|本期目录/Table of Contents|

[1]吴 中 海.活断层与工程应用Ⅰ:定义与分类[J].地球科学与环境学报,2022,44(06):922-947.[doi:10.19814/j.jese.2022.09049]
 WU Zhong-hai.Active Faults and Engineering Applications Ⅰ: Definition and Classification[J].Journal of Earth Sciences and Environment,2022,44(06):922-947.[doi:10.19814/j.jese.2022.09049]
点击复制

活断层与工程应用Ⅰ:定义与分类(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第44卷
期数:
2022年第06期
页码:
922-947
栏目:
纪念刘国昌先生诞辰110周年专辑
出版日期:
2022-11-15

文章信息/Info

Title:
Active Faults and Engineering Applications Ⅰ: Definition and Classification
文章编号:
1672-6561(2022)06-0922-26
作者:
吴 中 海123
(1. 中国地质科学院地质力学研究所,北京 100081; 2. 自然资源部活动构造与地质安全重点实验室,北京 100081; 3. 中国地质调查局新构造与地壳稳定性研究中心,北京 100081)
Author(s):
WU Zhong-hai123
(1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China; 2. Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Beijing 100081, China; 3. Research Center for Neotectonism and Crustal Stability, China Geological Survey, Beijing 100081, China)
关键词:
新构造 地表活断层 工程活断层 危险断层 能动断层 核设施 工程安全性评价
Keywords:
neotectonics surface active fault engineering active fault hazardous fault capable fault nuclear facility engineering safety assessment
分类号:
P315.2
DOI:
10.19814/j.jese.2022.09049
文献标志码:
A
摘要:
中国大陆在新构造时期发育了复杂的活断层体系,工程建设经常面临活断层灾害及其相关风险问题。采用合理的、有针对性的活断层定义和分类,有助于科学应对或防范工程建设中的活断层相关危害。通过系统梳理总结和分析相关领域的国内外研究现状与进展,以及工程领域的应用情况与存在问题等,并结合中国活动构造环境和活断层特点,针对工程应用的实际需求,形成了3点主要结论和建议。①活断层定义的本质是“在人类关心的未来断层发生活动的可能性”,建议工程领域采用“工程活断层”定义,即“在工程寿命期内(未来约100年内)可能出现地表活动或发生M≥5.0破坏性地震的断层,尤其是那些在距今约800 ka或约130 ka以来(即中更新世或晚更新世以来)多次活动的断层”,并注意区分“地表活断层”与“地震断层”和重点关注工程寿命期内相对危险的地表断层。②工程领域的活断层分类适合采用最新活动时代和活动强度方案。结合中国活动构造环境和活断层发育特点,建议在工程评价中可将场地区的断层按照活动时代区分为“历史的、晚第四纪(晚更新世和全新世两个亚类)、早—中更新世、新构造和不活动断层”5类,按照活动强度分为三大类5个级别:强、中等(包含3个亚类:中—强、中等和中—弱)和弱活动。③工程评价中需正确处理活断层的活动性与危险性关系。活动性强的断层或全新世断层并不意味着在工程寿命期内危险性高。因此,工程勘察中需对近场区及场址内的地表活断层进行危险度分级,其中的高、中危险度活断层才是工程绕避或防范的重点,而非所有活断层。
Abstract:
The engineering construction often faces the problem of active fault disasters and related risks because of the complex active fault system developed during the Neotectonic period in mainland China. The reasonable use of the definition and classification of active faults is helpful for scientific prevention of the hazards related to active faults in engineering construction. The research status and progress in domestic and overseas related fields were systematically summarized and analyzed, as well as the application situation and existing problems in engineering and other fields. Finally, combined with the active tectonic environment and the characteristics of active faults in China, three main conclusions and suggestions were formed for the actual requirements in the hazard assessment of active fault and related hazards in engineering application. ① The essence of the definition of active fault is “the possibility of fault activity in the future of human interest”. It is suggested that the definition of “engineering active fault”. “The active faults with surface faulting or M≥5.0 destructive earthquakes maybe occur during the engineering lifetime(about 100 years), especially those that have been active several times since about 800 000 years ago(since the Middle Pleistocene)or since 130 000 years ago(from the Late Pleistocene to the Holocene)”, should be adopted in the engineering field, and that engineers should be careful to distinguish between “surface active faults” and “seismic faults” and focus on the relatively dangerous surface active faults during the engineering life. ② The classification of active faults in engineering field is suitable for the latest age and active intensity scheme of fault. According to the active tectonic environment and the developed characteristics of active faults in China, it is suggested that faults in the engineering site area can be divided into five categories according to the latest age of faulting, including “historical, Late Quaternary(contains Late Pleistocene and Holocene)faults, Early-Middle Pleistocene, Neotectonic and inactive faults”; and according to the activity, the fault is divided into three categories including five levels, which are strong, moderate(contains 3 subcategories: moderate-strong, moderate and moderate-weak)and weak activity faults. ③ The relationship between the activity and risk of active faults should be properly handled in the impact assessment of active fault in engineering construction. A highly slip-rate or Holocene fault does not mean a high risk during the engineering lifetime. Therefore, the risk of surface active faults in the engineering site area should be graded, and the high and medium risk surface active faults in the engineering lifetime should be the focus of engineering circumvention or prevention.

参考文献/References:

[1] SLEMMONS D B,MCKINNEY R.Definition of ‘Active Fault'[R].Vicksburg:U.S.Army Engineer Waterways Experiment Station,1977.
[2] MACHETTE M N.Active,Capable,and Potentially Active Fault:A Paleoseismic Perspective[J].Journal of Geodynamics,2000,29(3):387-392.
[3] 吴中海.活断层的术语、研究进展及问题思考[J].地球科学与环境学报,2018,40(6):706-726.
WU Zhong-hai.Active Faults:Terminology,Research Advances,and Thinking on Some Problems[J].Journal of Earth Sciences and Environment,2018,40(6):706-726.
[4] 吴中海.活断层的定义与分类:历史、现状和进展[J].地球学报,2019,40(5):661-697.
WU Zhong-hai.The Definition and Classification of Active Faults:History,Current Status and Progress[J].Acta Geoscientica Sinica,2019,40(5):661-697.
[5] LAN H X,TIAN N M,LI L P,et al.Kinematic-based Landslide Risk Management for the Sichuan-Tibet Grid Interconnection Project(STGIP)in China[J].Engineering Geology,2022,308:106823.
[6] LAN H X,ZHANG Y X,MACCIOTTA R,et al.The Role of Discontinuities in the Susceptibility,Development,and Runout of Rock Avalanches:A Review[J].Landslides,2022,19:1391-1404.
[7] 兰恒星,彭建兵,祝艳波,等.黄河流域地质地表过程与重大灾害效应研究与展望[J].中国科学:地球科学,2022,52(2):199-221.
LAN Heng-xing,PENG Jian-bing,ZHU Yan-bo,et al.Geological and Surfacial Processes and Major Disaster Effects in the Yellow River Basin[J].Science China:Earth Sciences,2022,52(2):199-221.
[8] MOLNAR P,TAPPONNIER P.Cenozoic Tectonics of Asia:Effects of a Continental Collision [J].Science,1975,189:419-426.
[9] SELLA G F,DIXON T H,MAO A.REVEL:A Mo-del For Recent Plate Velocities from Space Geodesy[J].Journal of Geophysical Research:Solid Earth,2002,107(B4):B000033.
[10] ZHANG P Z,SHEN Z,WANG M,et al.Continuous Deformation of the Tibetan Plateau from Global Positioning System Data[J].Geology,2004,32(9):809-812.
[11] 张培震,邓起东,张竹琪,等.中国大陆的活动断裂、地震灾害及其动力过程[J].中国科学:地球科学,2013,43(10):1607-1620.
ZHANG Pei-zhen,DENG Qi-dong,ZHANG Zhu-qi,et al.Active Faults,Earthquake Hazards and Associated Geodynamic Processes in Continental China[J].Science China:Earth Sciences,2013,43(10):1607-1620.
[12] 邓起东,刘百篪,张培震,等.活动断裂工程安全评价和位错量的定量评估[M]∥邓起东.活动断裂研究(2).北京:地震出版社,1992:236-246.
DENG Qi-dong,LIU Bai-chi,ZHANG Pei-zhen,et al.Research of Active Fault in Evaluating Engineering Safety and Assessing Amount of Displacement[M]∥DENG Qi-dong.Research on Active Fault(2).Beijing:Seismological Press,1992:236-246.
[13] 李 玶,苑京立.有关活断层与工程建设的几个问题[M]∥中国地质学会.全国首届工程地质学术会议论文选集.北京:科学出版社,1983:40-44.
LI Ping,YUAN Jing-li.Active Faults and Civil Engineering Projects[M]∥Geological Society of China.Selected Papers of the First National Conference on Engineering Geology.Beijing:Science Press,1983:40-44.
[14] 李兴唐,袁登维,周继颐.长江三峡狮子口地区断层最新活动年龄及工程评价[J].地震地质,1991(1):78-86.
LI Xing-tang,YUAN Deng-wei,ZHOU Ji-yi.Dating and Engineering Evaluation of Recent Fault Activity in Shizikou Area of the Three Gorges Section of Changjiang River[J].Seismology and Geology,1991(1):78-86.
[15] 兰恒星,张 宁,李郎平,等.川藏铁路可研阶段重大工程地质风险分析[J].工程地质学报,2021,29(2),326-341.
LAN Heng-xing,ZHANG Ning,LI Lang-ping,et al.Risk Analysis of Major Engineering Geological Ha-zards for Sichuan-Tibet Railway in the Phase of Feasibility Study[J].Journal of Engineering Geology,2021,29(2):326-341.
[16] 吴中海,张岳桥,胡道功.新构造、活动构造与地震地质[J].地质通报,2014,33(4):391-402.
WU Zhong-hai,ZHANG Yue-qiao,HU Dao-gong.Neo-tectonics,Active Tectonics and Earthquake Geology[J].Geological Bulletin of China,2014,33(4):391-402.
[17] LAWSON A C.The California Earthquake of April 18,1906:Report of the State Earthquake Investigation Commission[R].Washington DC:Carnegie Institution of Washington,1908.
[18] WOOD H O.The Earthquake Problem in the Western United State [J].Bulletin of the Seismological Society of America,1916,6(4):181-217.
[19] WILLIS B.A Fault Map of California[J].Bulletin of the Seismological Society of America,1923,13(1):1-12.
[20] SHERARD J L,CLUFF L S,ALLEN C R.Potentially Active Faults in Dam Foundations[J].Géotechni-que,1974,24(3):367-428.
[21] ALLEN C R,BERGER J,MUELLER I I,et al.Ear-thquake Mechanism and Displacement Fields Close to Fault Zones:Report on the Sixth GEOP Research Conference[J].EOS,1974,55(9):836-840.
[22] ALLEN C R,ST AMAND P,RICHTER C F,et al.Relationship Between Seismicity and Geologic Structures in the Southern California Region[J].Bulletin of the Seismological Society of America,1965,55(4):753-797.
[23] MATSUDA T.Estimation of Future Destructive Ear-thquakes from Active Faults on Land in Japan[J].Journal of Physics of the Earth,1977,25(S):251-260.
[24] NSA-25-028628,Seismic and Geologic Siting Criteria for Nuclear Power Plants:Federal Register[S].
[25] NSA-27-016558,Earthquake Guidelines for Reactor Sit-ing:Technical Report Series[S].
[26] KRINITZSKY E L.State of the Art for Assessing Earthquake Hazards in the United States:Fault Assessment in Earthquake Engineering[R].Vicksburg:US Army Corps of Engineers Waterways Experiment Station,1974.
[27] 丁国瑜.中国内陆活动断裂基本特征的探讨(代前言)[M]∥中国地震学会地震地质专业委员会.中国活动断裂.北京:地震出版社,1982:1-9.
DING Guo-yu.A Discussion on the Basic Characteristics of the Active Faults in the Chinese Continent(with Preface)[M]∥Seismological Geological Specialized Committee of Seismological Society of China.The Active Faults in China.Beijing:Seismological Press,1982:1-9.
[28] GALADINI F,FALCUCCI E,GALLI P,et al.Time Intervals to Assess Active and Capable Faults for Engineering Practices in Italy[J].Engineering Geology,2012,139/140:50-65.
[29] GÜRPINAR A.Importance of Historical Earthquakes in Research in the Sitting of Nuclear Facilities[C]∥IUGG.Workshop on Historical Earthquakes in the Ibero-Maghrebian Region:Methodological Approach and Case Studies.Lisbon:IUGG,1989:15-17.
[30] WALLACE R E.Overview and Recommenations[M]∥WALLACE R E.Studies in Geophysics:Active Tectonics.Washington DC:National Academy Press,1986:3-19.
[31] YEATS R,SIEH K,ALLEN C.The Geology of Ear-thquakes[M].Oxford:Oxford University Press,1997.
[32] HANCOCK P L,WILLIAMS G D.Neotectonics[J].Journal of the Geological Society,1986,143(2):325-326.
[33] HANCOCK P L.Neotectonics[J].Geology Today,1988,4(2):57-61.
[34] CLARK D,MCPHERSON A,VAN DISSEN R.Long-term Behaviour of Australian Stable Continental Region(SCR)Faults[J].Tectonophysics,2012,566/567:1-30.
[35] CHRISTOPHERSEN A,LITCHFIELD N,BERRYMAN K,et al.Development of the Global Earthquake Model's Neotectonic Fault Database[J].Natural Ha-zards,2015,79(1):111-135.
[36] WSSPC Policy Recommendation 15-3,Definitions of Recency of Surface Faulting for the Basin and Range Province[S].
[37] HALLER K M,MACHETTE M N,DART R L,et al.U.S.Quaternary Fault and Fold Database Released[J].EOS,2004,85(22):218.
[38] BRYANT W A,HART E W.Fault-rupture Hazard Zones in California:Alquist-Priolo Earthquake Fault Zoning Act with Index to Earthquake Fault Zone Maps[R].Sacramento:California Division of Mines and Geology,2007.
[39] LUND W R,CHRISTENSON G E,BATATIAN L D,et al.Guidelines for Evaluating Surface Fault-rupture Hazards in Utah[C]∥BOWMAN S D,LUND W R.Guidelines for Investigating Geologic Hazards and Preparing Engineering-geology Reports with a Suggested Approach to Geologic-hazard Ordinances in Utah.Salt Lake City:Utah Geological Survey,2016:31-58.
[40] GB/T 36072—2018,活动断层探测[S].
GB/T 36072—2018,Surveying and Prospecting of Active Fault[S].
[41] IAEA Safety Standards Series No.SSG-9,Seismic Ha-zards In-situ Evaluation for Nuclear Installations[S].
[42] GB 17741—2005,工程场地地震安全性评价[S].
GB 17741—2005,Evaluation of Seismic Safety for Engineering Sites[S].
[43] Draft Regulatory Guide DG-1146,a Performance-based Approach to Define the Site-specific Earthquake Gro-und Motion[S].
[44] GALADINI F,MELETTI C,VITTORI E.Major Active Faults in Italy:Available Surficial Data[J].Netherlands Journal of Geosciences,2001,80(3/4):273-296.
[45] ANSI/ANS-2.27—2008,Criteria for Investigations of Nuclear Facility Sites for Seismic Hazard Assessments[S].
[46] ANSI/ANS-2.30—2015,Criteria for Assessing Tectonic Surface Fault Rupture and Deformation at Nuclear Facilities[S].
[47] 常士骠,张苏民.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2007.
CHANG Shi-biao,ZHANG Su-min.Handbook of Engineering Geology(The Fourth Edition)[M].Beijing:China Construction Industry Press,2007.
[48] JTG B02—2013,公路工程抗震规范[S].
JTG B02—2013,Specification of Seismic Design for Highway Engineering[S].
[49] GB/T 50267—97,核电厂抗震设计规范[S].
GB/T 50267—97,Code for Seismic Design of Nuclear Power Plants[S].
[50] DISS,Version 3.2.0,a Compilation of Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas[S].
[51] 李起彤.活断层及其工程评价[M].北京:地震出版社,1991.
LI Qi-tong.Active Fault and Its Engineering Evaluation[M].Beijing:Seismological Press,1991.
[52] 徐锡伟.活动断层、地震灾害与减灾对策问题[J].震灾防御技术,2006,1(1):7-14.
XU Xi-wei.Active Faults,Associated Earthquake Di-saster Distribution and Policy for Disaster Reduction[J].Technology for Earthquake Disaster Prevention,2006,1(1):7-14.
[53] WOESSNER J,LAURENTIU D,GIARDINI D,et al.The 2013 European Seismic Hazard Model:Key Components and Results[J].Bulletin of Earthquake Engineering,2015,13:3553-3596.
[54] GB 50287—2016,水力发电工程地质勘察规范[S].
GB 50287—2016,Specification for Geological Survey of Hydropower Engineering[S].
[55] GRANT L B.Paleoseismology[M]∥LEE W H K,KANAMORI H,JENNINGS P C,et al.International Handbook of Earthquake & Engineering Seismology,Part A.New York:Academic Press,2003:475-489.
[56] NEUENDORF K K E,MEHL JR J P,JACKSON J A.Glossary of Geology[M].5th ed.Alexandria:American Geosciences Institute,2011.
[57] USGS.Earthquake Glossary:Active Fault [DB/OL].(2019-05-18)[2022-09-15].http:∥earthquake.usgs.gov/learn/glossary/?term=active_fault.
[58] FRASER W A.California Division of Safety of Dams Fault Activity Guidelines:California Division of Safety of Dams,Sacramento[DB/OL].(2020-01-30)[2022-09-15].http:∥www.water.ca.gov/damsafety/docs/fault.pdf.
[59] 邓起东.中国活动构造研究的进展与展望[J].地质论评,2002,48(2):168-177.
DENG Qi-dong.Advances and Overview on Researches of Active Tectonics in China[J].Geological Review,2002,48(2):168-177.
[60] AKI K,LEE W H K.Appendix 1:Glossary of Interest to Earthquake and Engineering Seismologist[M]∥LEE W H K,KANAMORI H,JENNINGS P C,et al.International Handbook of Earthquake & Engineering Seismology,Part A.New York:Academic Pre-ss,2003:1793-1856.
[61] IAEA-TECDOC-1767,the Contribution of Palaeoseismology to Seismic Hazard Assessment In-situ Evaluation for Nuclear Installations[S].
[62] SLEMMONS D B,DEPOLO C M.Evaluation of Active Faulting and Associated Hazards[M]∥WALLACE R E.Active Tectonics.Washington DC:National Academy Press,1986:45-62.
[63] KERR J,NATHAN S,DISSEN R V,et al.Planning for Development of Land on or Close to Active Faults:A Guideline to Assist Resource Management Planners in New Zealand[R].Lower Hutt:Institute of Geological & Nuclear Sciences,2002.
[64] LANGRIDGE R M,RIES W F.Active Fault Mapping and Fault Avoidance Zones for Central Hawkes Bay District:2013 Update[R].Lower Hutt:Institute of Geological & Nuclear Sciences,2013.
[65] LANGRIDGE R M,RIES W F,LITCHFIELD N J,et al.The 1:250 000 Active Faults Database of New Zealand:Database Description and Data Dictionary[R].Lower Hutt:Institute of Geological & Nuclear Sciences,2014.
[66] MOLNAR P,ENGLAND P.Late Cenozoic Uplift of Mountain Ranges and Global Climate Change:Chicken or Egg?[J].Nature,1990,346:29-34.
[67] HARRISON T M,COPELAND P,KIDD W S F,et al.Raising Tibet[J].Science,1992,255:1663-1670.
[68] MOLNAR P,ENGLAND P,MARTINOD J.Mantle Dynamics,Uplift of the Tibetan Plateau,and the Indian Monsoon[J].Reviews of Geophysics,1993,31(4):357-396.
[69] FIELDING E J.Tibet Uplift and Erosion[J].Tectonophysics,1996,260(1/2/3):55-84.
[70] USGS.Quaternary Faults and Folds Database[DB/OL].(2020-09-21)[2022-09-15].https:∥earthquake.usgs.gov/static/lfs/nshm/qfaults/qfaults.kmz.
[71] 邓起东.中国活动构造图(1:4 000 000)[M].北京:地震出版社,2007.
DENG Qi-dong.China's Active Tectonic Map(1:4 000 000)[M].Beijing:Seismological Press,2007.
[72] 徐锡伟,韩竹军,杨晓平,等.中国及邻近地区地震构造图[M].北京:地震出版社,2016.
XU Xi-wei,HAN Zhu-jun,YANG Xiao-ping,et al.The Seismotectonic Map of China and Its Vicinity[M].Beijing:Seismological Press,2016.
[73] LITCHFIELD N,WYSS B,CHRISTOPHERSEN A,et al.Guidelines for Compilation of Neotectonic Fau-lts,Folds and Fault Sources:GEM Faulted Earth[R].Lower Hutt:Institute of Geological & Nuclear Sciences,2013.
[74] LITCHFIELD N,BERRYMAN K,THOMAS R.Data Dictionary,GEM Faulted Earth[DB/OL].(2013-06-02)[2022-09-15].http:∥www.nexus.globalquakemodel.org/gem-faulted-earth/posts/.
[75] NSA-25-028628,Seismic and Geologic Siting Criteria for Nuclear Power Plants[S].
[76] BLÉS J L,COLLEAU A,FOURNIGUET J,et al.Proposal for Classification of Fault Activity in an Intraplate Collision Setting:Definitions and Examples[J].Tectonophysics,1991,194(3):279-293.
[77] XU X,XU C,YU G,et al.Primary Surface Ruptures of the Ludian Mw 6.2 Earthquake,Southeastern Tibetan Plateau,China[J].Seismological Research Letters,2015,86(6):1622-1635.
[78] 李 康,徐锡伟,魏雷鸣,等.1668年郯城地震断层的长发震间隔与低速率证据[J].科学通报,2019,64(11):1168-1178.
LI Kang,XU Xi-wei,WEI Lei-ming,et al.Evidence of Long Recurrence Times and Low Slip Rate Along the 1668 Tancheng Earthquake Fault[J].Chinese Science Bulletin,2019,64(11):1168-1178.
[79] 王光明,吴中海,彭关灵,等.2021年5月21日漾濞Ms 6.4地震的发震断层及其破裂特征:地震序列的重定位分析结果[J].地质力学学报,2021,27(4):662-678.
WANG Guang-ming,WU Zhong-hai,PENG Guan-ling,et al.Seismogenic Fault and It's Rupture Characteristics of the 21 May,2021 Yangbi Ms 6.4 Earthquake:Analysis Results from the Relocation of the Earthquake Sequence[J].Journal of Geomechanics,2021,27(4):662-678.
[80] GB 50021—2001,岩土工程勘察规范(2009年版)[S].
GB 50021—2001,Code for Investigation of Geotechnical Engineering(2009)[S].
[81] JTG C20—2011,公路工程地质勘察规范[S].
JTG C20—2011,Code for Highway Geological Investigation[S].
[82] TB 10012—2019,铁路工程地质勘察规范[S].
TB 10012—2019,Code for Geology Investigation of Railway Engineering[S].
[83] DZ 0245—2004,建设用地地质灾害危险性评估技术要求[S].
DZ 0245—2004,Technical Requirements for Geologi-cal Hazard Assessment of Construction Land[S].
[84] 郭 慧,江娃利,谢新生.钻孔与探槽揭示1976 年河北唐山Ms 7.8 地震发震构造晚第四纪强震活动[J].中国科学:地球科学,2011,41(7):1009-1028.
GUO Hui,JIANG Wa-li,XIE Xin-sheng.Late-Quaternary Strong Earthquakes on the Seismogenic Fault of the 1976 Ms 7.8 Tangshan Earthquake,Hebei,as Revealed by Drilling and Trenching[J].Science China:Earth Sciences,2011,41(7):1009-1028.
[85] TRIFONOV V G,MACHETTE M N.The World Map of Major Active Faults Project[J].Annals of Geophysics,1993,36(3/4):225-236.
[86] TRIFONOV V G.World Map of Active Faults(Preliminary Results of Studies)[J].Quaternary International,1995,25:3-12.
[87] MACHETTE M N,PERSONIUS S F,KELSON K I,et al.Map and Data for Quaternary Faults and Folds in New Mexico[R].Reston:USGS,2000.
[88] DUMAN T Y,CAN T,ÖMER E,et al.Seismotecto-nic Database of Turkey[J].Bulletin of Earthquake Engineering,2018,16:3277-3316.
[89] BASILI R,KASTELIC V,DEMIRCIOGLU M B,et al.The European Database of Seismogenic Faults(ED-SF)Compiled in the Framework of the Project SHARE[DB/OL].(2013-03-01)[2022-09-15].http:∥diss.rm.ingv.it/share-edsf/.
[90] The Research Group for Active Faults of Japan.Active Faults in and Around Japan:The Distribution and the Degree of Activity[J].Journal of Natural Disaster Science,1980,2(2):61-99.
[91] 200万分の1活断層図編纂ワーキンググループ.200万分の1日本列島活断層図[J].活断層研究,2000,19:3-12.
The Working Group for Compilation of 1:2 000 000 Active Faults of Japan.New 1:2 000 000 Active Faults Map of Japan[J].Active Fault Research,2000,19:3-12.
[92] BECKER J,SAUNDERS W,VAN DISSEN R.Planning for the Development of Land on or Close to Active Faults:A Study of the Adoption and Use of the Active Fault Guidelines[R].Lower Hutt:Institute of Geological & Nuclear Sciences,2005.
[93] LUNINA O V,CAPUTO R,GLADKOV A A,et al.Southern East Siberia Pliocene-Quaternary Faults:Database,Analysis and Inference[J].Geoscience Fro-ntiers,2014,5(4):605-619.
[94] The Research Group for Active Faults of Japan.Maps of Active Faults in Japan with an Explanatory Text[R].Tokyo:University of Tokyo Press,1992.
[95] 国家地震局地质研究所.中华人民共和国地震构造图(1:4 000 000)及说明书[M].北京:中国地图出版社,1979.
Institute of Geology,State Seismological Bureau.The Seismotectonic Map of People's Republic of China(1:4 000 000)(Attached a Summary Instruction)[M].Beijing:China Cartographic Publishing House,1979.
[96] 吴中海,周春景.中国及毗邻海区活动断裂分布图(1:5 000 000)(附说明书)[M]∥郝爱兵,李瑞敏.中国地质环境图系.北京:地质出版社,2018:1-5.
WU Zhong-hai,ZHOU Chun-jing.Distribution Map of Active Faults in China and Its Adjacent Sea Area(1:5 000 000)(Attached Explanation)[M]∥HAO Ai-bing,LI Rui-min.Atlas Sets of Geological Environment of China.Beijing:Geological Publishing Hou-se,2018:1-5.
[97] 李兴唐.城市区域地壳稳定性评价原则[J].水文地质工程地质,1987(6):21-26.
LI Xing-tang.The Principles for Evaluating Crustal Stability in Urban Areas[J].Hydrogeology & Engineering Geology,1987(6):21-26.
[98] 李兴唐.工程活动断裂判据与对策[J].水文地质工程地质,1989(1):17-22.
LI Xing-tang.The Criterion and Countermeasure of Engineering Active Fault[J].Hydrogeology & Engineering Geology,1989(1):17-22.
[99] SHLEMON R J.A Proposed Mid-Holocene Age Definition for Hazardous Faults in California[J].Environmental & Engineering Geoscience,2010,16(1):55-64.
[100] 魏云杰,王 婷,杨成生,等.2021年云南漾濞Mw 6.4级地震的InSAR监测与反演[J].地球科学与环境学报,2022,44(3):558-567.
WEI Yun-jie,WANG Ting,YANG Cheng-sheng,et al.InSAR Monitoring and Inversion of 2021 Yangbi Mw 6.4 Earthquake in Yunnan,China[J].Journal of Earth Sciences and Environment,2022,44(3):558-567.
[101] 熊 伟,黄小龙,吴中海,等.2021年5月21日云南漾濞Ms 6.4地震震害特征及成因[J].地质通报,2022,41(8):1462-1472.
XIONG Wei,HUANG Xiao-long,WU Zhong-hai,et al.Damage Characteristics and Cause of Ms 6.4 Earthquake in Yangbi,Yunnan Province on May 21,2021 [J].Geological Bulletin of China,2022,41(8):1462-1472.
[102] GAO H,LIAO M S,LIANG X,et al.Coseismic and Postseismic Fault Kinematics of the July 22,2020,Nima(Tibet)Ms 6.6 Earthquake:Implications of the Forming Mechanism of the Active N-S-trending Grabens in Qiangtang,Tibet[J].Tectonics,2022,41(3):e2021TC006949.
[103] 刘富财,潘家伟,李海兵,等.青藏高原中部日干配错断裂第四纪活动特征及2020年7月23日西藏尼玛Mw 6.4地震发震构造分析[J].地球学报,2022,43(2):173-188.
LIU Fu-cai,PAN Jia-wei,LI Hai-bing,et al.Characteristics of Quaternary Activities Along the Riganpei Co Fault and Seismogenic Structure of the July 23,2020 Mw 6.4 Nima Earthquake,Central Tibet[J].Acta Geoscientia Sinica,2022,43(2):173-188.
[104] WU Z H,YE P S,BAROSH P J,et al.The October 6,2008 Mw 6.3 Magnitude Damxung Earthquake,Yadong-Gulu Rift,Tibet,and Implications for Present-day Crustal Deformation within Tibet[J].Journal of Asian Earth Sciences,2011,40(4):943-957.
[105] 韩 帅,吴中海,高 扬,等.2022年1月8日青海门源Ms 6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J].地质力学学报,2022,28(2):155-168.
HAN Shuai,WU Zhong-hai,GAO Yang,et al.Surface Rupture Investigation of the 2022 Menyuan Ms 6.9 Earthquake,Qinghai,China:Implications for the Fault Behavior of the Lenglongling Fault and Regional Intense Earthquake Risk[J].Journal of Geomecha-nics,2022,28(2):155-168.
[106] DEPOLO C M.The Maximum Background Earthquake for the Basin and Range Province,Western North America[J].Bulletin of the Seismological Society of America,1994,84(2):466-472.
[107] CAPUTO R,HELLY B.The Use of Distinct Disciplines to Investigate Past Earthquakes[J].Tectonophysics,2008,453(1/2/3/4):7-19.
[108] 李起彤.活断层及其工程评价[J].地球科学进展,1991,6(2):73-73.
LI Qi-tong.Active Fault and Its Engineering Evaluation[J].Advances in Earth Science,1991,6(2):73-73.
[109] RAN Y K,CHEN W S,XU X W,et al.Paleoseismic Events and Recurrence Interval Along the Beichuan-Yingxiu Fault of Longmenshan Fault Zone,Yingxiu,Sichuan,China[J].Tectonophysics,2013,584:81-90.

相似文献/References:

[1]吴中海.活断层的术语、研究进展及问题思考[J].地球科学与环境学报,2018,40(06):706.
 WU Zhong-hai.Active Faults: Terminology, Research Advances, and Thinking on Some Problems[J].Journal of Earth Sciences and Environment,2018,40(06):706.

备注/Memo

备注/Memo:
收稿日期:2022-09-18
基金项目:国家自然科学基金项目(U2002211); 中国地质调查局地质调查项目(DD20221644); 国家科技基础资源调查专项项目(2021FY100104)
作者简介:吴中海(1974-),男,北京市人,中国地质科学院地质力学研究所研究员,博士研究生导师,理学博士,E-mail:wuzhonghai@mail.cgs.gov.cn。

更新日期/Last Update: 2022-11-25