|本期目录/Table of Contents|

[1]杜谨益,罗 术,吴 铸,等.滇西高黎贡山南段腾越隧道沿线岩石-构造特征及其工程影响[J].地球科学与环境学报,2021,43(04):760-784.[doi:10.19814/j.jese.2020.08063]
 DU Jin-yi,LUO Shu,WU Zhu,et al.Rock-structural Characteristics Along Tengyue Tunnel in the Southern Segment of Gaoligong Mountain, the Western Yunnan, China and Their Engineering Influence[J].Journal of Earth Sciences and Environment,2021,43(04):760-784.[doi:10.19814/j.jese.2020.08063]
点击复制

滇西高黎贡山南段腾越隧道沿线岩石-构造特征及其工程影响(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第43卷
期数:
2021年第04期
页码:
760-784
栏目:
工程地质
出版日期:
2021-07-15

文章信息/Info

Title:
Rock-structural Characteristics Along Tengyue Tunnel in the Southern Segment of Gaoligong Mountain, the Western Yunnan, China and Their Engineering Influence
文章编号:
1672-6561(2021)04-0760-25
作者:
杜谨益1罗 术1吴 铸1黄小龙2吴中海2*
(1. 云南省交通规划设计研究院有限公司,云南 昆明 650041; 2. 中国地质科学院地质力学研究所新构造运动与地质灾害重点实验室,北京 100081)
Author(s):
DU Jin-yi1 LUO Shu1 WU Zhu1 HUANG Xiao-long2 WU Zhong-hai2*
(1. Broadvision Engineering Consultants Co. Ltd., Kunming 650041, Yunnan, China; 2. Key Laboratory of Neotectonics Movement and Geohazard, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China)
关键词:
构造节理 活动断裂 超长深埋隧道 高温热害 工程稳定性 高黎贡山 怒江断裂带
Keywords:
structural joint active fault super-long deep-buried tunnel high temperature hazard engineering stability Gaoligong mountain Nujiang fault zone
分类号:
P642
DOI:
10.19814/j.jese.2020.08063
文献标志码:
A
摘要:
横断山地区的复杂地质构造条件是制约滇西大环线、沿边高速和滇中城市群高速路网等重点工程规划与建设的最突出问题。以拟穿越横断山南段高黎贡山的超长深埋公路隧道(腾越隧道)为例,基于隧道工程区详细的岩石地层、构造地质与工程地质勘查资料,对该区的隧道围岩、地质构造以及相关的水热活动特征等进行了详细剖析,总结了面临的主要工程问题。结果表明:高黎贡山南段是较为典型的以韧性剪切带及所夹持的花岗岩体和变质岩块为主构成的动力变质变形带; 隧道工程区主要包含9类岩石工程单元,主体以形成于上地壳下部至中地壳的中深层次变质岩类和花岗岩类为主; 对工程建设可能产生显著影响的主要断裂带有10条,分属怒江断裂系、高黎贡山断裂系(或泸水—瑞丽断裂系)和龙川江断裂系三大构造体系,并控制了区域上主要水热活动带,其中第四纪仍可能存在活动性的断裂带有5条,高黎贡山西侧边界断裂带是影响隧道工程的主要活动断裂。综合分析结果表明,研究区隧道围岩的工程地质属性多属于较破碎的坚硬—较坚硬岩,高地应力和高地温将是影响隧道工程稳定性的主要因素,其次是变质岩和花岗岩的岩体特性与构造节理发育程度,以及相关的断裂涌水和花岗岩区段的密集节理带透水问题。
Abstract:
In recent years, the construction of transportation infrastructure in Yunnan province has entered a stage of rapid development. However, the complex geological structure of Hengduan mountain range seriously restricts the planning and construction of several major projects, such as the western Yunnan ring road, the border expressway, and the central Yunnan urban agglomeration expressway network. Taking the super-long deep-burial Tengyue tunnel, which would pass through Gaoligong mountain of the southern Hengduan mountain range as an example, based on the lithostratigraphy, structure and engineering geology, the surrounding rock, geological structure, and related hydrothermal characteristics of the tunnel engineering area were analyzed in detail, and the major engineering problems that the project will face in the construction stage were summarized. The results show that the southern segment of Gaoligong mountain is a typical dynamic metamorphic deformation zone, which is mainly composed of ductile shear zone and the clamped granite and metamorphic rocks. The tunnel engineering area mainly contains 9 rock engineering units, and the main body is the metamorphic rocks and granitoids in the middle and deep levels formed from the lower part of the upper crust to the middle crust. 10 project-affecting active faults of Longchuanjiang, Nujiang, and Gaoligong mountain fault systems, controlling the hydrothermal activity in study area, are also studied; 5 of them have been active since Quaternary, and the one in the western piedmont of Gaoligong mountain is the top priority on affecting the stability of the engineering area. In summary, the engineering geological properties of the tunnel surrounding rock in the study area mostly belong to the relatively broken-relatively hard rock, and the stability of tunnel engineering is significantly affected by the high ground stress and high ground temperature. The rock mass characteristics and tectonic joints of metamorphic rocks and granites, and the related water inrush from faults and permeability of dense joint zone in granite section secondarily contribute to the instability. The new result is helpful for the stability assessment of tunnel engineering in the meso-kata metamorphism area of Hengduan mountain range.

参考文献/References:

[1] 宋成辉,李 伟,蒋富强,等.穿越东非大裂谷内马铁路隧道的抗震分析及断层位错设计[J].工程地质学报,2020,28(4):867-876. SONG Cheng-hui,LI Wei,JIANG Fu-qiang,et al.Seismic Analysis and Fault Dislocation Design of the Tunnel Through Rift Valley of Nairobi-Malabar Railway[J].Journal of Engineering Geology,2020,28(4):867-876. [2] 梅贤丞,崔 臻,盛 谦.近断层/远场地震动作用下隧道结构易损性研究[J].岩石力学与工程学报,2021,40(2):344-354. MEI Xian-cheng,CUI Zhen,SHENG Qian.Research on Vulnerability of Tunnel Structures Subjected to Near-fault and Far-field Ground Motions[J].Chinese Journal of Rock Mechanics and Engineering,2021,40(2):344-354. [3] 王进华.兰新高铁祁连山越岭段工程地质选线研究及回顾[J].铁道标准设计,2021,65(6):1-7. WANG Jin-hua.Research and Review on Engineering Geological Route Selection for the Ridge Section in Qilian Mountain on Lanzhou-Urumqi High-speed Railway[J].Railway Standard Design,2021,65(6):1-7. [4] 张广泽,冯 君,易勇进,等.隧道大变形机理及分类分级探讨[J].铁道标准设计,2020,64(10):77-82. ZHANG Guang-ze,FENG Jun,YI Yong-jin,et al.Discussion on the Mechanism and Classification of Large Deformation in Tunnel Engineering[J].Railway Standard Design,2020,64(10):77-82. [5] 何发亮.隧道施工地质灾害与致灾构造及其致灾模式[J].现代隧道技术,2019,56(增1):138-143. HE Fa-liang.Geological Hazards and Disaster-causing Structures in Tunnel Construction and Disaster-causing Modes of Disaster-causing Structures[J].Modern Tunnelling Technology,2019,56(S1):138-143. [6] 杨绍文,张星培,梅文周,等.云南三江造山带西部的重要断裂特征与构造单元划分[J].地质与资源,2019,28(4):315-320,331. YANG Shao-wen,ZHANG Xing-pei,MEI Wen-zhou,et al.Characteristics of Important Faults and Division of Tectonic Units in the West of Sanjiang Orogenic Belts,Yunnan Province[J].Geology and Resources,2019,28(4):315-320,331. [7] 于 宁,朱合华,苏生瑞.公路隧道施工中的地质灾害及相应措施的分析[J].地下空间,2003,23(2):119-123. YU Ning,ZHU He-hua,SU Sheng-rui.Analysis of Geological Hazards During Road Tunnel Construction and Corresponding Countermeasures[J].Underground Space,2003,23(2):119-123. [8] 易 武,易庆林,余 庆.吕家坪公路隧道地质勘察与施工监控[J].地下空间与工程学报,2006,2(6):934-937,941. YI Wu,YI Qing-lin,YU Qing.The Geological Reconnaissance and Construction Monitoring-controlling of Lujiaping Highway Tunnel[J].Chinese Journal of Underground Space and Engineering,2006,2(6):934-937,941. [9] 张永双,胡道功,吴中海,等.滇藏铁路沿线地壳稳定性及重大工程地质问题[M].北京:地质出版社,2009. ZHANG Yong-shuang,HU Dao-gong,WU Zhong-hai,et al.The Crustal Stability and Major Engineering Geological Problems Along the Yunnan-Tibet Railway[M].Beijing:Geological Publishing House,2009. [10] 郭长宝,张永双,蒋良文.褶皱构造体中深埋隧道岩爆机制与隧道断面适宜性研究[J].岩石力学与工程学报,2012,31(增1):2758-2766. GUO Chang-bao,ZHANG Yong-shuang,JIANG Liang-wen.Research on Rockburst Mechanism and Profile Suitability of Deep-buried Tunnel in Fold Structure Body[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(S1):2758-2766. [11] 吴中海,李贵书,毛晓长,等.泛亚铁路云南大理至瑞丽沿线基础地质与主要工程地质问题[M].北京:地质出版社,2013. WU Zhong-hai,LI Gui-shu,MAO Xiao-chang,et al.The Basic Geology and Major Engineering Geology Problems Along the Dali to Ruili Line of the Pan-Asia Railway in Yunnan Province[M].Beijing:Geological Publishing House,2013. [12] 李光伟,杜宇本,蒋良文,等.大瑞铁路高黎贡山越岭段主要工程地质问题与地质选线[J].地质力学学报,2015,21(1):73-86. LI Guang-wei,DU Yu-ben,JIANG Liang-wen,et al.Research on the Engineering Geology Condition and Railway Routes Comparison Along the Mt.Gaoligong Section,Dali-Ruili Railway[J].Journal of Geomecha-nics,2015,21(1):73-86. [13] 张民庆.由新圣哥达隧道思考高黎贡山隧道的修建[J].铁道工程学报,2016,33(7):36-40,53. ZHANG Min-qing.Thinking of the Construction from New Gotthard Tunnel to Gaoligongshan Tunnel[J].Journal of Railway Engineering Society,2016,33(7):36-40,53. [14] 王 宇.云南省地质灾害防治与研究历史评述[J].灾害学,2019,34(3):134-139. WANG Yu.Historical Review of Geological Disaster Prevention and Research in Yunnan Province,China[J].Journal of Catastrophology,2019,34(3):134-139. [15] 吕远强,苏生瑞,安光明,等.云南思小高速公路白花山隧道围岩稳定性研究[J].地球科学与环境学报,2005,27(2):86-89. LYU Yuan-qiang,SU Sheng-rui,AN Guang-ming,et al.Surrounding Rock Stabilization of Baihuashan Tunnel of Si-Xiao Express Way in Yunnan Province[J].Journal of Earth Sciences and Environment,2005,27(2):86-89. [16] 云南省地质矿产勘查开发局.云南省区域地质志[M].北京:地质出版社,1990. Yunnan Bureau of Geology and Mineral Resources.Regional Geology of Yunnan Province[M].Beijing:Geological Publishing House,1990. [17] 陈福坤,李秋立,王秀丽,等.云南特提斯带保山—腾冲地块早古生代岩浆岩[J].地球学报,2005,26(增1):93. CHEN Fu-kun,LI Qiu-li,WANG Xiu-li,et al.Early Paleozoic Magmatism in Baoshan-Tengchong Block of the Tethyan Belt,Yunnan Province[J].Acta Geoscientica Sinica,2005,26(S1):93. [18] 戚学祥,韦 诚,蔡志慧,等.滇西腾冲地块高黎贡群变质沉积岩时代与原特提斯洋俯冲/增生:来自碎屑锆石U-Pb定年和岩石地球化学证据[J].地质学报,2019,93(1):94-116. QI Xue-xiang,WEI Cheng,CAI Zhi-hui,et al.Sedimentary Age of Metamorphic Rocks of Gaoligong Group in Tengchong Block,Western Yunnan and Its Relationship with Subduction/Accretion of Prototethys:Evidences from Detrital Zircon U-Pb Dating and Geochemistry[J].Acta Geologica Sinica,2019,93(1):94-116. [19] WANG S F,MO Y S,WANG C,et al.Paleotethyan Evolution of the IndoChina Block as Deduced from Granites in Northern Laos[J].Gondwana Research,2016,38:183-196. [20] WANG S F,YAO X,JIANG W.Geochronological,Geochemical,and Sr-Nd-Hf Isotopic Characteristics of Granitoids in Eastern Tibet and Implications for Tectonic Correlation with Southeastern Asia[J].Lithosphere,2019,11(3):333-347. [21] 杨启军,徐义刚,黄小龙,等.高黎贡构造带花岗岩的年代学和地球化学及其构造意义[J].岩石学报,2006,22(4):817-834. YANG Qi-jun,XU Yi-gang,HUANG Xiao-long,et al.Geochronology and Geochemistry of Granites in the Gaoligong Tectonic Belt,Western Yunnan:Tectonic Implications[J].Acta Petrologica Sinica,2006,22(4):817-834. [22] 白宪洲,贾小川,杨学俊,等.滇西龙陵—瑞丽断裂带早白垩世火山岩LA-ICP-MS锆石U-Pb定年和地球化学特征[J].地质通报,2012,31(2/3):297-305. BAI Xian-zhou,JIA Xiao-chuan,YANG Xue-jun,et al.LA-ICP-MS Zircon U-Pb Dating and Geochemical Characteristics of Early Cretaceous Volcanic Rocks in Longling-Ruili Fault Belt,Western Yunnan Province[J].Geological Bulletin of China,2012,31(2/3):297-305. [23] 季建清,钟大赉,张连生.滇西南新生代走滑断裂运动学、年代学及对青藏高原东南部块体运动的意义[J].地质科学,2000,35(3):336-349. JI Jian-qing,ZHONG Da-lai,ZHANG Lian-sheng.Kinematics and Dating of Cenozoic Strike-slip Faults in the Tengchong Area,West Yunnan:Implications for the Block Movement in the Southeastern Tibet Pla-teau[J].Scientia Geological Sinica,2000,35(3):336-349. [24] WANG E C,BURCHFIEL B C,ROYDEN L H,et al.Late Cenozoic Xianshuihe-Xiaojiang,Red River,and Dali Fault Systems of Southwestern Sichuan and Central Yunnan,China[M].Washington DC:Geological Society of America,1998. [25] ZHANG B,ZHANG J J,ZHONG D L.Polystage Deformation of the Gaoligong Metamorphic Zone:Structures,40Ar/39Ar Mica Ages,and Tectonic Implications[J].Journal of Structural Geology,2012,37:1-18. [26] 云南省地质调查局区域地质调查所.1:250 000腾冲县幅区域地质图[R].昆明:云南省地质调查局,2006. Institute of Regional Geological Survey,Yunnan Geological Survey.Regional Geological Map of 1:250 000 Tengchong County[R].Kunming:Yunnan Geological Survey,2006. [27] 云南省地质矿产勘查开发局区域地质调查队.1:200 000腾冲幅区域地质调查报告[R].昆明:云南省地质矿产勘查开发局,1979. Regional Geological Survey Team of Yunnan Bureau of Geology and Mineral Resources.Regional Geologi-cal Survey Report of 1:200 000 Tengchong Area[R].Kunming:Yunnan Bureau of Geology and Mi-neral Resources,1979. [28] 温树林,吴世林.TSP 203在云南元磨高速公路隧道超前地质预报中的应用[J].地球物理学进展,2003,18(3):465-471. WEN Shu-lin,WU Shi-lin.Application of the TSP 203 System in Geological Advanced Prediction of Yuanmo Expressway Tunnel[J].Progress in Geophysics,2003,18(3):465-471. [29] 肖宽怀,刘 浩,孙 宇,等.地震CT勘探在昆石公路隧道病害诊断中的应用[J].地球物理学进展,2003,18(3):472-476. XIAO Kuan-huai,LIU Hao,SUN Yu,et al.Seismic Tomography Used to Examine Geological Hazards in the Tunnels of Kunming-Shilin Highway[J].Progress in Geophysics,2003,18(3):472-476. [30] 孙英勋.CSAMT法在水麻高速公路箭竹塘深埋隧道地质勘察中的应用[J].现代隧道技术,2006,43(1):32-37. SUN Ying-xun.Application of CSAMT in the Geologic Survey of the Deeply-embedded Jianzhutang Tunnel on Shufu-Maliuwan Expressway[J].Modern Tunnelling Technology,2006,43(1):32-37. [31] 代绍海,陈升玉,吴 斌,等.地质雷达在高速公路隧道衬砌交工验收检测中的应用[J].公路工程,2018,43(1):196-201. DAI Shao-hai,CHEN Sheng-yu,WU Bin,et al.Application of the Geological Radar in Highway Tunnel Lining Acceptance Inspection[J].Highway Engineering,2018,43(1):196-201. [32] 赵秀娟,张绪教,李宗敏,等.滇西大理至瑞丽铁路沿线岩石力学参数的测定及其意义[J].地质通报,2012,31(2/3):366-373. ZHAO Xiu-juan,ZHANG Xu-jiao,LI Zong-min,et al.The Engineering Mechanical Properties of the Rock Mass Along the Dali-Ruili Railway,Western Yunnan Province[J].Geological Bulletin of China,2012,31(2/3):366-373. [33] JTG C20—2011,公路工程地质勘察规范[S]. JTG C20—2011,Code for Highway Engineering Geological Investigation[S]. [34] 张 华,何绕生,黄琴辉,等.滇西高黎贡山南段新构造运动特征[J].云南地质,2020,39(4):461-467. ZHANG Hua,HE Rao-sheng,HUANG Qin-hui,et al.The Characteristics of Neotectonics in Gaoligongshan Mts South Section,SW Yunnan[J].Yunnan Geology,2020,39(4):461-467. [35] WANG G,WAN J L,WANG E.Late Cenozoic to Recent Transtensional Deformation Across the Southern Part of the Gaoligong Shear Zone Between the Indian Plate and SE Margin of the Tibetan Plateau and Its Tectonic Origin[J].Tectonophysics,2008,460(1/2/3/4):1-20. [36] 吴中海,赵希涛,范桃园,等.泛亚铁路滇西大理至瑞丽沿线主要活动断裂与地震地质特征[J].地质通报,2012,31(2/3):191-217. WU Zhong-hai,ZHAO Xi-tao,FAN Tao-yuan,et al.Active Faults and Seismologic Characteristics Along the Dali-Ruili Railway in Western Yunnan Province[J].Geological Bulletin of China,2012,31(2/3):191-217. [37] 李 茹.高黎贡山隧道高地温热源分析[J].山西建筑,2018,44(2):190-191. LI Ru.Analysis of High Temperature Sources in Gaoligongshan Tunnel[J].Shanxi Architecture,2018,44(2):190-191.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-08-31; 修回日期:2020-11-28
基金项目:国道G219云南泸水至腾冲段改扩建工程项目(2020-530581-54-01-012824); 中国地质调查局地质调查项目(12120114002101,DD20160268)
作者简介:杜谨益(1968-),男,湖南邵东人,高级工程师,E-mail:330304007@qq.com。
*通讯作者:吴中海(1974-),男,北京市人,研究员,博士研究生导师,理学博士,E-mail:wzhh4488@sina.com。
更新日期/Last Update: 2021-04-20