|本期目录/Table of Contents|

[1]宋晅任,钱 啸,王函韵,等.基于多源数据的中国省域电力碳排放动态追踪与成因[J].地球科学与环境学报,2025,47(06):1099-1113.[doi:10.19814/j.jese.2025.05035]
 SONG Xuan-ren,QIAN Xiao,WANG Han-yun,et al.Dynamic Tracking and Attribution of Provincial Power Sector Carbon Emissions in China Based on Multi-source Data[J].Journal of Earth Sciences and Environment,2025,47(06):1099-1113.[doi:10.19814/j.jese.2025.05035]
点击复制

基于多源数据的中国省域电力碳排放动态追踪与成因(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第06期
页码:
1099-1113
栏目:
环境与可持续发展
出版日期:
2025-12-10

文章信息/Info

Title:
Dynamic Tracking and Attribution of Provincial Power Sector Carbon Emissions in China Based on Multi-source Data
文章编号:
1672-6561(2025)06-1099-15
作者:
宋晅任1钱 啸2王函韵3黄继华3窦新宇1柯丕煜1刘 竹1*
(1. 清华大学 地球系统科学系,北京 100084; 2. 国网浙江省电力有限公司,浙江 杭州 310016; 3. 国网浙江省电力有限公司湖州供电公司,浙江 杭州 317101)
Author(s):
SONG Xuan-ren1 QIAN Xiao2 WANG Han-yun3 HUANG Ji-hua3 DOU Xin-yu1 KE Pi-yu1 LIU Zhu1*
(1. Department of Earth System Science, Tsinghua University, Beijing 100084, China; 2. State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310016, Zhejiang, China; 3. Huzhou Power Supply Company, State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 317101, Zhejiang, China)
关键词:
电力行业 碳排放 省级尺度 时空特征 Kaya恒等式 对数平均迪氏指数分解模型 驱动因素
Keywords:
power industry carbon emission provincial scale spatiotemporal characteristic Kaya identity LMDI decomposition model driving factor
分类号:
X322; F426.61
DOI:
10.19814/j.jese.2025.05035
文献标志码:
A
摘要:
在全球气候变化与能源转型的共同驱动下,电力行业碳排放已成为应对气候变暖的关键问题之一。现有研究虽然在全球及部分国家层面开展了多角度的探索,但针对中国省级尺度,尤其是近实时碳排放核算与驱动因素分析仍相对不足。构建了覆盖中国31个省(自治区、直辖市)的电力生产近实时数据体系,并对2019~2024年日尺度碳排放时间序列进行了系统分析; 采用Kaya恒等式、对数平均迪氏指数(LMDI)分解模型、归一化季节指数构建及时间序列分析等方法,深入探讨了宏观社会经济因素、气候因素和重大突发公共卫生事件对各省级行政单位电力碳排放的影响。结果表明:2019~2024年全国日均电力碳排放量整体呈上升趋势。虽然2020年初受重大突发公共卫生事件的影响出现短暂下降,但随后迅速反弹并持续增长; 各省级行政单位电力碳排放量在时间上呈现波动性,在空间分布上表现出显著差异; 经济规模增长是多数地区电力碳排放量增加的主要驱动因素,而能源强度与碳强度的持续改善在一定程度上减缓了电力碳排放量的增长,部分地区甚至出现下降; 从时间特征来看,电力碳排放量存在明显的季节性波动,受夏季空调制冷与冬季采暖需求共同作用,大多数省级行政单位在夏季和冬季均出现电力碳排放高峰; 此外,法定节假日和重大突发公共卫生事件等对日尺度电力碳排放量曲线也产生了显著扰动。本研究建立的电力碳排放量估算体系与分析方法,有助于更全面地识别和理解电力碳排放量的动态变化特征,并为区域差异化碳减排政策的制定提供科学支撑。
Abstract:
Driven by global climate change and energy transition, carbon emissions from the power sector have become a key issue in addressing global warming. Although existing studies have explored this topic from multiple perspectives at the global and national levels, the research focusing on the provincial scale in China, especially on near-real-time carbon emission accounting and driving factor analysis, remains relatively limited. A near-real-time data system for power generation in 31 provinces of China was constructed, and daily carbon emission time series from 2019 to 2024 was analyzed; by applying the Kaya identity, the logarithmic mean Divisia index(LMDI)decomposition model, the normalized seasonal index, and the time series analysis, the impacts of macroeconomic factors, climatic conditions, and major public health emergencies on provincial power sector carbon emissions were investigated. The results show that national daily average power sector carbon emissions exhibit an overall upward trend from 2019 to 2024; although emissions decline briefly in early 2020 due to major public health emergencies, they quickly rebound and continue to increase; provincial power sector carbon emissions show substantial fluctuations and clear spatial heterogeneity; economic growth is the main driving factor of increased power sector emissions in most regions, while improvements in energy intensity and carbon intensity help mitigate power sector carbon emission growth and even contribute to reductions in some provinces; from a temporal perspective, power sector carbon emissions display pronounced seasonal variations, with most provinces experiencing carbon emission peaks in both summer and winter due to cooling and heating demands; in addition, statutory holidays and major public health emergencies significantly disturb the daily power sector carbon emission curves. The proposed emission estimation framework and analytical approach enhance the understanding of dynamic carbon emission patterns in the power sector and provide scientific support for developing region-specific mitigation policies.

参考文献/References:

[1] MCGLADE C,EKINS P.The Geographical Distribution of Fossil Fuels Unused When Limiting Global Warming to 2 ℃[J].Nature,2015,517:187-190.
[2] LI R R,WANG Q,LIU Y,et al.Per-capita Carbon Emissions in 147 Countries:The Effect of Economic,Energy,Social,and Trade Structural Changes[J].Sustainable Production and Consumption,2021,27:1149-1164.
[3] HAMLINGTON B D,et al.The Rate of Global Sea Level Rise Doubled During the Past Three Decades[J].Communications Earth & Environment,2024,5(1):601.
[4] ZEMP M,JAKOB L,DUSSAILLANT I,et al.Community Estimate of Global Glacier Mass Changes from 2000 to 2023[J].Nature,2025,639:382-388.
[5] 吴杏平,康重庆,袁启恒.我国碳排放影响因素及电力碳排放核算方法研究综述[J].中国电机工程学报,2024,44(增1):1-18.
WU Xing-ping,KANG Chong-qing,YUAN Qi-heng.A Review of the Impact Factors of Carbon Emissions and the Accounting Methods for Electricity Carbon Emissions in China[J].Proceedings of the CSEE,2024,44(S1):1-18.
[6] FORSTER P M,FORSTER H I,EVANS M J,et al.Current and Future Global Climate Impacts Resulting from COVID-19[J].Nature Climate Change,2020,10(10):913-919.
[7] LE QUÉRÉ C,JACKSON R B,JONES M W,et al.Temporary Reduction in Daily Global CO2 Emissions During the COVID-19 Forced Confinement[J].Natu-re Climate Change,2020,10(7):647-653.
[8] LE QUÉRÉ C,PETERS G P,FRIEDLINGSTEIN P,et al.Fossil CO2 Emissions in the Post-COVID-19 Era[J].Nature Climate Change,2021,11(3):197-199.
[9] CHEVALLIER F,ZHENG B,BROQUET G,et al.Local Anomalies in the Column-averaged Dry Air Mole Fractions of Carbon Dioxide Across the Globe During the First Months of the Coronavirus Recession[J].Geophysical Research Letters,2020,47(22):e2020GL090244.
[10] FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al.Global Carbon Budget 2020[J].Earth System Science Data,2020,12(4):3269-3340.
[11] WEIR B,CRISP D,O'DELL C W,et al.Regional Impacts of COVID-19 on Carbon Dioxide Detected Worldwide from Space[J].Science Advances,2021,7(45):eabf9415.
[12] ZHENG B,CHEVALLIER F,CIAIS P,et al.Observing Carbon Dioxide Emissions over China's Cities and Industrial Areas With the Orbiting Carbon Observatory-2[J].Atmospheric Chemistry & Physics,2020,20(14):8501-8510.
[13] FYFE J C,KHARIN V V,SWART N,et al.Quanti-fying the Influence of Short-term Emission Reductions on Climate[J].Science Advances,2021,7(10):eabf7133.
[14] BERTRAM C,LUDERER G,CREUTZIG F,et al.COVID-19-induced Low Power Demand and Market Forces Starkly Reduce CO2 Emissions[J].Nature Climate Change,2021,11(3):193-196.
[15] DUFLOT R,BAUMEISTER S,BURGAS D,et al.Building Up an Ecologically Sustainable and Socially Desirable Post-COVID-19 Future[J].Sustainability Science,2021,16(4):1397-1403.
[16] FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al.Global Carbon Budget 2024[J].Earth System Science Data Discussions,2025,17(3):965-1039.
[17] FRIEDLINGSTEIN P,O'SULLIVAN M,JONES M W,et al.Global Carbon Budget 2023[J].Earth System Science Data,2023,15(12):5301-5369.
[18] 刘 竹.全球碳排放的近实时定量方法[J].科学通报,2023,68(7):830-840.
LIU Zhu.Near-real-time Methodology for Assessing Global Carbon Emissions[J].China Science Bulletin,2023,68(7):830-840.
[19] 刘 竹,关大博,魏 伟.中国二氧化碳排放数据核算[J].中国科学:地球科学,2018,48(7):878-887.
LIU Zhu,GUAN Da-bo,WEI Wei.Carbon Emission Accounting in China[J].Science China:Earth Sciences,2018,48(7):878-887.
[20] US Energy Information Administration.Monthly Energy Review[R].Washington DC:US Energy Information Administration,2021.
[21] BLASING T J,BRONIAK C T,MARLAND G.The Annual Cycle of Fossil-fuel Carbon Dioxide Emissions in the United States[J].Tellus B:Chemical and Phy-sical Meteorology,2005,57(2):107-115.
[22] BLASING T J,BRONIAK C T,MARLAND G.State-by-state Carbon Dioxide Emissions from Fossil Fuel Use in the United States 1960-2000[J].Mitigation and Adaptation Strategies for Global Change,2005,10(4):659-674.
[23] ANDREONI V.Estimating the European CO2 Emissions Change Due to COVID-19 Restrictions[J].Science of the Total Environment,2021,769:145115.
[24] HAN P F,CAI Q X,ODA T,et al.Assessing the Recent Impact of COVID-19 on Carbon Emissions from China Using Domestic Economic Data[J].Science of the Total Environment,2021,750:141688.
[25] GREGG J S,ANDRES R J.A Method for Estimating the Temporal and Spatial Patterns of Carbon Dioxide Emissions from National Fossil-fuel Consumption[J].Tellus B:Chemical and Physical Meteorology,2008,60(1):1-10.
[26] ODA T,MAKSYUTOV S,ANDRES R J.The Open-source Data Inventory for Anthropogenic CO2,Version 2016(ODIAC2016):A Global Monthly Fossil Fuel CO2 Gridded Emissions Data Product for Tracer Transport Simulations and Surface Flux Inversions[J].Earth System Science Data,2018,10(1):87-107.
[27] 乐 旭,雷亚栋,周 浩,等.新冠肺炎疫情期间中国人为碳排放和大气污染物的变化[J].大气科学学报,2020,43(2):265-274.
YUE Xu,LEI Ya-dong,ZHOU Hao,et al.Changes of Anthropogenic Carbon Emissions and Air Pollutants During the COVID-19 Epidemic in China[J].Tran-sactions of Atmospheric Sciences,2020,43(2):265-274.
[28] 刘 竹,崔 夺,邓 铸,等.新型冠状病毒肺炎疫情对中国2020年碳排放的影响[J].科学通报,2021,66(15):1912-1922.
LIU Zhu,CUI Duo,DENG Zhu,et al.Impact on China's CO2 Emissions from COVID-19 Pandemic[J].Chinese Science Bulletin,2021,66(15):1912-1922.
[29] ZHENG B,GENG G N,CIAIS P,et al.Satellite-based Estimates of Decline and Rebound in China's CO2 Emissions During COVID-19 Pandemic[J].Science Advances,2020,6(49):eabd4998.
[30] LIU Z,SUN T C,YU Y,et al.Near-real-time Carbon Emission Accounting Technology Toward Carbon Neutrality[J].Engineering,2022,14:44-51.
[31] LIU Z,CIAIS P,DENG Z,et al.Near-real-time Monitoring of Global CO2 Emissions Reveals the Effects of the COVID-19 Pandemic[J].Nature Communications,2020,11:5172.
[32] LIU Z,DENG Z,DAVIS S J,et al.Global Carbon Emi-ssions in 2023[J].Nature Reviews Earth & Environment,2024,5(4):253-254.
[33] DENG Z,ZHU B Q,DAVIS S J,et al.Global Carbon Emissions and Decarbonization in 2024[J].Nature Reviews Earth & Environment,2025,6(4):231-233.
[34] TAYLOR S J,LETHAM B.Forecasting at Scale[J].The American Statistician,2018,72(1):37-45.
[35] 辽宁省统计局.辽宁省2023年国民经济和社会发展统计公报[R].沈阳:辽宁省统计局,2024.
Liaoning Provincial Bureau of Statistics.Statistical Bulletin of National Economic and Social Development of Liaoning Province in 2023[R].Shenyang:Liaoning Provincial Bureau of Statistics,2024.
[36] 辽宁省统计局.二〇二二年辽宁省国民经济和社会发展统计公报[R].沈阳:辽宁省统计局,2023.
Liaoning Provincial Bureau of Statistics.Statistical Bulletin of National Economic and Social Development of Liaoning Province in 2022[R].Shenyang:Liaoning Provincial Bureau of Statistics,2023.

相似文献/References:

[1]赵文静,王承武*.乌鲁木齐都市圈土地利用碳排放与生态系统服务交互特征[J].地球科学与环境学报,2025,47(02):260.[doi:10.19814/j.jese.2024.08036]
 ZHAO Wen-jing,WANG Cheng-wu*.Interactive Characteristics of Land Use Carbon Emissions and Ecosystem Services in Urumqi Metropolitan Area, China[J].Journal of Earth Sciences and Environment,2025,47(06):260.[doi:10.19814/j.jese.2024.08036]

备注/Memo

备注/Memo:
收稿日期:2025-05-29; 修回日期:2025-07-18投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家电网有限公司总部管理科技项目(1400-202219426A-2-0-ZN); 国家自然科学基金(71874097,72140002,41921005)
*通信作者:刘 竹(1985-),男,云南昆明人,教授,博士研究生导师,理学博士,E-mail:zhuliu@tsinghua.edu.cn。
更新日期/Last Update: 2025-12-10