|本期目录/Table of Contents|

[1]吕友虎,李晓峰*,徐净.云南都龙锡锌多金属矿床矽卡岩矿物学和矿物化学特征及其地质意义[J].地球科学与环境学报,2020,42(04):490-509.[doi:10.19814/j.jese.2020.01017]
 LYU You-hu,LI Xiao-feng*,XU Jing.Skarn Mineralogy and Mineral Chemistry Characteristics of Dulong Sn-Zn Polymetallic Deposit in Yunnan, China and Their Geological Significances[J].Journal of Earth Sciences and Environment,2020,42(04):490-509.[doi:10.19814/j.jese.2020.01017]
点击复制

云南都龙锡锌多金属矿床矽卡岩矿物学和矿物化学特征及其地质意义(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第42卷
期数:
2020年第04期
页码:
490-509
栏目:
基础地质与矿产地质
出版日期:
2020-07-15

文章信息/Info

Title:
Skarn Mineralogy and Mineral Chemistry Characteristics of Dulong Sn-Zn Polymetallic Deposit in Yunnan, China and Their Geological Significances
文章编号:
1672-6561(2020)04-0490-20
作者:
吕友虎123李晓峰123*徐净12
(1. 中国科学院地质与地球物理研究所 中国科学院矿产资源研究重点实验室,北京 100029; 2. 中国科学院地球科学研究院,北京 100029; 3. 中国科学院大学 地球与行星科学学院,北京 100049)
Author(s):
LYU You-hu123 LI Xiao-feng123* XU Jing12
(1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China; 3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
石榴子石 矽卡岩 微量元素 矿物学 都龙矿床 云南
Keywords:
garnet skarn trace element mineralogy indium tin Dulong deposit Yunnan
分类号:
P618.4; P575.1
DOI:
10.19814/j.jese.2020.01017
文献标志码:
A
摘要:
都龙锡锌多金属矿床位于华夏地块西缘,是中国最大的锡石硫化物矿床之一。矿体主要呈层状、似层状产于晚白垩纪花岗岩体上覆新元古代新寨岩组的矽卡岩带内。矽卡岩蚀变矿化可划分为5个阶段:石榴子石-辉石阶段、阳起石-绿泥石阶段、磁铁矿-锡石阶段、锡石-磁黄铁矿-闪锌矿阶段、闪锌矿-黄铜矿阶段。以都龙矿床中的矽卡岩为研究对象,在识别矿物组合与结构的基础上,采用电子探针与LA-ICP-MS技术对矽卡岩中的石榴子石、辉石进行了主量、微量元素分析。结果表明:都龙矿床矽卡岩中的石榴子石可分为3类,且具有一定的世代特征。Grt Ⅰ世代为早阶段形成的钙铁榴石(And95~99Gr1~5),多位于核部,呈残余状,与透辉石共生; Grt Ⅱ世代为形成时间稍晚的钙铁-钙铝榴石(And50~80Gr20~50),多围绕Grt Ⅰ世代形成,与钙铁辉石共生; Grt Ⅲ世代为最晚阶段形成的细粒钙铝榴石(And30~40Gr60~70),量少,多呈不规则状。石榴子石与辉石的矿物组合变化暗示流体氧化性具有逐渐降低趋势。微量元素特征显示Grt Ⅰ世代呈轻稀土元素富集、重稀土元素亏损的右倾型特征,Grt Ⅱ世代呈重稀土元素富集、轻稀土元素亏损的左倾型特征,表明稀土元素分配可能受石榴子石晶体化学结构和固溶体端元组分共同影响。不同世代石榴子石成矿元素In和Sn含量差异也较大。Grt Ⅰ世代In和Sn含量分别为(63.0~264.0)×10-6(平均值为159.0×10-6)和(2 790~13 100)×10-6(平均值为7 441×10-6); Grt Ⅱ世代In和Sn含量分别为(1.6~81.0)×10-6(平均值为20.0×10-6)和(436~4 740)×10-6(平均值为2 518×10-6)。石榴子石中In与Sn含量的正相关关系暗示了两者的同时性、同源性,并且在矽卡岩形成早期已经具有一定的选择性富集趋势。因此,系统地研究矽卡岩中的矿物化学特征对有效约束成矿流体在矽卡岩蚀变与矿化过程的演化具有重要意义。
Abstract:
The Dulong Sn-Zn polymetallic deposit is located in the western margin of Cathaysia and is one of the largest cassiterite-sulfide deposits in China. Ore bodies mainly occur as strata-bound in skarns within Neoproterozoic Xinzhaiyan Formation, overlying Late Cretaceous granite. The skarn alteration and mineralization can be divided into five stages: garnet-pyroxene stage, actinolite-chlorite stage, magnetite-cassiterite stage, cassiterite-pyrrhotite-sphalerite stage, sphalerite-chalcopyrite stage. The skarn in Dulong deposit was chosen as research object, and the major and trace elements of garnet and pyroxene were analyzed by EPMA and LA-ICP-MS based on the identification of mineral assemblage and structure. The results show that garnets can be divided into three types and show certain generation characteristics. In the early stage(Grt Ⅰ), garnet is andradite(And90-99Gr1-5), most of which is located in the nuclear part, and symbiosis with diopside; Grt Ⅱ belongs to andradite-grossular solid solution series(And50-80Gr20-50), it is formed late around Grt Ⅰ and symbiosis with hedenbergite; Grt Ⅲ is fine-grained grossular(And30-40Gr60-70)formed in the latest stage, and most of which is irregular. The change of mineral assemblages of garnet and pyroxene indicates that the oxidization of fluid decreases gradually. Trace element characteristics show that Grt Ⅰ displays LREE-enrichment and HREE-depletion, whereas Grt Ⅱ displays HREE-enrichment and LREE-depletion. It is suggested that REE distribution may be influenced by the crystal chemical structure of garnet and the solid solution endmember components. Contents of In and Sn in different generations of garnet are also divergent significantly. Contents of In and Sn in andradite(Grt Ⅰ)are(63.0-264.0)×10-6 with the average of 159.0×10-6, and(2 790-13 100)×10-6 with the average of 7 441×10-6, respectively. Contents of In and Sn in grossular(Grt Ⅱ)are(1.6-81.0)×10-6 with the average of 20.0×10-6, and(436-4 740)×10-6 with the average of 2 518×10-6, respectively. The positive correlation of contents of In and Sn in garnet implies the simultaneous and homologous relationship between them. There is a certain tendency of selective enrichment in the early stage of skarn formation. Thus, the systematic research of skarn mineralogy and mineral chemistry characteristics is of great significance to effectively constrain the evolution of ore-forming fluid in skarn alteration and mineralization process.

参考文献/References:

[1] EINAUDI M T,MEINERT L D,NEWBERRY R J.Skarn Deposits[M]∥SKINNER B J.Economic Geology Seventy-fifth Anniversary Volume.New Haven:The Economic Geology Publishing Company,1981:317-391.
[2] 赵一鸣,丰成友,李大新.中国矽卡岩矿床找矿新进展和时空分布规律[J].矿床地质,2017,36(3):519-543.
ZHAO Yi-ming,FENG Cheng-you,LI Da-xin.New Progress in Prospecting for Skarn Deposits and Spatial-teporal Distribution of Skarn Deposits in China[J].Mineral Deposits,2017,36(3):519-543.
[3] MEINERT L D,DIPPLE G M,NICOLESCU S.World Skarn Deposits[M]∥HEDENQUIST J W,THOMPSON J F H,GOLDFARB R J,et al.Economic Geology One Hundredth Anniversary Volume.Littleton:Society of Economic Geologists,2005:299-336.
[4] COOK N J,CIOBANU C L,GEORGE L,et al.Trace Element Analysis of Minerals in Magmatic-hydrothermal Ores by Laser Ablation Inductively-coupled Plasma Mass Spectrometry:Approaches and Opportunities[J].Minerals,2016,6(4):111.
[5] MCINTIRE W L.Trace Element Partition Coefficients:A Review of Theory and Applications to Geology[J].Geo-chimica et Cosmochimica Acta,1963,27(12):1209-1264.
[6] PARK C,CHOI W,KIM H,et al.Oscillatory Zoning in Skarn Garnet:Implications for Tungsten Ore Exploration[J].Ore Geology Reviews,2017,89:1006-1018.
[7] GASPAR M,KNAACK C,MEINERT L D,et al.REE in Skarn Systems:A LA-ICP-MS Study of Garnets from the Crown Jewel Gold Deposit[J].Geochimica et Cosmochimica Acta,2008,72(1):185-205.
[8] ISMAIL R,CIOBANU C L,COOK N J,et al.Rare Earths and Other Trace Elements in Minerals from Skarn Assemblages,Hillside Iron Oxide-copper-gold Deposit,Yorke Peninsula,South Australia[J].Lithos,2014,184/185/186/187:456-477.
[9] ZAHEDI A,BOOMERI M,NAKASHIMA K,et al.Geochemical Characteristics,Origin and Evolution of Ore-forming Fluids of the K Hut Copper Skarn Deposit,West of Yazd in Central Iran[J].Resource Geo-logy,2014,64(3):209-232.
[10] XU J,CIOBANU C L,COOK N J,et al.Skarn Formation and Trace Elements in Garnet and Associated Minerals from Zhibula Copper Deposit,Gangdese Belt,Southern Tibet[J].Lithos,2016,262:213-231.
[11] 李建康,王登红,李华芹,等.云南老君山矿集区的晚侏罗世—早白垩世成矿事件[J].地球科学,2013,38(5):1023-1036.
LI Jian-kang,WANG Deng-hong,LI Hua-qin,et al.Late Jurassic-Early Cretaceous Mineralization in the Laojunshan Ore Concentration Area,Yunnan Province[J].Earth Science,2013,38(5):1023-1036.
[12] 叶 霖,刘玉平,张 乾,等.云南都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化学特征[J].吉林大学学报(地球科学版),2017,47(3):734-750.
YE Lin,LIU Yu-ping,ZHANG Qian,et al.Trace and Rare Earth Elements Characteristics of Sphalerite in Dulong Super Large Sn-Zn Polymetallic Ore Deposit,Yunnan Province[J].Journal of Jilin University(Earth Science Edition),2017,47(3):734-750.
[13] FENG J R,MAO J W,PEI R F.Ages and Geochemistry of Laojunshan Granites in Southeastern Yunnan,China:Implications for W-Sn Polymetallic Ore Deposits[J].Mineralogy and Petrology,2013,107(4):573-589.
[14] XU B,JIANG S Y,WANG R,et al.Late Cretaceous Granites from the Giant Dulong Sn-polymetallic Ore District in Yunnan Province,South China:Geochronology,Geochemistry,Mineral Chemistry and Nd-Hf Isotopic Compositions[J].Lithos,2015,218/219:54-72.
[15] ZHAO Z Y,HOU L,DING J,et al.A Genetic Link Between Late Cretaceous Granitic Magmatism and Sn Mineralization in the Southwestern South China Block:A Case Study of the Dulong Sn-dominant Polymetallic Deposit[J].Ore Geology Reviews,2018,93:268-289.
[16] 李进文,裴荣富,王永磊,等.云南都龙锡锌矿区同位素年代学研究[J].矿床地质,2013,32(4):767-782.
LI Jin-wen,PEI Rong-fu,WANG Yong-lei,et al.Isotopic Chronological Studies of Dulong Tin-zinc Deposit in Yunnan Province[J].Mineral Deposits,2013,32(4):767-782.
[17] 王小娟,刘玉平,缪应理,等.都龙锡锌多金属矿床LA-MC-ICPMS锡石U-Pb测年及其意义[J].岩石学报,2014,30(3):867-876.
WANG Xiao-juan,LIU Yu-ping,MIAO Ying-li,et al.In-situ LA-MC-ICP-MS Cassiterite U-Pb Dating of Dulong Sn-Zn Polymetallic Deposit and Its Significance[J].Acta Petrologica Sinica,2014,30(3):867-876.
[18] 叶 霖,鲍 谈,刘玉平,等.云南都龙锡锌矿床中白钨矿微量元素及稀土元素地球化学[J].南京大学学报(自然科学),2018,54(2):245-258.
YE Lin,BAO Tan,LIU Yu-ping,et al.The Trace and Rare Earth Elements in Scheelites and Their Implication for the Mineralization in Dulong Sn-Zn Polymetal Ore Deposit,Yunnan Province[J].Journal of Nanjing University(Natural Science),2018,54(2):245-258.
[19] 何 芳,张 乾,王大鹏,等.云南都龙Sn-Zn 多金属矿床成矿物质来源:硫、碳、氧稳定同位素证据[J].矿物岩石地球化学通报,2014,33(6):900-907.
HE Fang,ZHANG Qian,WANG Da-peng,et al.Ore-forming Materials Sources of the Dulong Sn-Zn Polymetallic Deposit,Yunnan:Evidences from S-C-O Stable Isotopes[J].Bulletin of Mineralogy,Petrology and Geochemistry,2014,33(6):900-907.
[20] 叶 霖,鲍 谈,刘玉平,等.云南都龙锡锌多金属矿床成矿阶段与成矿流体[J].矿物学报,2016,36(4):503-509.
YE Lin,BAO Tan,LIU Yu-ping,et al.Mineralization Stages and Ore-forming Fluid of Dulong Sn-Zn Polymetal Ore Deposit,Yunnan Province,China[J].Acta Mineralogica Sinica,2016,36(4):503-509.
[21] CHENG Y B,MAO J W,SPANDLER C.Petrogenesis and Geodynamic Implications of the Gejiu Igneous Complex in the Western Cathaysia Block,South China[J].Lithos,2013,175/176:213-229.
[22] GUO J,ZHANG R Q,SUN W D,et al.Genesis of Tin-dominant Polymetallic Deposits in the Dachang District,South China:Insights from Cassiterite U-Pb Ages and Trace Element Compositions[J].Ore Geology Reviews,2018,95:863-879.
[23] WANG Q,LI J W,JIAN P,et al.Alkaline Syenites in Eastern Cathaysia(South China):Link to Permian-Triassic Transtension[J].Earth and Planetary Science Letters,2005,230(3/4):339-354.
[24] 刘玉平,叶 霖,李朝阳,等.滇东南发现新元古代岩浆岩:SHRIMP锆石U-Pb年代学和岩石地球化学证据[J].岩石学报,2006,22(4):916-926.
LIU Yu-ping,YE Lin,LI Chao-yang,et al.Discovery of the Neoproterozoic Magmatics in Southeastern Yunnan:Evidence from SHRIMP Zircon U-Pb Dating and Lithogeochemistry[J].Acta Petrologica Sinica,2006,22(4):916-926.
[25] GUO L G,LIU Y P,LI C Y,et al.SHRIMP Zircon U-Pb Geochronology and Lithogeochemistry of Caledonian Granites from the Laojunshan Area,Southeastern Yunnan Province,China:Implications for the Collision Between the Yangtze and Cathaysia Blocks[J].Geochemical Journal,2009,43(2):101-122.
[26] 刘玉平,李正祥,李惠民,等.都龙锡锌矿床锡石和锆石U-Pb年代学:滇东南白垩纪大规模花岗岩成岩-成矿事件[J].岩石学报,2007,23(5):967-976.
LIU Yu-ping,LI Zheng-xiang,LI Hui-min,et al.U-Pb Geochronology of Cassiterite and Zircon from the Dulong Sn-Zn Deposit:Evidence for Cretaceous Large-scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province,China[J].Acta Petrologica Sinica,2007,23(5):967-976.
[27] SUN S S,MCDONOUGH W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42:313-345.
[28] 赵 斌,李统锦,李昭平.矽卡岩形成的物理化学条件实验研究[J].地球化学,1983,12(3):256-267.
ZHAO Bin,LI Tong-jin,LI Zhao-ping.Experimental Study of Physico-chemical Conditions of the Formation of Skarns[J].Geochimica,1983,12(3):256-267.
[29] GUSTAFSON W I.The Stability of Andradite,Hedenbergite,and Related Minerals in the System Ca-Fe-Si-O-H[J].Journal of Petrology,1974,15(3):455-496.
[30] GAMBLE R P.An Experimental Study of Sulfidation Reactions Involving Andradite and Hedenbergite[J].Economic Geology,1982,77(4):784-797.
[31] MENZER G.Die Kristallstruckture von Granat[J].Zeitschift fur Kristallogr,1926,63:157-158.
[32] JAMTVEIT B,HERVIG R L.Constraints on Transport and Kinetics in Hydrothermal Systems from Zoned Garnet Crystals[J].Science,1994,263:505-508.
[33] ZHAI D G,LIU J J,ZHANG H Y,et al.Origin of Oscillatory Zoned Garnets from the Xieertala Fe-Zn Skarn Deposit,Northern China:In-situ LA-ICP-MS Evidence[J].Lithos,2014,190/191:279-291.
[34] SMITH M P,HENDERSON P,JEFFRIES T E R,et al.The Rare Earth Element and Uranium in Garnets from the Beinn an Dubhaich Aureole,Skye,Scotland,UK:Constraints on Processes in a Dynamic Hydrothermal System[J].Journal of Petrology,2004,45(3):457-484.
[35] XU J,CIOBANU C L,COOK N J,et al.Numerical Modelling of Rare Earth Element Fractionation Trends in Garnet:A Tool to Monitor Skarn Evolution[J].Contributions to Mineralogy and Petrology,2020,175(4):1-17.
[36] XU J,COOK N J,CIOBANU C L,et al.Indium Distribution in Sphalerite from Sulfide-oxide-silicate Skarn Assemblages:A Case Study of the Dulong Zn-Sn-In Deposit,Southwest China[J].Mineralium Deposita,2020,DOI:10.1007/s00126-020-00972-y.
[37] CHARNOCK J M,POLYA D A,GAULT A G,et al.Direct EXAFS Evidence for Incorporation of As5+ in the Tetrahedral Site of Natural Andraditic Garnet[J].American Mineralogist,2007,92(11/12):1856-1861.
[38] DHIVYA L,JANANI N,PALANIVEL B,et al.Li+ Transport Properties of W Substituted Li7La3Zr2O12 Cubic Lithium Garnets[J].AIP Advances,2013,3:082115.
[39] MCIVER J R,MIHALIK P.Stannian Andradite from “Davib Ost”,South West Africa[J].The Canadian Mineralogist,1975,13(3):217-221.
[40] NEKRASOV I Y.Features of Tin Mineralization in Carbonate Deposits,as in Eastern Siberia[J].International Geology Review,1971,13(10):1532-1542.
[41] CHEN J,HALLS C,STANLEY C J.Tin-bearing Skarns of South China:Geological Setting and Mineralogy[J].Ore Geology Reviews,1992,7(3):225-248.

相似文献/References:

[1]王敏芳,尚晓雨,魏克涛,等.鄂东南矿集区铜绿山矽卡岩型铜铁金矿床元素地球化学特征及其地质意义[J].地球科学与环境学报,2019,41(04):431.
 WANG Min-fang,SHANG Xiao-yu,WEI Ke-tao,et al.Elemental Geochemical Characteristics of Tonglushan Skarn-type Cu-Fe-Au Deposit in the Southeastern Hubei, China and Their Geological Implications[J].Journal of Earth Sciences and Environment,2019,41(04):431.

备注/Memo

备注/Memo:
收稿日期:2020-01-14; 修回日期:2020-05-09; 网络首发日期:2020-06-30投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家重点研发计划项目(2017YFC0602501)
作者简介:吕友虎(1995-),男,安徽六安人,中国科学院大学理学硕士研究生,E-mail:lvyouhu17@mails.ucas.edu.cn。
*通讯作者:李晓峰(1971-),男,北京市人,研究员,博士研究生导师,理学博士,E-mail:xiaofengli@mail.iggcas.ac.cn。
更新日期/Last Update: 2020-07-27