|本期目录/Table of Contents|

[1]李文渊.现代海底热液成矿作用[J].地球科学与环境学报,2010,32(01):15-23.
 LI Wen-yuan.Hydrothermal Mineralization on the Modern Seafloor[J].Journal of Earth Sciences and Environment,2010,32(01):15-23.
点击复制

现代海底热液成矿作用(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第32卷
期数:
2010年第01期
页码:
15-23
栏目:
基础地质与矿产地质
出版日期:
2010-03-15

文章信息/Info

Title:
Hydrothermal Mineralization on the Modern Seafloor
文章编号:
1672-6561(2010)01-0015-09
作者:
李文渊
(中国地质调查局 西安地质调查中心,陕西 西安 710054)
Author(s):
LI Wen-yuan
Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, Shaanxi, China
关键词:
现代海底热液成矿流体块状硫化物矿床成因成矿作用
Keywords:
modern seafloor hydrothermal solution ore-forming fluid massive sulfide genesis of ore deposit mineralization
分类号:
P611
DOI:
-
文献标志码:
A
摘要:
从现代块状硫化物矿床成矿特征对比角度,总结分析了世界现代海底喷流的块状硫化物成矿堆积,综述了现代海底块状硫化物成矿主要形成于洋壳和岛弧环境的实际观察结果,突出强调了洋壳环境和岛弧或陆壳环境两种成矿环境对成矿类型分类的意义。对上地幔部分熔融岩浆来源与地壳物质可能带入、火山喷发岩浆系列的演化和对热液成矿作用的控制进行了讨论,对比分析了岩浆流体对成矿的重要贡献和控制作用,以及成矿热液循环体系形成的条件和模式。
Abstract:
It is summarized and analyzed that massive sulfide accumulations of the modern seafloor in the world from their contrasting of the minerogenetic characteristics, and outlined that the result of actual observation of the massive sulfides of oceanic crust and island arc at the modern seafloor, especially emphasized significance of two kinds of minerogenetic environments(oceanic crust and island arc or continental extension)for classification of minerogenetic types. Also, it is discussed that magmatic origin of upper mantle partial melting and possible contaminate of crustal compositions and magmatic evolution of volcanic eruptions control hydrothermal mineralization, and analyzed that important contribution and control action of a magmatic fluid to a hydrothermal mineralization and formation conditions and models of a circulation system of hydrothermal mineralization.

参考文献/References:

[1] Herzig P M,Hannington M D.Polymetallic Massive Sulfides at the Modern Seafloor:a Review[J].Ore Geology Reviews,1995,10(2):95-115.
[2] Ohmoto H.Formation of Volcanogenic Massive Sulfide Deposits:the Kuroko Perspective[J].Ore Geology Reviews,1996,10(3/6):135-177.
[3] Rona P A,Scott S D.A Special Issue on Sea-floor Hydrothermal Mineralization; New Perspectives; Preface[J].Economic Geology,1993,88(8):1935-1976.
[4] Schmidt K,Koschinsky A,Garbe-Schöenberg D,et al.Geochemistry of Hydrothermal Fluids from the Ultramafic-hosted Logatchev Hydrothermal Field,15°N on the Mid-Atlantic Ridge; Temporal and Spatial Investigation[J].Chemical Geology,2007,242(1/2):1-21.
[5] Augustin N,Lackschewitz K S,Kuhn T,et al.Mineralogical and Chemical Mass Changes in Mafic and Ultramafic Rocks from the Logatchev Hydrothermal Field(MAR 15°N)[J].Marine Geology,2008,256(1/4):18-29.
[6] 孙 枢.大洋钻探与中国地球科学[J].地球科学进展,1995,10(3):213-214.
[7] Fouquet Y.Where are the Hydrothermal Sulfide Deposits in the Ocean?[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,1997,355:427-441.
[8] Wilson M.Igneous Petrogenesis:a Global Tectonic Approach[M].London:Springer,1989.
[9] 柴东浩,陈廷愚.新地球观:从大陆漂移到板块构造[M].太原:山西科学技术出版社,2000.
[10] Urabe T,Marumo K.A New Model for Kuroko-type Depo-sits of Japan[J].Episodes,1991,14(3):246-251.
[11] Butuzova G Y.Mineralization and Certain Aspects of Ore-bearing Sediment Genesis in the Red Sea:PartⅡ,General Processes of Mineralization and Ore-formation in the AtlantisⅡ Deep[J].Lithology and Mineral Resources,1984,19:193-311.
[12] Binns R A,Scott S D,Bogdanov Y A,et al.Hydrothermal Oxide and Gold-rich Sulfate Deposits of Franklin Seamount,Western Woodlark Basin,Papua New Guinea[J].Economic Geology,1993,88(8):2122-2153.
[13] Rona P A,Hannington M D,Raman C V,et al.Active and Relict Sea-floor Hydrothermal Mineralization at the TAG Hydrothermal Field,Mid-Atlantic Ridge[J].Economic Geology,1993,88(8):1989-2017.
[14] Francheteau J,Needham H D,Choukroune P,et al.Massive Deep-sea Sulphide Ore Deposits Discovered on the East Pacific Rise[J].Nature,1979,277:523-528.
[15] Halbach P,Nakamura K,Wahsner M,et al.Probable Modern Analogue of Kuroko-type Massive Sulphide Deposits in the Okinawa Trough Back-arc Basin[J].Nature,1989,338:496-499.
[16] Halbach P,Pracejus B,Maerten A.Geology and Mineralogy of Massive Sulfide Ores from the Central Okinawa Trough,Japan[J].Economic Geology,1993,88(8):2210-2225.
[17] Horibe Y,Kim K R,Craig H.Hydrothermal Methane Plumes in the Mariana Back-arc Spreading Centre[J].Nature,1986,324:131-133.
[18] Yang K H,Scott S D.Possible Contribution of a Metal-rich Magmatic Fluid to a Sea-floor Hydrothermal System[J].Nature,1996,383:420-423.
[19] Yang K H,Scott S D.Magmatic Degassing of Volatiles and Ore Metals into a Hydrothermal System on the Modern Sea Floor of the Eastern Manus Back-arc Basin,Western Pacific[J].Economic Geology,2002,97(5):1079-1100.
[20] Franklin J M,Sangster D M,Lydon J W.Volcanic-associated Massive Sulfide Deposits[C]∥Skinner B J.Economic Geology Seventy-fifth Anniversary Volume.Littleton:Society of Economic Geologists,1981:485-627.
[21] Ohmoto H,Skinner B J.The Kuroko and Related Volcanogenic Massive Sulfide Deposits[M].Littleton:Economic Geology Publishing Company,1983.
[22] Lydon J W.Ore Deposit Models 14,Volcanogenic Massive Sulfide Deposits Part 2:Tenetic Models[J].Geoscience Canada,1988,15(1):43-65.
[23] 崔汝勇.大洋中大型热液硫化物矿床的形成条件[J].海洋地质动态,2001,17(2):1-4.
[24] 侯增谦,韩 发,夏林圻,等.现代与古代海底热水成矿作用:以若干火山成因块状硫化物矿床为例[M].北京:地质出版社,2003.
[25] Stoltz J,Large R R.Evaluation of the Source-rock Control on Precious Metal Grades in Volcanic-hosted Massive Sulfide Deposits from Western Tasmania[J].Economic Geology,1992,87(3):720-738.
[26] 叶庆同,傅旭杰,张晓华.阿舍勒铜锌块状硫化物矿床地质特征和成因[J].矿床地质,1997,16(2):97-106.
[27] Stanton R L.Magmatic Evolution and the Ore Type-lava Type Affiliations of Volcanic Exhalative Ores[C]∥Committee of Australian Institute of Mining and Metallurgy.Australian Institute of Mining and Metallurgy Monograph 15.Carlton South:Australian Institute of Mining and Metallurgy,1990:101-107.
[28] Urabe T,Kusakabe M.Barite Silica Chimneys from the Sumi-su Rift,Izu-bonin Arc:Possible Analog to Hematitic Chert Associated with Kuroko Deposits[J].Earth and Planetary Science Letters,1990,100(1/3):283-290.
[29] Alt J C,Shanks W C,Jackson M C.Cycling of Sulfur in Subduction Zones; the Geochemistry of Sulfur in the Mariana Island Arc and Back-arc Trough[J].Earth and Planetary Science Letters,1993,119(4):477-494.
[30] Large R R.Australian Volcanic-hosted Massive Sulfide Deposits; Features,Styles,and Genetic Models[J].Economic Geology,1992,87(3):471-510.
[31] Sawkins F J.Integrated Tectonic-genetic Model for Volcanic-hosted Massive Sulfide Deposits[J].Geology,1990,18(11):1061-1064.
[32] Ulrich T,Gunther D,Heinrich C A.Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits[J].Nature,1999,399:676-679.
[33] Sasso A M,Clark A H.The Farallon Negro Group,Northwestern Argentina:Magmatic,Hydrothermal and Tectonic Evolution and Implications for Cu-Au Metallogeny in the Andean Back-arc[J].Society of Economic Geologist Newsletter,1998,34:1-18.
[34] Bai T B,Koster A F.The Distribution of Na,K,Rb,Sr,Al,Ge,Cu,W,Mo,La,and Ce Between Granitic Melts and Co-existing Aqueous Fluids[J].Geochimica et Cosmochimica Acata,1999,63(7/8):1117-1131.
[35] Taylor H P.Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits[C]∥Barnes H L.Geoche- mistry of Hydrothermal Ore Deposits.2nd ed.New York:John Wiley,1979:236-277.
[36] Whitney J A.Volatiles in Magmatic Systems[J].Reviews in Economic Geology,1984,1:155-175.
[37] Stanton R L.Ore Elements in Arc Lavas[M].Oxford:Oxford University Press,1994.
[38] Roedder E,Weiblen P W.Lunar Petrology of Silicate Melt Inclusions, Apollo 11 Rocks[C]∥Levinson A A.Geochimica et Cosmochimica Acta Supplement Volume 1:Mineralogy and Petrology.New York: Pergammon Press,1970:801-837.
[39] Scott S D.Submarine Hydrothermal Systems and Deposits[C]∥Barnes H L.Geochemistry of Hydrothermal Ore Deposits.3rd ed.New York:John Wiley and Scons,1997,797-876.
[40] Lowenstern J B,Mahood G A,Rivers M L,et al.Evidence for Extreme Partitioning of Copper into a Magmatic Vapor Phase[J].Science,1991,252:1405-1409.
[41] Gill J,Torssander P,Lapierre H,et al.Explosive Deep Water Basalt in the Sumisu Backarc Rift[J].Science,1990,248:1214-1217.
[42] Bischoff J L,Rosenbauser R J.Salinity Variations in Submarine Hydrothermal Systems by Layered Double-diffusive Convection[J].The Journal of Geology,1989,97:613-623.
[43] Jamesa R H,Rudnickib M D,Palmerc M R.The Alkali Element and Boron Geochemistry of the Escanaba Trough Sediment-hosted Hydrothermal System[J].Earth and Planetary Science Letters,1999,171(1):157-169.
[44] Wheat C G,Mottl M J.Hydrothermal Circulation,Juan de Fuca Ridge Eastern Flank:Factors Controlling Basement Water Composition[J].Journal of Geophysical Research,1994,99(B2):3067-3080.
[45] Hannington M D,Scott S D.Sulfidation Equilibria as Guides to Gold Mineralization in Volcanogenic Massive Sulfides; Evidence from Sulfide Mineralogy and the Composition of Sphalerite[J].Economic Geology,1989,84(7):1978-1995.

相似文献/References:

[1]焦永玲,汪洋.岩浆热液的软硬酸碱性质与金属成矿专属性的关系[J].地球科学与环境学报,2014,36(03):83.
 JIAO Yong-ling,WANG Yang.Relationship Between the Hard-soft Acid-base Properties of Magmatic Hydrothermal and the Metal Metallogenic Specificity[J].Journal of Earth Sciences and Environment,2014,36(01):83.
[2]高景刚,梁婷,李文渊,等.新疆额尔齐斯韧性剪切带新生锆石及其年代学意义[J].地球科学与环境学报,2015,37(04):15.
 GAO Jing-gang,LIANG Ting,LI Wen-yuan,et al.Neogenic Zircons in Ertix Ductile Shear Zone of Xinjiang and Their Geochronological Significance[J].Journal of Earth Sciences and Environment,2015,37(01):15.
[3]隗合明,赵国斌,焦建刚.河南夏馆—二郎坪一带叠加 改造型金矿床地质特征及成矿模式[J].地球科学与环境学报,2005,27(01):39.
 WEI He-ming,ZHAO Guo-bin,JIAO Jian-gang.Geological features and metallogenic model of hydrothermal superimposion (regeneration) gold deposits from Xiaguan to Erlangping in Henan[J].Journal of Earth Sciences and Environment,2005,27(01):39.

备注/Memo

备注/Memo:
收稿日期:2009-05-20
基金项目: 国家自然科学基金项目(40772062); 国家科技支撑计划重大项目(2006BAB01A01); 中国地质调查局项目(121201063507)
作者简介: 李文渊(1962-),男,甘肃武威人,教授,博士研究生导师,从事岩浆作用矿床及区域成矿研究。E-mail:xalwenyuan@cgs.gov.cn
更新日期/Last Update: 2010-03-20