|本期目录/Table of Contents|

[1]李伊浩,占洁伟*,李振洪.黄河上游流域河道形态特征及裂点成因[J].地球科学与环境学报,2022,44(06):986-1001.[doi:10.19814/j.jese.2022.11003]
 LI Yi-hao,ZHAN Jie-wei*,LI Zhen-hong.Morphological Characteristics and Knickpoint Causes of Channels in the Upper Yellow River Basin, China[J].Journal of Earth Sciences and Environment,2022,44(06):986-1001.[doi:10.19814/j.jese.2022.11003]
点击复制

黄河上游流域河道形态特征及裂点成因(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第44卷
期数:
2022年第06期
页码:
986-1001
栏目:
纪念刘国昌先生诞辰110周年专辑
出版日期:
2022-11-15

文章信息/Info

Title:
Morphological Characteristics and Knickpoint Causes of Channels in the Upper Yellow River Basin, China
文章编号:
1672-6561(2022)06-0986-16
作者:
李伊浩12占洁伟134*李振洪123
(1. 长安大学 地质工程与测绘学院,陕西 西安 710054; 2. 长安大学 地学与卫星大数据研究中心,陕西 西安 710054; 3. 长安大学 西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054; 4. 浙江省安全工程与技术研究重点实验室,浙江 杭州 310012)
Author(s):
LI Yi-hao12 ZHAN Jie-wei134* LI Zhen-hong123
(1. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China; 2. Big Data Center for Geosciences and Satellites, Chang'an University, Xi'an 710054, Shaanxi, China; 3. Key Laboratory of Western China's Mineral Resources and Geological Engineering of Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China; 4. Key Laboratory of Safety Engineering and Technology Research of Zhejiang Province, Hangzhou 310012, Zhejiang, China)
关键词:
河流纵剖面 河流动力侵蚀模型 积分法 凹度指数 陡峭指数 裂点 构造地貌 黄河
Keywords:
river longitudinal profile stream power incision model integral method concavity index steepness index knickpoint tectonic geomorphology Yellow River
分类号:
P512; P343
DOI:
10.19814/j.jese.2022.11003
文献标志码:
A
摘要:
活动造山带的地形地貌是构造运动与气候变化相互作用的产物, 伴随着河流动力侵蚀模型发展与地形数据集精度提升,对河流开展非均衡形态的相关分析可获取丰富的构造变形、侵蚀沉积及气候变化的信息。以30 m分辨率的数字高程模型为基础,提取了黄河上游流域(两湖源区至兰州河段)的河流网络,并采用积分法分段计算出精确的河道陡峭指数,据此识别出裂点的位置,实现了对裂点的量化表征。通过对河道陡峭指数及裂点分布特征的研究,发现其与地形分布具有较大的相关性。两湖源区至若尔盖盆地河段地形较为平缓,河流纵剖面整体为上凹型且鲜有裂点发育,因而地形状态相对稳定; 而若尔盖盆地至兰州河段地形起伏度较大,河流纵剖面大多为上凸型,并且具有更大的陡峭指数与密集的裂点带,表明该区域隆升速率的差异性与侵蚀基准面的多期改变。另外,通过对研究区内裂点的成因分析,发现流域内裂点成因复杂且有较多巨型裂点,断裂活动、构造隆升、岩性差异、气候条件、地质灾害及冰川作用等均可导致河流纵剖面发生变化以及裂点产生,裂点性质、大小及河流纵剖面形态可有效反映裂点形成原因,这为进一步了解活动造山带的演化提供了思路与理论依据。
Abstract:
The topography of active orogenic zones is the result of the interaction between tectonic movements and climate change. As the most sensitive and active unit in the evolution of the landscape, rivers contain abundant information of tectonic deformation, erosion-deposition and climate change. With the development of stream power incision model(SPIM)and the improvement of the accuracy of topographic data sets, the extraction and analysis of non-equilibrium morphological information in river longitudinal profiles have become one of the vital tools in the study of the geomorphological evolution of active orogenic zones. Thus, a digital elevation model with 30 m resolution was used as the basis for extracting the channel network in the upper Yellow River basin(from Zhaling Lake and Eling Lake to Lanzhou), calculating the accurate channel steepness index using the integral method, identifying the location of knickpoints, and achieving the quantification of knickpoints. Through the analysis of channel steepness indices and the distribution of knickpoints, it is found that they are highly correlated with topographic features. For instance, the river longitudinal profiles from Zhaling Lake and Eling Lake to Ruo'erge Basin are overall upward-concave curves with few knickpoints, so the terrain of this part has a relatively stable state, whereas the river longitudinal profiles from Ruo'erge Basin to Lanzhou show upward-convex curves, so the terrain is the state of momentary change, and the greater steepness index and denser knickpoint zones indicate variability in the rate of uplift and multi-period changes in the erosional datum. In addition, it can be found that the causes of knickpoints within the basin are complex and substantial. Fracture activity, tectonic uplift, lithological differences, climatic condition, geological hazards and glaciation all lead to changes in the river longitudinal profiles and the creation of knickpoints, and the morphology of the knickpoints differs from one cause to another, which provides more ideas and theoretical basis for further understanding of the evolution of active orogenic zones.

参考文献/References:

[1] HOWARD A D,DIETRICH W E,SEIDL M A.Mo-deling Fluvial Erosion on Regional to Continental Scales[J].Journal of Geophysical Research:Solid Ear-th,1994,99(B7):13971-13986.
[2] KIRBY E,WHIPPLE K.Quantifying Differential Ro-ck-uplift Rates via Stream Profile Analysis[J].Geology,2001,29(5):415-428.
[3] CYR A J,GRANGER D E,OLIVETTI V,et al.Distinguishing Between Tectonic and Lithologic Controls on Bedrock Channel Longitudinal Profiles Using Cosmogenic 10Be Erosion Rates and Channel Steepness Index[J].Geomorphology,2014,209:27-38.
[4] ZHAN J W,CHEN J P,ZHANG W,et al.Mass Mo-vements Along a Rapidly Uplifting River Valley:An Example from the Upper Jinsha River,Southeast Margin of the Tibetan Plateau[J].Environmental Earth Sciences,2018,77(18):634.
[5] WHIPPLE K X.Bedrock Rivers and the Geomorpho-logy of Active Orogens[J].Annual Review of Earth and Planetary Sciences,2004,32:151-185.
[6] DUVALL A,KIRBY E,BURBANK D.Tectonic and Lithologic Controls on Bedrock Channel Profiles and Processes in Coastal California[J].Journal of Geophysical Research:Earth Surface,2004,109(F3):F03002.
[7] CROSBY B T,WHIPPLE K X.Knickpoint Initiation and Distribution Within Fluvial Networks:236 Waterfalls in the Waipaoa River,North Island,New Zealand[J].Geomorphology,2006,82(1/2):16-38.
[8] 张会平,张培震,樊祺诚.河流裂点的发育及其溯源迁移:以鸭绿江—望天鹅火山区为例[J].中国科学:地球科学,2011,41(11):1627-1635.
ZHANG Hui-ping,ZHANG Pei-zhen,FAN Qi-cheng.Initiation and Recession of the Fluvial Knickpoints:A Case Study from the Yalu River-Wangtian'e Volcanic Region,Northeastern China[J].Science China:Earth Sciences,2011,41(11):1627-1635.
[9] AHMED M F,ALI M Z,ROGERS J D,et al.A Study of Knickpoint Surveys and Their Likely Association with Landslides Along the Hunza River Longitudinal Profile[J].Environmental Earth Sciences,2019,78(5):176.
[10] WHIPPLE K X,TUCKER G E.Dynamics of the St-ream-power River Incision Model:Implications for Height Limits of Mountain Ranges,Landscape Response Timescales,and Research Needs[J].Journal of Geophysical Research:Solid Earth,1999,104(B8):17661-17674.
[11] WHIPPLE K X,HANCOCK G S,ANDERSON R S.River Incision into Bedrock:Mechanics and Relative Efficacy of Plucking,Abrasion,and Cavitation[J].Geological Society of America Bulletin,2000,112(3):490-503.
[12] 方文欣,王学良,王俊飞,等.深切河谷区河流陡峭指数与岩体质量的空间分布特征及其相关关系研究[J].工程地质学报,2022,30(3):720-728.
FANG Wen-xin,WANG Xue-liang,WANG Jun-fei,et al.Spatial Distribution Characteristics and Correlation Between Channel Steepness Index and Rock Mass Quality in Deep Valley Area[J].Journal of Engineering Geology,2022,30(3):720-728.
[13] ZHAN J W,YU Z Y,LV Y,et al.Rockfall Hazard Assessment in the Taihang Grand Canyon Scenic Area Integrating Regional-scale Identification of Potential Rockfall Sources[J].Remote Sensing,2022,14(13):3021.
[14] KIRBY E,WHIPPLE K X,TANG W Q,et al.Distribution of Active Rock Uplift Along the Eastern Margin of the Tibetan Plateau:Inferences from Bedrock Channel Longitudinal Profiles[J].Journal of Geophy-sical Research:Solid Earth,2003,108(B4):000861.
[15] KIRBY E,WHIPPLE K X.Expression of Active Tectonics in Erosional Landscapes[J].Journal of Structural Geology,2012,44:54-75.
[16] GOREN L,FOX M,WILLETT S D.Tectonics from Fluvial Topography Using Formal Linear Inversion:Theory and Applications to the Inyo Mountains,California[J].Journal of Geophysical Research:Earth Surface,2014,119(8):1651-1681.
[17] HURST M D,GRIEVE S W D,CLUBB F J,et al.Detection of Channel-hillslope Coupling Along a Tecto-nic Gradient[J].Earth and Planetary Science Letters,2019,522:30-39.
[18] KIRBY E,OUIMET W.Tectonic Geomorphology Al-ong the Eastern Margin of Tibet:Insights into the Pattern and Processes of Active Deformation Adjacent to the Sichuan Basin[J].Geological Society,London,Special Publications,2011,353(1):165-188.
[19] SNYDER N P,WHIPPLE K X,TUCKER G E,et al.Landscape Response to Tectonic Forcing:Digital Elevation Model Analysis of Stream Profiles in the Mendocino Triple Junction Region,Northern California[J].Geological Society of America Bulletin,2000,112(8):1250-1263.
[20] HARKINS N,KIRBY E,HEIMSATH A,et al.Tran-sient Fluvial Incision in the Headwaters of the Yellow River,Northeastern Tibet,China[J].Journal of Geophysical Research:Earth Surface,2007,112(F3):000570.
[21] SCHMIDT J L,ZEITLER P K,PAZZAGLIA F J,et al.Knickpoint Evolution on the Yarlung River:Evidence for Late Cenozoic Uplift of the Southeastern Tibetan Plateau Margin[J].Earth and Planetary Science Letters,2015,430:448-457.
[22] WANG Z Y,CUI P,YU G A,et al.Stability of Landslide Dams and Development of Knickpoints[J].Environmental Earth Sciences,2012,65(4):1067-1080.
[23] ZHANG H P,KIRBY E,PITLICK J,et al.Characterizing the Transient Geomorphic Response to Base-level Fall in the Northeastern Tibetan Plateau[J].Journal of Geophysical Research:Earth Surface,2017,122(2):546-572.
[24] ZHAO S Y,CHIGIRA M,WU X Y.Gigantic Rockslides Induced by Fluvial Incision in the Diexi Area Along the Eastern Margin of the Tibetan Plateau[J].Geomorphology,2019,338:27-42.
[25] 张会平,张培震,吴庆龙,等.循化—贵德地区黄河水系河流纵剖面形态特征及其构造意义[J].第四纪研究,2008,28(2):299-309.
ZHANG Hui-ping,ZHANG Pei-zhen,WU Qing-long,et al.Characteristics of the Huanghe River Longitudinal Profiles Around Xunhua-Guide Area(NE Ti-bet)and Their Tectonic Significance[J].Quaternary Sciences,2008,28(2):299-309.
[26] 胡小飞,潘保田,KIRBY E,等.河道陡峭指数所反映的祁连山北翼抬升速率的东西差异[J].科学通报,2010,55(23):2329-2338.
HU Xiao-fei,PAN Bao-tian,KIRBY E,et al.Spatial Differences in Rock Uplift Rates Inferred from Channel Steepness Indices Along the Northern Flank of the Qilian Mountain,Northeast Tibetan Plateau[J].Chinese Science Bulletin,2010,55(23):2329-2338.
[27] GAO M X,ZEILINGER G,XU X W,et al.DEM and GIS Analysis of Geomorphic Indices for Evaluating Recent Uplift of the Northeastern Margin of the Tibetan Plateau,China[J].Geomorphology,2013,190:61-72.
[28] NICOLL T,BRIERLEY G,YU G A.A Broad Overview of Landscape Diversity of the Yellow River Source Zone[J].Journal of Geographical Sciences,2013,23(5):793-816.
[29] 陈 苗,胡小飞,王 维.走廊南山河流纵剖面高海拔裂点的成因[J].地理学报,2018,73(9):1702-1713.
CHEN Miao,HU Xiao-fei,WANG Wei.The Cause of High-altitude Knickpoints on River Longitudinal Profiles Along the Zoulang Nan Shan[J].Acta Geograp-hica Sinica,2018,73(9):1702-1713.
[30] GUO X H,WEI J C,LU Y D,et al.Geomorphic Ef-fects of a Dammed Pleistocene Lake Formed by Landslides Along the Upper Yellow River[J].Water,2020,12(5):1350-1365.
[31] 刘 雅.晚第四纪玛曲黄河裂点与瞬态地貌过程[D].南京:南京大学,2021.
LIU Ya.Knickpoint and Related Transient Fluvial During Late Quaternary in the Headwaters of the Yellow River,NE Tibetan Plateau[D].Nanjing:Nanjing University,2021.
[32] LIU Y,WANG X Y,SU Q,et al.Late Quaternary Terrace Formation from Knickpoint Propagation in the Headwaters of the Yellow River,NE Tibetan Pla-teau[J].Earth Surface Processes and Landforms,2021,46(14):2788-2806.
[33] 李正晨,王先彦,于 洋,等.岩性和侵蚀基准面对构造活跃区河流地貌演化的影响:以青藏高原东北缘老虎山和哈思山地区为例[J].中国科学:地球科学,2021,51(6):994-1008.
LI Zheng-chen,WANG Xian-yan,YU Yang,et al.The Impacts of Base Level and Lithology on Fluvial Geomorphic Evolution at the Tectonically Active Laohu and Hasi Mountains,Northeastern Tibetan Plateau[J].Science China:Earth Sciences,2021,51(6):994-1008.
[34] WOBUS C,WHIPPLE K X,KIRBY E,et al.Tecto-nics from Topography:Procedures,Promise,and Pitfalls[J].Geological Society of America Special Papers,2006,398(12):55-74.
[35] PERRON J T,ROYDEN L.An Integral Approach to Bedrock River Profile Analysis[J].Earth Surface Processes and Landforms,2013,38(6):570-576.
[36] MUDD S M,CLUBB F J,GAILLETON B,et al.How Concave Are River Channels?[J].Earth Surface Dynamics,2018,6(2):505-523.
[37] HERGARTEN S,ROBL J,STÜWE K.Tectonic Geomorphology at Small Catchment Sizes:Extensions of the Stream-power Approach and the χ Method[J].Earth Surface Dynamics,2016,4(1):1-9.
[38] MUDD S M,ATTAL M,MILODOWSKI D T,et al.A Statistical Framework to Quantify Spatial Variation in Channel Gradients Using the Integral Method of Channel Profile Analysis[J].Journal of Geophysical Research:Earth Surface,2014,119(2):138-152.
[39] 吴环环.黄河共和—贵德段河流阶地演化及其构造意义[D].北京:中国地质科学院,2017.
WU Huan-huan.The Evolution and Tectonic Meaning of Yellow River Terraces from Gonghe to Guide[D].Beijing:Chinese Academy of Geological Sciences,2017.
[40] 徐宗学,张 楠.黄河流域近50年降水变化趋势分析[J].地理研究,2006,25(1):27-34.
XU Zong-xue,ZHANG Nan.Long-term Trend of Precipitation in the Yellow River Basin During the Past 50 Years[J].Geographical Research,2006,25(1):27-34.
[41] 黄 翀,刘高焕,王新功,等.黄河流域湿地格局特征、控制因素与保护[J].地理研究,2012,31(10):1764-1774.
HUANG Chong,LIU Gao-huan,WANG Xin-gong,et al.Monitoring Wetlands Pattern in the Yellow Ri-ver Basin for Water Resources Management Using Beijing-1 Images[J].Geographical Research,2012,31(10):1764-1774.
[42] 李传友.青藏高原东北部几条主要断裂带的定量研究[D].北京:中国地震局地质研究所,2005.
LI Chuan-you.Quantitative Studies on Major Active Fault Zones in Northeastern Qinghai-Tibet Plateau[D].Beijing:Institute of Geology,China Earthquake Administration,2005.
[43] 周 保,彭建兵,张 骏.青海省活动断裂带分布发育特征研究[J].工程地质学报,2009,17(5):612-618.
ZHOU Bao,PENG Jian-bing,ZHANG Jun.Development and Distribution Patterns of Active Fault Zones in Qinghai Province[J].Journal of Engineering Geology,2009,17(5):612-618.
[44] 李维东.黄河上游晚新生代沉积物的物源分析与河流演化[D].北京:中国地质科学院,2020.
LI Wei-dong.Provenance Analysis of the Late Cenozoic Sediment of the Upper Yellow River and Its Evolution[D].Beijing:Chinese Academy of Geological Sciences,2020.
[45] 庞健峰,丁孝忠,韩坤英,等.1:1 000 000中华人民共和国数字地质图空间数据库[J].中国地质,2017,44(增1):8-18,125.
PANG Jian-feng,DING Xiao-zhong,HAN Kun-ying,et al.The National 1:1 000 000 Geological Map Spatial Database[J].Geology in China,2017,44(S1):8-18,125.
[46] 彭建兵,兰恒星,钱 会,等.宜居黄河科学构想[J].工程地质学报,2020,28(2):189-201.
PENG Jian-bing,LAN Heng-xing,QIAN Hui,et al.Scientific Research Framework of Livable Yellow Ri-ver[J].Journal of Engineering Geology,2020,28(2):189-201.
[47] 兰恒星,祝艳波,李郎平,等.黄河流域地质-地貌-气候多过程相互作用及其孕灾机制研究[J].中国科学基金,2021,35(4):510-519.
LAN Heng-xing,ZHU Yan-bo,LI Lang-ping,et al.Research on Multi Process Interaction of Geology,Geomorphology and Climate in the Yellow River Basin and Its Gestation Mechanisms on Major Disasters[J].Bulletin of National Natural Science Foundation of China,2021,35(4):510-519.
[48] HOWARD A D,KERBY G.Channel Changes in Badlands[J].Geological Society of America Bulletin,1983,94(6):739-752.
[49] LAGUE D.The Stream Power River Incision Model:Evidence,Theory and Beyond[J].Earth Surface Pro-cesses and Landforms,2014,39(1):38-61.
[50] 毕丽思,何宏林,徐岳仁,等.山西霍山山前断裂冲沟S-A双对数图、凹曲指数与陡峭指数的构造响应特征[J].地震地质,2017,39(6):1158-1172.
BI Li-si,HE Hong-lin,XU Yue-ren,et al.Responses of the S-A Double-log Graph,Concavity Index and Steepness Index of Channels to the Tectonic Movement of the Huoshan Piedmont Fault[J].Seismology and Geology,2017,39(6):1158-1172.
[51] ROYDEN L,TAYLOR PERRON J.Solutions of the Stream Power Equation and Application to the Evolution of River Longitudinal Profiles[J].Journal of Geophysical Research:Earth Surface,2013,118(2):497-518.
[52] KORUP O,MONTGOMERY D R,HEWITT K.Glacier and Landslide Feedbacks to Topographic Relief in the Himalayan Syntaxes[J].PNAS,2010,107(12):5317-5322.
[53] 王乃瑞,韩志勇,李徐生,等.河流纵剖面陡峭指数对庐山构造抬升的指示[J].地理学报,2015,70(9):1516-1525.
WANG Nai-rui,HAN Zhi-yong,LI Xu-sheng,et al.Tectonic Uplift of Mt.Lushan Indicated by the Steepness Indices of the River Longitudinal Profiles[J].Acta Geographica Sinica,2015,70(9):1516-1525.
[54] 刘 譞,林 舟,丁 超.岷江上游流域裂点分布及成因分析[J].高校地质学报,2020,26(3):339-349.
LIU Xuan,LIN Zhou,DING Chao.Distribution and Causes of Knickpoints in the Upper Reaches of Minjiang River[J].Geological Journal of China Universities,2020,26(3):339-349.
[55] O'CALLAGHAN J F,MARK D M.The Extraction of Drainage Networks from Digital Elevation Data[J].Computer Vision,Graphics and Image Processing,1984,28(3):323-344.
[56] 周 保.黄河上游(拉干峡—寺沟峡段)特大型滑坡发育特征与群发机理研究[D].西安:长安大学,2010.
ZHOU Bao.Research on Development Characteristic and Mass Mechanism of Superlarge Landslide in the Upper Yellow River[D].Xi'an:Chang'an University,2010.
[57] 李小林,郭小花,李万花.黄河上游龙羊峡—刘家峡河段巨型滑坡形成机理分析[J].工程地质学报,2011,19(4):516-529.
LI Xiao-lin,GUO Xiao-hua,LI Wan-hua.Mechanism of Giant Landslides from Longyangxia Valley to Liujiaxia Valley Along Upper Yellow River[J].Journal of Engineering Geology,2011,19(4):516-529.
[58] VANACKER V,VON BLANCKENBURG F,GOVERS G,et al.Transient River Response,Captured by Channel Steepness and Its Concavity[J].Geomorphology,2015,228:234-243.
[59] 莫钦鸿.拉加峡谷段黄河形成发育与流域地貌演化研究[D].兰州:兰州大学,2022.
MO Qin-hong.The Study on the Formation and Geomorphic Evolution of the Yellow River Along the Lajia Gorge[D].Lanzhou:Lanzhou University,2022.
[60] WHIPPLE K X.The Influence of Climate on the Tectonic Evolution of Mountain Belts[J].Nature Geoscience,2009,2(2):97-104.
[61] DIBIASE R A,WHIPPLE K X,HEIMSATH A M,et al.Landscape Form and Millennial Erosion Rates in the San Gabriel Mountains,CA[J].Earth and Planetary Science Letters,2010,289(1/2):134-144.
[62] DEVRANI R,SINGH V,MUDD S M,et al.Prediction of Flash Flood Hazard Impact from Himalayan River Profiles[J].Geophysical Research Letters,2015,42(14):5888-5894.
[63] 徐 江,王兆印.阶梯-深潭的形成及作用机理[J].水利学报,2004,35(10):48-55.
XU Jiang,WANG Zhao-yin.Formation and Mechanism of Step-pool System[J].Journal of Hydraulic Engineering,2004,35(10):48-55.
[64] 王兆印,程东升,何易平,等.西南山区河流阶梯-深潭系统的生态学作用[J].地球科学进展,2006,21(4):409-416.
WANG Zhao-yin,CHENG Dong-sheng,HE Yi-ping,et al.A Study of the Ecological Functions of Step-pool System in Southwest Mountain Streams[J].Advances in Earth Science,2006,21(4):409-416.
[65] ANDERSON R S,MOLNAR P,KESSLER M A.Features of Glacial Valley Profiles Simply Explained[J].Journal of Geophysical Research:Earth Surface,2006,111(F1):000344.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-11-01
基金项目:浙江省安全工程与技术研究重点实验室开放基金项目(202105); 国家自然科学基金项目(42007269); 陕西省科技创新团队项目(2021TD-51); 陕西省地学大数据与地质灾害防治创新团队项目(2022); 博士后创新人才支持计划项目(BX20200286)
作者简介:李伊浩(1999-),男,河南洛阳人,工学硕士研究生,E-mail:2020126015@chd.edu.cn。
*通讯作者:占洁伟(1990-),男,江西上饶人,长安大学副教授,工学博士,E-mail:zhanjw@chd.edu.cn。

更新日期/Last Update: 2022-11-25