plant Constituents into Mineral-bonded Soil Organic Matter[J].Global Change Biology,2016,22(6):2301-2312.
[8] KLEBER M,BOURG I C,COWARD E K,et al.Dynamic Interactions at the Mineral-organic Matter Interface[J].Nature Reviews Earth & Environment,2021,2(6):402-421.
[9] 王 磊,应蓉蓉,石佳奇,等.土壤矿物对有机质的吸附与固定机制研究进展[J].土壤学报,2017,54(4):805-818.
WANG Lei,YING Rong-rong,SHI Jia-qi,et al.Advancement in Study on Adsorption of Organic Matter on Soil Minerals and Its Mechanism[J].Acta Pedolo-gica Sinica,2017,54(4):805-818.
[10] NEWCOMB C J,QAFOKU N P,GRATE J W,et al.Developing a Molecular Picture of Soil Organic Matter-mineral Interactions by Quantifying Organo-mine-ral Binding[J].Nature Communications,2017,8(1):396.
[11] 黄凤琼,张 迪,李芳芳,等.氨基酸类有机质在土壤矿物上的吸附机理[J].环境科学与技术,2024,47(3):171-178.
HUANG Feng-qiong,ZHANG Di,LI Fang-fang,et al.Mechanism of Adsorption of Organic Matter Amino-acids on Soil Minerals[J].Environmental Science & Technology,2024,47(3):171-178.
[12] JAMOTEAU F,KANSIZ M,UNGER M,et al.Probing Mineral-organic Interfaces in Soils and Sediments Using Optical Photothermal Infrared Microscopy[J].Environmental Science & Technology,2025,59(1):501-512.
[13] TOMBÁCZ E,LIBOR Z,ILLÉS E,et al.The Role of Reactive Surface Sites and Complexation by Humic Acids in the Interaction of Clay Mineral and Iron Oxi-de Particles[J].Organic Geochemistry,2004,35(3):257-267.
[14] QUEZADA G R,ROZAS R E,TOLEDO P G.Pol-yacrylamide Adsorption on(101)Quartz Surfaces in Saltwater for a Range of pH Values by Molecular Dynamics Simulations[J].Minerals Engineering,2021,162:106741.
[15] YAN L J,YANG Y,JIANG H,et al.The Adsorption of Methyl Methacrylate and Vinyl Acetate Polymers on α-quartz Surface:A Molecular Dynamics Study[J].Chemical Physics Letters,2016,643:1-5.
[16] LI Q C,WANG L L,FU Y,et al.Transformation of Soil Organic Matter Subjected to Environmental Disturbance and Preservation of Organic Matter Bound to Soil Minerals:A Review[J].Journal of Soils and Sediments,2023,23(3):1485-1500.
[17] LIU X D,TOURNASSAT C,GRANGEON S,et al.Molecular-level Understanding of Metal Ion Retention in Clay-rich Materials[J].Nature Reviews Earth & Environment,2022,3(7):461-476.
[18] UNDERWOOD T R,BOURG I C,ROSSO K M.Mi-neral-associated Organic Matter Is Heterogeneous and Structured by Hydrophobic,Charged,and Polar Inte-ractions[J].PNAS,2024,121(46):e2413216121.
[19] GALICIA-ANDRÉS E,OOSTENBRINK C,GERZABEK M H,et al.On the Adsorption Mechanism of Humic Substances on Kaolinite and Their Microscopic Structure[J].Minerals,2021,11(10):1138.
[20] ZHANG Y C,LIU X D,ZHANG C,et al.A Combined First Principles and Classical Molecular Dyna-mics Study of Clay-soil Organic Matters(SOMs)Interactions[J].Geochimica et Cosmochimica Acta,2020,291:110-125.
[21] XUE Q,JIAO Z Y,LIU X,et al.Dynamic Behavior and Interaction Mechanism of Soil Organic Matter in Water Systems:A Coarse-grained Molecular Dyna-mics Study[J].Environmental Science & Technology,2024,58(3):1531-1540.
[22] ZHOU Z Y,ZHANG C,XI M N,et al.Multi-scale Modeling of Natural Organic Matter-heavy Metal Cations Interactions:Aggregation and Stabilization Mechanisms[J].Water Research,2023,238:120007.
[23] RITCHIE J D,PERDUE E M.Proton-binding Study of Standard and Reference Fulvic Acids,Humic Acids,and Natural Organic Matter[J].Geochimica et Cosmochimica Acta,2003,67(1):85-96.
[24] VAN DER SPOEL D,LINDAHL E,HESS B,et al.GROMACS:Fast,Flexible,and Free[J].Journal of Computational Chemistry,2005,26(16):1701-1718.
[25] CYGAN R T,LIANG J J,KALINICHEV A G.Molecular Models of Hydroxide,Oxyhydroxide,and Clay Phases and the Development of a General Force Field[J].The Journal of Physical Chemistry B,2004,108(4):1255-1266.
[26] HORNAK V,ABEL R,OKUR A,et al.Comparison of Multiple Amber Force Fields and Development of Improved Protein Backbone Parameters[J].Proteins:Structure,Function,and Bioinformatics,2006,65(3):712-725.
[27] BERENDSEN H J C,GRIGERA J R,STRAATSMA T P.The Missing Term in Effective Pair Potentials[J].The Journal of Physical Chemistry,1987,91(24):6269-6271.
[28] DARDEN T,YORK D,PEDERSEN L.Particle Mesh Ewald:An N·log(N)Method for Ewald Sums in Large Systems[J].The Journal of Chemical Physics,1993,98(12):10089-10092.
[29] FRISCH M J,TRUCKS G W,SCHLEGEL H B,et al.Gaussian 16 Rev.B.01 Users Reference[R].Wallingford:Gaussian,2016.
[30] LU T,CHEN F W.Multiwfn:A Multifunctional Wa-vefunction Analyzer[J].Journal of Computational Chemistry,2012,33(5):580-592.
[31] KALINICHEV A G,ISKRENOVA-TCHOUKOVA E,AHN W Y,et al.Effects of Ca2+ on Supramolecular Aggregation of Natural Organic Matter in Aqueous Solutions:A Comparison of Molecular Modeling Approaches[J].Geoderma,2011,169:27-32.
[32] ISKRENOVA-TCHOUKOVA E,KALINICHEV A G,KIRKPATRICK R J.Metal Cation Complexation with Natural Organic Matter in Aqueous Solutions:Mole-cular Dynamics Simulations and Potentials of Mean Force[J].Langmuir,2010,26(20):15909-15919.
[33] KALINICHEV A G,KIRKPATRICK R J.Molecular Dynamics Simulation of Cationic Complexation with Natural Organic Matter[J].European Journal of Soil Science,2007,58(4):909-917.
[34] LU T,CHEN Q X.Independent Gradient Model Ba-sed on Hirshfeld Partition:A New Method for Visual Study of Interactions in Chemical Systems[J].Journal of Computational Chemistry,2022,43(8):539-555.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2025-05-25; 修回日期:2025-09-02投稿网址:http:∥jese.chd.edu.cn/
基金项目:陕西省公益性地质调查项目(陕地勘金字〔2025〕50号); 国家自然科学基金项目(42107263)
*通信作者:张 弛(1990-),男,陕西华阴人,副教授,工学博士,E-mail:chizhang@nwafu.edu.cn。
通信作者:杜少喜(1970-),男,陕西紫阳人,高级工程师,E-mail:603107975@qq.com。
更新日期/Last Update: 2025-12-10