|本期目录/Table of Contents|

[1]牛富俊,马巍,吴青柏.青藏铁路主要冻土路基工程热稳定性及主要冻融灾害[J].地球科学与环境学报,2011,33(02):196-206.
 NIU Fu-jun,MA Wei,WU Qing-bai.Thermal Stability of Roadbeds of the Qinghai-Tibet Railway in Permafrost Regions and the Main Freezing-thawing Hazards[J].Journal of Earth Sciences and Environment,2011,33(02):196-206.
点击复制

青藏铁路主要冻土路基工程热稳定性及主要冻融灾害(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第33卷
期数:
2011年第02期
页码:
196-206
栏目:
地质工程
出版日期:
2011-06-15

文章信息/Info

Title:
Thermal Stability of Roadbeds of the Qinghai-Tibet Railway in Permafrost Regions and the Main Freezing-thawing Hazards
文章编号:
1672-6561(2011)02-0196-11
作者:
牛富俊马巍吴青柏
中国科学院寒区旱区环境与工程研究所 冻土工程国家重点实验室,甘肃 兰州 730000
Author(s):
NIU Fu-junMA WeiWU Qing-bai
State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
关键词:
青藏铁路冻土路基结构主动冷却热稳定性冻融灾害
Keywords:
the Qinghai-Tibet Railway permafrost roadbed structure active cooling thermal stability freezing-thawing hazard
分类号:
P642.14
DOI:
-
文献标志码:
A
摘要:
在介绍青藏高原多年冻土退化背景及其工程影响的基础上,通过主要冻土路基现场监测和沿线调查,对青藏铁路冻土路基2002年以来的地温发展过程、热学稳定性及次生冻融灾害进行了分析。结果表明:青藏铁路自2006年通车后冻土路基整体稳定,列车运行速度达100km/h,达到设计要求,但不同结构路基的热学稳定性不同,采取“主动冷却”方法的路基稳定性显著优于传统普通填土路基。管道通风路基、遮阳棚路基及U型块石路基冷却下伏多年冻土的效果显著,块石基底路基左右侧对称性较差,而处于强烈退化冻土区和高温冻土区的普通路基热稳定性差,需结合路基所在区域局地气候因素予以调整或补强。以热融性、冻胀性及冻融性灾害为主的次生冻融灾害对路基稳定性存在潜在危害,主要表现为路基沉陷、掩埋、侧向热侵蚀等,其中目前最为严重的病害是以路桥过渡段沉降为代表的热融性灾害。
Abstract:
The background of permafrost degradation in the Qinghai-Tibet Plateau and its engineering impact in the region were introduced. Then based on the results of geo-hazard investigations and ground-temperature monitoring of the roadbeds along the Qinghai-Tibet Railway in the permafrost regions, the development of ground temperature, thermal stability and secondary freezing-thawing hazards since 2002 were analyzed. The results showed that the roadbeds in the permafrost regions are stable in the whole since it was open to traffic in 2006. The train speed reaches 100 km/h, which achieves the design requirements. In-situ monitored results indicated that thermal stability of the roadbed constructed with a principle of “active cooling” method is much better than that of traditional roadbed. Among the cooling roadbeds, the duct-ventilated roadbed, sunshine-shield roadbed and U-type crushed-rock roadbed efficiently cooled the below permafrost. The roadbed with crushed-rock basement is unsymmetrical in thermal regime, and the thermal stability of the traditional roadbed is very weak, especially in the regions where permafrost is under intense degradation. Such sections should be reinforced considering the local climate factors. Along the railway, some main geo-hazards include thawing settlement, frost-heave and freezing-thawing induced hazards, and all of them might potentially influence the roadbed stability with settlement, burying and laterally thermal erosion. Currently the most serious one is the roadbed settlement in embankment-bridge transition section.

参考文献/References:

[1] 程国栋,何 平.多年冻土地区线性工程建设[J].冰川冻土,2001,23(3):213-217.
[2] 程国栋.青藏铁路工程与多年冻土相互作用及环境效应[J].中国科学院院刊,2002,17(1):21-25.
[3] 王志坚.青藏铁路建设中的冻土工程问题[J].中国铁路,2002(12):31-37.
[4] 程国栋.青藏高原多年冻土区路基工程地质研究[J].第四纪研究,2003,23(2):134-141.
[5] 牛富俊,程国栋,赖远明,等.青藏高原多年冻土区热融滑塌型斜坡失稳研究[J].岩土工程学报,2004,26(3):402-406.
[6] 程国栋.用冷却路基的方法修建青藏铁路[J].中国铁道科学,2003,24(3):1-4.
[7] Ma W,Cheng G D,Wu Q B,et al.Application on Idea of Dynamic Design in Qinghai-Tibet Railway Construction[J].Cold Regions Science and Technology,2005,41(3):165-173.
[8] Ma W,Cheng G D,Wu,Q B.Construction on Permafrost Foundations:Lessons Learned from the Qinghai-Tibet Railroad[J].Cold Regions Science and Technology,2009,59(1):3-11.
[9] 秦大河.中国西部环境演变评估[M].北京:科学出版社,2002.
[10] 李述训,吴通华.青藏高原地气温度之间的关系[J].冰川冻土,2005,27(5):627-632.
[11] 刘永智,吴青柏,张建民,等.高原多年冻土地区公路路基温度场现场实验研究[J].公路,2000(2):5-8.
[12] 吴青柏,刘永智,童长江,等.高原多年冻土地区公路工程地质研究[J],公路,2000(2):1-4.
[13] 施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J].冰川冻土,2002,24(3):219-226.
[14] Wu Q B,Li S X,Liu Y Z.The Impact of Climate Warmming on Permafrost and Qinghai-Tibet Railway[J].Engineering Sciences,2006,4(2):92-97.
[15] 朱林楠.多年冻土路堤的临界高度[C]∥中国科学院兰州冰川冻土研究所.中国地理学会冰川冻土学术会议论文选集:冻土学.北京:科学出版社,1982:170-172.
[16] 王绍令,米海珍.青藏公路铺筑沥青路面后路基下多年冻土的变化[J].冰川冻土,1993,15(4):566-573.
[17] 张建明,章金钊,刘永智.青藏铁路冻土路基合理路堤高度研究[J].中国铁道科学,2006,27(5):28-34.
[18] 程国栋,张建明,盛 煜,等.保护冻土的保温原理[J].上海师范大学学报:自然科学版,2003,32(4):1-6.
[19] 温 智,盛 煜,马 巍,等.保温法保护多年冻土的长期效果分析[J].冰川冻土,2006,28(5):760-765.
[20] Mikhailov G P.Temperature Regime of Embankment Consisting of Coarse Rock on Permafrost[J].Transportation Construction,1971,12:32-33.
[21] Cheng G D.Influences of Local Factors on Permafrost Occurrence and Their Implications for Qinghai-Xizang Railway Design[J].Science in China:Series D,2004,47(8):704-709.
[22] Harris S A,Pedersen D E.Thermal Regimes Beneath Coarse Blocky Materials[J].Permafrost and Periglacial Processes,1998,9(2):107-120.
[23] 牛富俊,程国栋,赖远明.青藏铁路通风路堤室内模型试验研究[J].西安工程学院学报,2002,24(3):1-6.
[24] 牛富俊,马 巍,赖远明.青藏铁路北麓河试验段通风管路基工程效果初步分析[J].岩石力学与工程学报,2003,22(增):2652-2658.
[25] Niu F J,Cheng G D,Xia H M,et al.Field Experiment Study on Effects of Duct-ventilated Railway Embankment on Protecting the Underlying Permafrost[J].Cold Regions Science and Technology,2006,45(3):178-192.
[26] Lai Y M,Wang Q S,Niu F J,et al.Three-dimensional Nonlinear Analysis for Temperature Characteristic of Ventilated Embankment in Permafrost Regions[J].Cold Regions Science and Technology,2004,38(2/3):165-184.
[27] 冯文杰,李东庆,马 巍,等.不同边界条件对多年冻土上限影响的模型试验研究[J].冰川冻土,2001,23(4):353-359.
[28] 俞祁浩,潘喜才,程国栋,等.多年冻土区路基边坡遮阳板降温过程试验研究[J].冰川冻土,2007,29(2):299-305.
[29] 冯文杰,马 巍,张鲁新,等.遮阳棚在寒区道路工程中的应用研究[J].岩土工程学报,2003,25(5):567-570.
[30] Feng W J,Ma W,Li D Q,et al.Application Investigation of Awning to Roadway Engineering on the Qinghai-Tibet Plateau[J].Cold Regions Science and Technology,2006,45(1):51-58.
[31] Niu F J,Cheng G D,Xie Q.Study on Instability of Slopes in Permafrost Regions of Qinghai-Tibet High Plateau[C]∥Kamensky R M.Proceedings of the 5th International Symposium on Permafrost Engineering.Yakutsk:Permafrost Institute Press SB RAS,2002:192-197.
[32] Niu F J,Xu J,Lin Z J,et al.Engineering Activity Induced Environmental Hazards in Permafrost Regions of Qinghai-Tibet Plateau[C]∥Committee of 9th International Conference on Permafrost.Proceedings of 9th International Conference on Permafrost.Fairbanks:University of Alaska Fairbanks,2008:1287-1292.
[33] 林战举,牛富俊,许 健.多年冻土区青藏铁路沿线次生冻融灾害及成因初步分析[J].工程地质学报,2008,16(增):666-673.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2011-01-17
基金项目: 国家自然科学基金重点项目(41030741); 国家自然科学杰出青年基金项目(40625004); 国家自然科学基金创新群体项目(40821001); 国家重点基础研究发展计划前期研究专项项目(2010CB434813); 冻土工程国家重点实验室自主项目(SKLFSE-ZY-01)
作者简介: 牛富俊(1970-),男,甘肃会宁人,研究员,博士研究生导师,工学博士,从事寒区岩土工程与地质灾害及环境方面的研究。E-mail:niufujun@lz
更新日期/Last Update: 2011-06-20