|本期目录/Table of Contents|

[1]方朝刚,章诚诚*,林 洪,等.下扬子西南部前渊带晚奥陶世—早志留世黑色页岩沉积环境与有机质富集机理——以WDD1井为例[J].地球科学与环境学报,2022,44(02):312-326.[doi:10.19814/j.jese.2021.10022]
 FANG Chao-gang,ZHANG Cheng-cheng*,LIN Hong,et al.Sedimentary Environment and Genesis of Organic Matter Enrichment of Late Ordovician-Early Silurian Black Shale in the Fore Deep Zone, the Southwestern Lower Yangtze Basin, China—A Case Study of Well WDD1[J].Journal of Earth Sciences and Environment,2022,44(02):312-326.[doi:10.19814/j.jese.2021.10022]
点击复制

下扬子西南部前渊带晚奥陶世—早志留世黑色页岩沉积环境与有机质富集机理——以WDD1井为例(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第44卷
期数:
2022年第02期
页码:
312-326
栏目:
沉积地质与油气勘探
出版日期:
2022-03-15

文章信息/Info

Title:
Sedimentary Environment and Genesis of Organic Matter Enrichment of Late Ordovician-Early Silurian Black Shale in the Fore Deep Zone, the Southwestern Lower Yangtze Basin, China—A Case Study of Well WDD1
文章编号:
1672-6561(2022)02-0312-15
作者:
方朝刚123章诚诚1*林 洪4韩 瑾2滕 龙1周道容1李建青1
(1. 中国地质调查局南京地质调查中心,江苏 南京 210016; 2. 云南大学 地球科学学院,云南 昆明 650091; 3. 古生物与地质环境演化湖北省重点实验室,湖北 武汉 430205; 4. 江西省地质科学研究所,江西 南昌 330052)
Author(s):
FANG Chao-gang123 ZHANG Cheng-cheng1* LIN Hong4 HAN Jin2 TENG Long1 ZHOU Dao-rong1 LI Jian-qing1
(1. Nanjing Center, China Geological Survey, Nanjing 210016, Jiangsu, China; 2. School of Earth Sciences, Yunnan University, Kunming 650091, Yunnan, China; 3. Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan 430205, Hubei, China; 4. Institute of Geological Sciences of Jiangxi Province, Nanchang 330052, Jiangxi, China)
关键词:
黑色页岩 沉积环境 五峰组 高家边组 有机质富集 化学蚀变指数 古生产力 下扬子地区
Keywords:
black shale sedimentary environment Wufeng Formation Gaojiabian Formation organic matter enrichment chemical index of alteration paleoproductivity Lower Yangtze region
分类号:
P588.2; P595
DOI:
10.19814/j.jese.2021.10022
文献标志码:
A
摘要:
岩相古地理研究表明奥陶纪—志留纪之交下扬子地区主要发育一套前陆盆地前缘带黑色页岩,与同处扬子陆块的中上扬子地区存在明显的区域性差异。该套黑色页岩沉积环境的演变研究相对薄弱,特别是与有机质富集相关的研究缺乏。因此,搞清楚下扬子地区五峰组—高家边组页岩沉积环境和有机质富集机理,对深化下扬子地区页岩气富集规律认识具有重要意义。基于下扬子西南部最新的奥陶系—志留系页岩气地质调查井(WDD1)获取的连续地下岩芯资料,对38个岩芯样品进行了总有机碳和主量、微量元素测试,分析了主量、微量元素含量垂向上的变化特征及其与海盆古沉积环境的关系,讨论了控制下扬子西南部奥陶纪—志留纪之交页岩有机质富集的主控因素。结果表明:上奥陶统五峰组和下志留统高家边组二段为有机质富集层段,校正后的化学蚀变指数指示研究区所处的江南过渡带在奥陶纪—志留纪之交气候相对温暖湿润; 生源钡、Cu、Zn含量等指标印证了五峰组—高家边组沉积期具有较高的古生产力; V/Cr、V/(V+Ni)和V/Sc值等揭示五峰组沉积期底水为厌氧—硫化状态,高家边组一段沉积期底水转化为贫氧—氧化状态,高家边组二段沉积期再次出现硫化—缺氧的底水环境; Mo-TOC图解和EFU-EFMo协变图显示五峰组沉积期为中等滞留沉积环境,高家边组沉积期则转化为中等—弱滞留沉积环境; 五峰组沉积期总有机碳与Al、Ti含量表现为弱的正相关关系,而高家边组沉积期则转化负相关关系。五峰组和高家边组黑色页岩有机质富集机理存在差异:五峰组黑色页岩有机质富集的主控因素为还原—硫化的半滞留环境,陆源碎屑输入带来的营养物质一定程度上促进了有机质富集; 高家边组二段黑色页岩有机质富集受多种因素控制,高的古生产力和还原—硫化底水环境为有机质赋存提供了必要条件,同时低沉积速率进一步促进了有机质的富集。二者富集机理的差异揭示奥陶纪—志留纪之交下扬子地区古海洋环境发生了重大的改变。
Abstract:
Lithofacies paleogeography shows that a set of black shale in the foreland basin front zone is mainly developed in the Lower Yangtze region at the turn of Ordovician-Silurian, and the Lower Yangtze region is obviously different with the Middle and Upper Yangtze regions. The study on the sedimentary environment evolution of the black shale is relatively weak, especially the related study on organic matter enrichment. Therefore, it is necessary to clarify the sedimentary environment and organic matter enrichment mechanism of Wufeng Formation-Gaojiabian Formation shale in the Lower Yangtze region, which is of great significance for deepening the understanding of shale gas enrichment law. Based on the continuous underground core data obtained by the latest shale gas geological survey well(WDD1)in the southwest of the Lower Yangtze region, 38 core samples were tested for organic carbon, major and trace elements. The vertical variation characteristics of major and trace elements in the profile and their relationship with the sedimentary environment of the basin were analyzed. The main controlling factors of organic matter enrichment of Ordovician-Silurian shale in the southwest of the Lower Yangtze region were discussed. The results show that Wufeng Formation and the second member of Gaojiabian Formation are enriched in organic matter, and the CIAcorr value indicates that the climate of Jiangnan transitional zone is relatively warm and humid at the turn of Ordovician-Silurian. Contents of Babio, Cu, Zn and other indicators confirm Wufeng-Gaojiabian deposition period has a high level of paleoproductivity; V/Cr, V/(V+Ni)and V/Sc values reveal that the bottom water of Wufeng Formation during the deposition period is an anaerobic sulfide state, and the bottom water of the first member of Gaojiabian Formation during the deposition period is converted into an oxygen-poor oxidation state. Diagram of Mo-TOC and covariation diagram of EFMo-EFU show that Wufeng deposition period is medium-retention sedimentary environment, and Gaojiabian deposition period is medium-weak retention sedimentary environment. TOC shows a weak positive correlation with contents of Al and Ti in Wufeng deposition period, while it turns into a negative correlation in Gaojiabian deposition period. The enrichment mechanism of organic matter in black shale of Wufeng Formation and Gaojiabian Formation is different. The main controlling factor of organic matter enrichment in black shale of Wufeng Formation is the semi-retention environment of reduction-sulfidation, and the nutrients brought by terrigenous clastic input promote to some extent. The differences in the enrichment mechanism between Wufeng Formation and Gaojiabian Formation show that the paleo-ocean environment in the Lower Yangtze region has undergone significant changes at the turn of Ordovician-Silurian.

参考文献/References:

[1] 梁狄刚,郭彤楼,边立曾,等.中国南方海相生烃成藏研究的若干新进展(三):南方四套区域性海相烃源岩的沉积相及发育的控制因素[J].海相油气地质,2008,14(2):1-19.
LIANG Di-gang,GUO Tong-lou,BIAN Li-zeng,et al.Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions,Southern China(Part 3):Controlling Factors on the Sedimentary Facies and Development of Palaeozoic Marine Source Rocks[J].Marine Origin Petroleum Geology,2008,14(2):1-19.
[2] 董大忠,程克明,王玉满,等.中国上扬子区下古生界页岩气形成条件及特征[J].石油与天然气地质,2010,31(3):288-299,308.
DONG Da-zhong,CHENG Ke-ming,WANG Yu-man,et al.Forming Conditions and Characteristics of Shale Gas in the Lower Paleozoic of the Upper Yangtze Region,China[J].Oil and Gas Geology,2010,31(3):288-299,308.
[3] 郑宇龙,牟传龙,王秀平.四川盆地南缘五峰组—龙马溪组沉积地球化学及有机质富集模式——以叙永地区田林剖面为例[J].地球科学与环境学报,2019,41(5):541-560.
ZHENG Yu-long,MOU Chuan-long,WANG Xiu-ping.Sedimentary Geochemistry and Patterns of Organic Matter Enrichment of Wufeng-Longmaxi Formations in the Southern Margin of Sichuan Basin,China—A Case Study of Tianlin Profile in Xuyong Area[J].Journal of Earth Sciences and Environment,2019,41(5):541-560.
[4] HE Z,HU Z,NIE H,et al.Characterization of Shale Gas Enrichment in the Wufeng Formation-Longmaxi Formation in the Sichuan Basin of China and Evaluation of Its Geological Construction-transformation Evolution Sequence[J].Journal of Natural Gas Geoscience,2017,2(1):1-10.
[5] 张春明,张维生,郭英海.川东南—黔北地区龙马溪组沉积环境及对烃源岩的影响[J].地学前缘,2012,19(1):137-145.
ZHANG Chun-ming,ZHANG Wei-sheng,GUO Ying-hai.Sedimentary Environment and Its Effect on Hydrocarbon Souce Rocks of Longmaxi Formation in Southeast Sichuan and Northern Guizhou[J].Earth Science Frontiers,2012,19(1):137-145.
[6] 李双建,肖开华,沃玉进,等.南方海相上奥陶统—下志留统优质烃源岩发育的控制因素[J].沉积学报,2008,26(5):872-880.
LI Shuang-jian,XIAO Kai-hua,WO Yu-jin,et al.Developmental Controlling Factors of Upper Ordovician-Lower Silurian High Quality Source Rocks in Marine Sequence,South China[J].Acta Sedmentologica Sinica,2008,26(5):872-880.
[7] WANG Y M,LI X J,DONG D Z,et al.Major Controlling Factors for the High-quality Shale of Wufeng-Longmaxi Formation,Sichuan Basin[J].Energy Exploration and Exploitation,2017,35(4):444-462.
[8] 李琪琪,蓝宝锋,李刚权,等.黔中隆起北缘五峰—龙马溪组页岩元素地球化学特征及其地质意义[J].地球科学,2021,46(9):3172-3188.
LI Qi-qi,LAN Bao-feng,LI Gang-quan,et al.Element Geochemical Characteristics and Their Geological Significance of Wufeng-Longmaxi Formation Shales in North Margin of the Central Guizhou Uplift[J].Earth Science,2021,46(9):3172-3188.
[9] XIAO B,LIU S,LI Z,et al.Geochemical Characteristics of Marine Shale in the Wufeng Formation-Longmaxi Formation in the Northern Sichuan Basin,South China and Its Implications for Depositional Controls on Organic Matter[J].Journal of Petroleum Science and Engineering,2021,203:108618.
[10] YAN C,JIN Z,ZHAO J,et al.Influence of Sedimentary Environment on Organic Matter Enrichment in Shale:A Case Study of the Wufeng and Longmaxi Formations of the Sichuan Basin,China[J].Marine and Petroleum Geology,2018,92:880-894.
[11] LIANG C,JIANG Z,CAO Y,et al.Sedimentary Characteristics and Paleoenvironment of Shale in the Wu-feng-Longmaxi Formation,North Guizhou Province,and Its Shale Gas Potential[J].Journal of Earth Science,2017,28(6):1020-1031.
[12] 贾 东,胡文瑄,姚素平,等.江苏省下志留统黑色页岩浅井钻探及其页岩气潜力分析[J].高校地质学报,2016,22(1):127-137.
JIA Dong,HU Wen-xuan,YAO Su-ping,et al.Shallow Borehole Drilling of the Lower Silurian Black Shale in Jiangsu Province and the Shale Gas Potential Analysis[J].Geological Journal of China Univer-sities,2016,22(1):127-137.
[13] 方朝刚,黄正清,滕 龙,等.下扬子地区晚奥陶世凯迪期—早志留世鲁丹期岩相古地理及其油气地质意义[J].中国地质,2020,47(1):144-160.
FANG Chao-gang,HUANG Zheng-qing,TENG Long,et al.Lithofacies Palaeogeography of the Late Ordovician Kaitian Stage-the Early Silurian Rhuddanian Stage in Lower Yangtze Region and Its Petroleum Geological Significance[J].Geology in China,2020,47(1):144-160.
[14] 黄正清,方朝刚,李建青,等.宁镇地区五峰组—高家边组页岩U-Mo协变模式与古海盆水体滞留程度[J].成都理工大学学报(自然科学版),2020,47(4):443-450.
HUANG Zheng-qing,FANG Chao-gang,LI Jian-qing,et al.U-Mo Covariance Model of Wufeng-Gaojiabian Formation Marine Shale in Ningjing-Zhenjiang Area and Its Implication for Water Retention Degree in Ancient Sea Basin[J].Journal of Chengdu University of Technology(Science and Technology Edition),2020,47(4):443-450.
[15] 严德天,王清晨,陈代钊,等.扬子及周缘地区上奥陶统—下志留统烃源岩发育环境及其控制因素[J].地质学报,2008,82(3):321-327.
YAN De-tian,WANG Qing-chen,CHEN Dai-zhao,et al.Sedimentary Environment and Development Controls of the Hydrocarbon Sources Beds:The Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation in the Yangtze Area[J].Acta Geolo-gica Sinica,2008,82(3):321-327.
[16] 陈 清,樊隽轩,张琳娜,等.下扬子区奥陶纪晚期古地理演变及华南“台-坡-盆”格局的打破[J].中国科学:地球科学,2018,48(6):767-777.
CHEN Qing,FAN Jun-xuan,ZHANG Lin-na,et al.Paleogeographic Evolution of the Lower Yangtze Region and the Break of the “Platform-slope-basin” Pattern During the Late Ordovician[J].Science China:Earth Sciences,2018,48(6):767-777.
[17] CHEN X,RONG J Y,LI Y,et al.Facies Patterns and Geography of the Yangtze Region,South China,Th-rough the Ordovician and Silurian Transition[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2004,204(3/4):353-372.
[18] TROTTER J A,WILLIAMS I S,BARNES C R,et al.Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry[J].Science,2008,321:550-554.
[19] FINNERGAN S,BERGMANN K,EILER J M,et al.The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation[J].Science,2011,331:903-906.
[20] FINNEGAN S,HEIM N A,PETERS S E,et al.Climate Change and the Selective Signature of the Late Ordovician Mass Extinction[J].PNAS,2012,109(18):6829-6834.
[21] NESBITT H W,YOUNG G M.Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations[J].Geochimica et Cosmochimica Acta,1984,48(7):1523-1534.
[22] YOUNG G M,NESBIT H W.Paleoclimatology and Provenance of the Glaciogenic Gowganda Formation(Paleoproterozoic),Ontario,Canada:A Chemostratigraphic Approach[J].Geology,1999,111(2):264-274.
[23] FEDO C M,NESBITT H W,YOUNG G M.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols,with Implications for Paleoweathering Conditions and Provenance[J].Geo-logy,1995,23(10):921-924.
[24] PANAHI A,YOUNG G M,RAINBIRD R H.Beha-vior of Major and Trace Elements(Including REE)During Paleoproterozoic Pedogenesis and Diagenetic Alteration of an Archean Granite near Ville Marie,Québec,Canada[J].Geochimica et Cosmochimica Acta,2000,64(13):2199-2220.
[25] 李艳芳,邵德勇,吕海刚,等.四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J].石油学报,2015,36(12):1470-1483.
LI Yan-fang,SHAO De-yong,LV Hai-gang,et al.A Relationship Between Element Geochemical Characterisitics and Organic Matter Enrichment in Marine Shale of Wufeng Formation-Longmaxi Faormation,Sichuan Basin[J].Acta Petrolei Sinica,2015,36(12):1470-1483.
[26] MCMANU J,BERELSON W M,KLINKHAMMER G P,et al.Geochemistry of Barium in Marine Sediments:Implications for Its Use as a Paleoproxy[J].Geochimica et Cosmochimica Acta,1998,62(21/22):3453-3473.
[27] 韦恒叶.古海洋生产力与氧化还原指标:元素地球化学综述[J].沉积与特提斯地质,2012,32(2):76-88.
WEI Heng-ye.Productivity and Redox Proxies of Pa-laeo-oceans:An Overview of Elementary Geochemi-stry[J].Sedimentary Geology and Tethyan Geology,2012,32(2):76-88.
[28] 何 龙,王云鹏,陈多福,等.重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J].天然气地球科学,2019,30(2):203-218.
HE Long,WANG Yun-peng,CHEN Duo-fu,et al.Relationship Between Sedimentary Environment and Organic Matter Accumulation in the Black Shale of Wufeng-Longmaxi Formations in Nanchuan Area,Chongqing[J].Natural Gas Geoscience,2019,30(2):203-218.
[29] 邱 振,韦恒叶,刘翰林,等.异常高有机质沉积富集过程与元素地球化学特征[J].石油与天然气地质,2021,42(4):931-948.
QIU Zhen,WEI Heng-ye,LIU Han-lin,et al.Accumulation of Sediments with Extraordinary High Organic Matter Content:Insight Gained Through Geochemical Characterization of Indicative Elements[J].Oil and Gas Geology,2021,42(4):931-948.
[30] ALGEO T J,MAYNARD J B.Trace-element Beha-vior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-type Cyclothems[J].Chemical Geo-logy,2004,206(3/4):289-318.
[31] ZHENG Y,ANDERSON R F,VAN GREEN A,et al.Authigenic Molybdenum Formation in Marine Sediments:A Link to Pore Water Sulfide in the Santa Barbara Basin[J].Geochimica et Cosmochimica Acta,2000,64:4165-4178.
[32] KIMURA H,WATANABE Y.Ocean Anoxia at the Precambrian-Cambrian Boundary[J].Geology,2001,29:995-998.
[33] TRIBOVILLARD N,ALGEO T J,LYONS T,et al.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update[J].Chemical Geology,2006,232(1/2):12-32.
[34] PI D H,LIU C Q,SHIELDS-ZHOU G A,et al.Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province,South China:Constraints for Redox Environments and Origin of Metal Enrichments[J].Precambrian Research,2013,225:218-229.
[35] TAYLOR S R,MCLENNAN S M.The Continental Crust:Its Composition and Evolution[J].Oxford:Blackwell,1985.
[36] KIMURA H,WATANABE Y.Ocean Anoxia at the Precambrian-Cambrian Boundary[J].Geology,2001,29:995-998.
[37] ALGEO T J,LYONS T W.Mo-total Organic Carbon Covariation in Modern Anoxic Marine Environments:Implications for Analysis of Paleoredox and Paleohydrographic Conditions[J].Paleoceanography and Paleoclimatology,2006,21(1):PA001112.
[38] 何 庆,高 键,董 田,等.鄂西地区下寒武统牛蹄塘组页岩元素地球化学特征及沉积古环境恢复[J].沉积学报,2021,39(3):686-703.
HE Qing,GAO Jian,DONG Tian,et al.Elemental Geochemistry and Paleo-environmental Conditions of the Lower Cambrian Niutitang Shale in Western Hubei Province[J].Acta Sedimentologica Sinica,2021,39(3):686-703.
[39] CANFIELD D E.Factors Influencing Organic Carbon Preservation in Marine Sediments[J].Chemical Geo-logy,1994,114(3/4):315-329.
[40] KATZ M E,WRIGHT J D,MILLER K G,et al.Biological Overprint of the Geological Carbon Cycle[J].Manine Geology,2005,217(3/4):323-338.
[41] MARTIN J H,KNAUER G A.The Elemental Composition of Plankton[J].Geochimica et Cosmochimica Acta,1973,37(7):1639-1653.
[42] CALVERT S E,MUKHERJEE S,MORRIS R J.Trace Metals in Fulvic and Humic Acids from Modern Organic-rich Sediments[J].Oceanologica Acta,1985,8(2):167-173.
[43] BRUMSACK H J.The Inorganic Geochemistry of Cretaceous Black Shales(DSDP Leg 41)in Comparison to Modern Upwelling Sediments from the Gulf of California[J].Geological Society,London,Special Publications,1986,21:447-462.
[44] CALVERT S E,PEDERSEN T F.Geochemistry of Recent Oxic and Anoxic Marine Sediments:Implications for the Geological Record[J].Marine Geology,1993,113(1/2):67-88.
[45] RIBOULLEAN A,BAUDIN F,DECONINCK J F,et al.Depositional Conditions and Organic Matter Preservation Pathways in an Epicontinental Environment:The Upper Jurassic Kashpir Oil Shales(Volga Basin,Russia)[J].Palaeogeography,Palaeoclimato-logy,Palaeoecology,2003,197(3/4):171-197.
[46] TRIBOVILLARD N,ALGEO T J,LYONS T,et al.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update[J].Chemical Geology,2006,232(1/2):12-32.
[47] SCHOEPFER S D,SHEN J,WEI H Y,et al.Total Organic Carbon,Organic Phosphorus,and Biogenic Barium Fluxes as Proxies for Paleomarine Productivity[J].Earth-science Reviews,2015,149:23-52.
[48] DYMOND J,SUESS E,LYLE M.Barium in Deep-sea Sediment:A Geochemical Proxy for Paleoproductivity[J].Paleoceanography and Paleoclimatology,1992,7(2):163-181.
[49] BONN W J,GINGELE F X,GROBE H,et al.Palaeoproductivity at the Antarctic Continental Margin:Opal and Barium Records for the Last 400 ka[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1998,139(3/4):195-211.
[50] ALGEO T J,ROWE H.Paleoceanographic Applications of Trace-metal Concentration Data[J].Chemical Geology,2012,324/325:6-18.

相似文献/References:

[1]肖飞,包建平,朱翠山,等.柴达木盆地西部典型油田原油地球化学特征对比[J].地球科学与环境学报,2012,34(04):43.
 XIAO Fei,BAO Jian-ping,ZHU Cui-shan,et al.Comparison of the Geochemical Characteristics of Crude Oils from Typical Oilfields in Western Qaidam Basin[J].Journal of Earth Sciences and Environment,2012,34(02):43.
[2]毛龙江,郭爱鹏,杜吉净,等.湖南澧水下游表层沉积物稀土元素特征[J].地球科学与环境学报,2019,41(03):352.
 MAO Long-jiang,GUO Ai-peng,DU Ji-jing,et al.REE Characteristics of the Surface Sediments in the Lower Reaches of Lishui River, Hunan, China[J].Journal of Earth Sciences and Environment,2019,41(02):352.
[3]乔丹,时国*,任玥,等.浙江江山地区震旦系灯影组叠层石特征及沉积环境分析[J].地球科学与环境学报,2019,41(06):734.
 QIAO Dan,SHI Guo*,REN Yue,et al.Stromatolite Characteristics and Sedimentary Environment Analysis of Sinian Dengying Formation in Jiangshan Area of Zhejiang, China[J].Journal of Earth Sciences and Environment,2019,41(02):734.
[4]潘鸿迪,申 萍,李昌昊,等.新疆西天山备战铁矿床硅质岩的发现及其地质意义[J].地球科学与环境学报,2021,43(05):785.[doi:10.19814/j.jese.2021.06029]
 PAN Hong-di,SHEN Ping,LI Chang-hao,et al.Discovery and Geological Significance of Siliceous Rocks in Beizhan Iron Deposit, the Western Tianshan of Xinjiang, China[J].Journal of Earth Sciences and Environment,2021,43(02):785.[doi:10.19814/j.jese.2021.06029]
[5]张云峰,黄泓森,曾 琪,等.川西北葛底坝剖面上二叠统吴家坪组石灰岩微相[J].地球科学与环境学报,2022,44(02):287.[doi:10.19814/j.jese.2021.08007]
 ZHANG Yun-feng,HUANG Hong-sen,ZENG Qi,et al.Microfacies of Limestones from Upper Permian Wujiaping Formation at Gediba Section in the Northwestern Sichuan, Southwest China[J].Journal of Earth Sciences and Environment,2022,44(02):287.[doi:10.19814/j.jese.2021.08007]
[6]刘彦兵,刘春发*,屈海浪,等.广西大瑶山地区下泥盆统莲花山组碎屑岩地球化学特征及其对物源区和构造环境的制约[J].地球科学与环境学报,2022,44(04):641.[doi:10.19814/j.jese.2021.12052]
 LIU Yan-bing,LIU Chun-fa*,QU Hai-lang,et al.Geochemistry of Clastic Rocks from Lower Devonian Lianhuashan Formation in Dayaoshan Area of Guangxi, China: Implications for Provenance and Tectonic Setting[J].Journal of Earth Sciences and Environment,2022,44(02):641.[doi:10.19814/j.jese.2021.12052]
[7]曹光耀,刘 宇*,周小琳,等.川西南地区五峰组—龙马溪组沉积环境及有机质富集模式[J].地球科学与环境学报,2023,45(05):1227.[doi:10.19814/j.jese.2022.11040]
 CAO Guang-yao,LIU Yu*,ZHOU Xiao-lin,et al.Sedimentary Environment and Accumulation Pattern of Organic Matter in Wufeng-Longmaxi Formations in the Southwestern Sichuan, China[J].Journal of Earth Sciences and Environment,2023,45(02):1227.[doi:10.19814/j.jese.2022.11040]

备注/Memo

备注/Memo:
收稿日期:2021-10-14; 修回日期:2021-12-30投稿网址:http:∥jese.chd.edu.cn/
基金项目:中国地质调查局地质调查项目(DD20190083,DD20221662); 古生物与地质环境演化湖北省重点实验室开放基金项目(PEL-202206)
作者简介:方朝刚(1987-),男,浙江安吉人,中国地质调查局南京地质调查中心高级工程师,云南大学理学博士研究生,E-mail:fangchaogang206@163.com。
*通讯作者:章诚诚(1989-),男,安徽潜山人,工程师,理学博士,E-mail:zhangcc3614@foxmail.com。
更新日期/Last Update: 2022-04-30