|本期目录/Table of Contents|

[1]董文川,张 文*,李腾跃,等.高陡岩质斜坡坡表实景模型构建与岩体结构面自动解译方法及平台研发[J].地球科学与环境学报,2022,44(06):1066-1082.[doi:10.19814/j.jese.2022.10053]
 DONG Wen-chuan,ZHANG Wen*,LI Teng-yue,et al.Construction of 3D Real Scene Model of High-steep Rock Slope Surface and Development of Automatic Interpretation Method and Platform of Rock Mass Discontinuous[J].Journal of Earth Sciences and Environment,2022,44(06):1066-1082.[doi:10.19814/j.jese.2022.10053]
点击复制

高陡岩质斜坡坡表实景模型构建与岩体结构面自动解译方法及平台研发(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第44卷
期数:
2022年第06期
页码:
1066-1082
栏目:
纪念刘国昌先生诞辰110周年专辑
出版日期:
2022-11-15

文章信息/Info

Title:
Construction of 3D Real Scene Model of High-steep Rock Slope Surface and Development of Automatic Interpretation Method and Platform of Rock Mass Discontinuous
文章编号:
1672-6561(2022)06-1066-17
作者:
董文川张 文*李腾跃陈俊淇王 佳李万堃尹 韩赵潇涵蓝 升潘晓娟
(吉林大学 建设工程学院,吉林 长春 130026)
Author(s):
DONG Wen-chuan ZHANG Wen* LI Teng-yue CHEN Jun-qi WANG Jia LI Wan-kun YIN Han ZHAO Xiao-han LAN Sheng PAN Xiao-juan
(College of Construction Engineering, Jilin University, Changchun 130026, Jilin, China)
关键词:
工程地质 岩体结构面 多角度贴近摄影 尖点突变 三维实景模型 三维点云模型 自动解译 西藏
Keywords:
engineering geology structural plane of rock mass multi-angle nap-of-the-object photogrammetry cusp mutation 3D real scene model 3D point cloud model automatic interpretation Tibet
分类号:
TU45; TP391.4
DOI:
10.19814/j.jese.2022.10053
文献标志码:
A
摘要:
对于高陡岩质斜坡而言,三维实景建模精度较低且自动解译困难。提出一种基于无人机多角度贴近摄影测量技术的高精度三维实景模型构建方法,实现毫米级三维实景模型的构建,为后续结构面的精细解译提供数据支撑。同时,将突变理论运用到由实景模型生成的三维岩体结构面点云检测中,通过在尖点突变模型中判断点云物理信息是否处于突变状态,实现结构面的自动识别,简化了传统算法需要输入大量参数的过程。在此基础上,开发了岩体结构面自动解译(ARFD-RMS)平台,实现了岩体结构面识别与解译过程的自动化和可视化。利用上述方法,以西藏昌都地区色曲特大桥北岸高陡岩质斜坡为实验对象,构建出毫米级三维实景模型,识别并解译出斜坡中结构面明显出露区域的659条裂隙,并通过与人工罗盘测量的结构面数据对比,自动解译结果的误差在6°以内,验证了算法的准确性。此外,通过开源点云数据集测试了ARFD-RMS平台的适用性,结果表明该平台能胜任不同地区的结构面解译任务。
Abstract:
The 3D modeling accuracy of high-steep rock slopes is low, and the automatic interpretation of surface rock mass is difficult. A high-precision 3D real scene model construction method based on UAV multi-angle nap-of-the-object photogrammetry technology was proposed, which realized the construction of millimeter 3D real scence model and provided data support for the subsequent fine interpretation of structural planes. At the same time, the mutation theory was applied to the 3D point cloud model generated by the 3D real scene model. By judging whether the physical information of the point cloud is in the mutation state in the cusp mutation model, the automatic identification of discontinuities is realized, which simplifies the process of traditional algorithm requiring input of a large number of parameters. On this basis, the automatic rock discontinuity interpretation and identification(ARFD-RMS)platform is developed to realize the automation and visualization of the rock discontinuity identification and interpretation process. Using the above methods, the high-steep rock slope on the northern bank of Sequ grand bridge in Changdu area of Tibet was taken as the research object, and a 3D real scene model of millimeter scale was constructed, which identified and interpreted 659 fractures in the slope where the structural plane was obviously exposed. Compared with manual measurement data, the error of interpretation results is within 6°. In addition, the applicability of the ARFD-RMS platform is tested through open source point cloud datasets, and the results show that the platform is competent for interpretation of structural plane in different regions.

参考文献/References:

[1] 许 强,董秀军,李为乐.基于天-空-地一体化的重大地质灾害隐患早期识别与监测预[J].武汉大学学报(信息科学版),2019,44(7):957-966.
XU Qiang,DONG Xiu-jun,LI Wei-le.Integrated Spa-ce-air-ground Early Detection Monitoring and Warning System for Potential Catastrophic Geohazards[J].Geomatics and Information Science of Wuhan University,2019,44(7):957-966.
[2] 梁 峰.基于遥感技术与深度学习的四川高陡山区典型地质灾害识别[D].成都:成都理工大学,2021.
LIANG Feng.The Identification of Typical Geoha-zards in Sichuan Steep Mountainous Based on Remote Sensing Technology and Deep Learning Technology[D].Chengdu:Chengdu University of Technology,2021.
[3] 李秀珍,钟 卫,张小刚,等.川藏交通廊道滑坡崩塌灾害对道路工程的危害方式分析[J].工程地质学报,2017,25(5):1245-1251.
LI Xiu-zhen,ZHONG Wei,ZHANG Xiao-gang,et al.Hazard Ways of Landslides and Avalanches on Road Engineering in Sichuan-Tibet Traffic Corridor[J].Journal of Engineering Geology,2017,25(5):1245-1251.
[4] 刘 铮,李 滨,贺 凯,等.地震作用下高陡岩质斜坡动力响应规律研究[J].地质力学学报,2020,26(1):115-124.
LIU Zheng,LI Bin,HE Kai,et al.Research of Dyna-mic Response Patterns of High Steep Rock Slope Under Earthquake Effects[J].Journal of Geomechanics,2020,26(1):115-124.
[5] 孙 琦,张 文,赵云鹏,等.高陡岩质斜坡结构面的无人机贴近采集与粗糙度分析[J].工程地质学报,2021,29(5):1460-1468.
SUN Qi,ZHANG Wen,ZHAO Yun-peng,et al.Nap-of-the-object for Collecting Structure Surface and Roughness Analysis of High-steep Rock Slopes[J].Journal of Engineering Geology,2021,29(5):1460-1468.
[6] 刘 文,王 猛,朱赛楠,等.基于光学遥感技术的高山极高山区高位地质灾害链式特征分析:以金沙江上游典型堵江滑坡为例[J].中国地质灾害与防治学报,2021,32(5):29-39.
LIU Wen,WANG Meng,ZHU Sai-nan,et al.An Analysis on Chain Characteristics of Highstand Geological Disasters in High Mountains and Extremely High Mountains Based on Optical Remote Sensing Technology:A Case Study of Representative Large Landslides in Upper Reach of Jinsha River[J].The Chinese Journal of Geological Hazard and Control,2021,32(5):29-39.
[7] ZHANG W,ZHAO X H,PAN X J,et al.Characteri-zation of High and Steep Slopes and 3D Rockfall Statistical Kinematic Analysis for Kangyuqu Area,China[J].Engineering Geology,2022,308:106807.
[8] 黄润秋.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社,2004.
HUANG Run-qiu.Fine Description of Complex Rock Mass Structure and Its Engineering Application[M].Beijing:Science Press,2004.
[9] 董 杉.地震荷载作用下顺层岩质斜坡结构面剪切特性及形变位移计算方法研究[D].成都:成都理工大学,2020.
DONG Shan.Research on Structural Plane Shear Cha-racteristics and Deformation Displacement Calculation Method of Bedding Rock Slope Under Seismic Load[D].Chengdu:Chengdu University of Technology,2020.
[10] GUO J T,LIU S J,ZHANG P N,et al.Towards Se-mi-automatic Rock Mass Discontinuity Orientation and Set Analysis from 3D Point Clouds[J].Compu-ters & Geosciences,2017,103:164-172.
[11] ZHANG W,WANG J,LOU J Q,et al.Simplified 3D Modelling Method and Its Uncertainty Analysis for Adit Fractures Collected Within Short Sampling Windows[J].Quarterly Journal of Engineering Geology and Hydrogeology,2021,54(4):2020096.
[12] NIE Z B,CHEN J P,ZHANG W,et al.A New Method for Three-dimensional Fracture Network Modelling for Trace Data Collected in a Large Sampling Window[J].Rock Mechanics and Rock Engineering,2020,53(3):1145-1161.
[13] 张 文,韩 博,孙昊林,等.高陡岩质斜坡的结构面非接触式采集技术与三维裂隙网络模拟研究[J].工程地质学报,2020,28(2):221-231.
ZHANG Wen,HAN Bo,SUN Hao-lin,et al.Non-contact Collection and 3D Fracture Network Modelling for High-steep Rock Slopes[J].Journal of Engineering Geology,2020,28(2):221-231.
[14] WU H Y,XU X M,ZHENG F L,et al.Gully Morphological Characteristics in the Loess Hilly-gully Region Based on 3D Laser Scanning Technique[J].Earth Surface Processes and Landforms,2018,43(8):1701-1710.
[15] 符 锐.高陡裂隙岩质斜坡结构面非接触式测量与稳定性分析研究[D].长春:吉林大学,2022.
FU Rui.Research on Non-contact Measurement of Discontinuities and Stability of High and Steep Fractured Rock Slope[D].Changchun:Jilin University,2022.
[16] MARIJAN C,DANIJELA J K,KOVACEVIC M S.Application of Unmanned Aerial Vehicle for Landslide Mapping[C]∥PAAR R,MARENDIC A,ZRINJSKI M,et al.Proceedings of the International Symposiun on Engineering Geodesy.Zagreb:Croatian Geo-detic Society,2016:549-559.
[17] NIETHAMMER U,JAMES M R,ROTHMUND S,et al.UAV-based Remote Sensing of the Super-Sauze Landslide:Evaluation and Results[J].Engineering Geology,2012,128:2-11.
[18] 贾曙光,金爱兵,赵怡晴.无人机摄影测量在高陡边坡地质调查中的应用[J].岩土力学,2018,39(3):1130-1136.
JIA Shu-guang,JIN Ai-bing,ZHAO Yi-qing.Application of UAV Oblique Photogrammetry in the Field of Geology Survey at the High and Steep Slope[J].Rock and Soil Mechanics,2018,39(3):1130-1136.
[19] 何旷宇.基于无人机贴近摄影高陡边坡岩体表面信息识别方法[D].长沙:湖南大学,2021.
HE Kuang-yu.Study of Rock Mass Surface Information Identification in High Steep Slopes Based on Nap-of-the-object Photography[D].Changsha:Hunan Uni-versity,2021.
[20] 董秀军.三维激光扫描技术及其工程应用研究[D].成都:成都理工大学,2007.
DONG Xiu-jun.The Three-dimensional Laser Scanning Technique and Research on Its Engineering Application[D].Chengdu:Chengdu University of Technology,2007.
[21] MAERZ N H,YOUSSEF A M,OTOO J N,et al.A Simple Method for Measuring Discontinuity Orientations from Terrestrial Lidar Data[J].Environmental & Engineering Geoscience,2013,19(2):185-194.
[22] RIQUELME A J,ABELLÁN A,TOMÁS R,et al.A New Approach for Semi-automatic Rock Mass Joints Re-cognition from 3D Point Clouds[J].Computers & Geosciences,2014,68:38-52.
[23] CHEN J Q,ZHU H H,LI X J.Automatic Extraction of Discontinuity Orientation from Rock Mass Surface 3D Point Cloud[J].Computers & Geosciences,2016,95:18-31.
[24] 葛云峰,夏 丁,唐辉明,等.基于三维激光扫描技术的岩体结构面智能识别与信息提取[J].岩石力学与工程学报,2017,36(12):3050-3061.
GE Yun-feng,XIA Ding,TANG Hui-ming,et al.Intelligent Identification and Extraction of Geometric Properties of Rock Discontinuities Based on Terrestrial Laser Scanning[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(12):3050-3061.
[25] 陈 娜,蔡小明,夏金梧,等.基于三维激光点云技术的岩体结构面智能解译[J].地球科学,2021,46(7):2351-2361.
CHEN Na,CAI Xiao-ming,XIA Jin-wu,et al.Intelligent Interpretation of Rock Mass Discontinuity Based on Three-dimensional Laser Point Cloud[J].Earth Science,2021,46(7):2351-2361.
[26] 李 胜,熊自明,刘一鸣,等.基于改进DBSCAN算法的岩体结构面智能识别方法[J].隧道与地下工程灾害防治,2022,4(2):49-58.
LI Sheng,XIONG Zi-ming,LIU Yi-ming,et al.Intelligent Identification of Rock Discontinuities Based on an Improved DBSCAN Algorithm[J].Hazard Control in Tunnelling and Underground Engineering,2022,4(2):49-58.
[27] 王凯奇,方 军,王振霖,等.交叉环绕航线下的城市级复杂建筑物实景三维建模[J].测绘通报,2022(9):80-85.
WANG Kai-qi,FANG Jun,WANG Zhen-lin,et al.3D Modeling of City-level Complex Buildings Based on Cross-around Route[J].Bulletin of Surveying and Mapping,2022(9):80-85.
[28] 周 吕,李青逊,权 菲,等.基于无人机倾斜摄影测量三维建模及精度评价[J].水力发电,2020,46(4):41-45,50.
ZHOU Lu,LI Qing-xun,QUAN Fei,et al.3D Model and Accuracy Evaluation of Tilt Photogrammetry Based on UAV[J].Water Power,2020,46(4):41-45,50.
[29] 张倬元,王士天.工程地质分析原理[M].北京:地质出版社,1981.
ZHANG Zhuo-yuan,WANG Shi-tian.Analysis Principle of Engineering Geology [M].Beijing:Geological Publishing House,1981.
[30] STEWART I.Catastrophe Theory in Physics[J].Reports on Progress in Physics,1982,45(2):185-221.
[31] KONG D H,WU F Q,SAROGLOU C.Automatic Identification and Characterization of Discontinuities in Rock Masses from 3D Point Clouds[J].Engineering Geology,2020,265:105442.
[32] 金少华,徐 勇,程俊明.矩阵分解的应用浅述[J].数学学习与研究,2020(25):146-148.
JIN Shao-hua,XU Yong,CHENG Jun-ming.Application of Matrix Decomposition[J].Mathematics Learning and Research,2020(25):146-148.
[33] 许 扬,张 文,符 锐,等.基于混合聚类的岩体结构面优势分组方法[J].世界地质,2020,39(1):113-120.
XU Yang,ZHANG Wen,FU Rui,et al.Dominant Partitioning Method of Rock Mass Discontinuities Based on Hybrid Clustering[J].Global Geology,2020,39(1):113-120.
[34] LATO M,KEMENY J,HARRAP R M,et al.Rock Bench:Establishing a Common Repository and Standards for Assessing Rockmass Characteristics Using LiDAR and Photogrammetry[J].Computers & Geosciences,2013,50:106-114.

相似文献/References:

[1]贾超,张国荣,王嘉斌,等.地下水开采诱发地面沉降研究及其工程应用:以山东德州地区为例[J].地球科学与环境学报,2015,37(04):102.
 JIA Chao,ZHANG Guo-rong,WANG Jia-bin,et al.Study on Land Subsidence Induced by Groundwater Extraction and Its Engineering Application: Taking Dezhou Area of Shandong as an Example[J].Journal of Earth Sciences and Environment,2015,37(06):102.
[2]曹丽文,桑树勋,姜振泉,等.垃圾卫生填埋衬垫系统工程 地质研究的若干进展与问题[J].地球科学与环境学报,2006,28(01):96.
 CAO Li-wen,SANG Shu-xun,JIANG Zhen-quan,et al.Developments and Problems about Engineering Geological Research of Liner System for Sanitary Landfill of SolidWaste[J].Journal of Earth Sciences and Environment,2006,28(06):96.
[3]李萍,薛振年,王治军,等.陇东地区黄土工程地质特征[J].地球科学与环境学报,2004,26(02):59.
 LI Ping,XUE Zhen-nian,WANG Zhi-jun,et al.Loess engineering geological characteristics of eastern Gansu province , China[J].Journal of Earth Sciences and Environment,2004,26(06):59.
[4]陈红旗,彭建兵.区域地震稳定性的区域地震动力学评价[J].地球科学与环境学报,2004,26(04):58.
 CHEN Hong-qi,PENG Jian-bing.Exercising regional seismic dynamics to estimate seismic stability[J].Journal of Earth Sciences and Environment,2004,26(06):58.

备注/Memo

备注/Memo:
收稿日期:2022-10-25
基金项目:国家自然科学基金项目(42022053,41877220); 国家重点研发计划青年科学家项目(2022YFC3080200)
作者简介:董文川(1999-),男,四川巴中人,工学硕士研究生,E-mail:1036871498@qq.com。
*通讯作者:张 文(1985-),男,山东临沂人,教授,博士研究生导师,工学博士,E-mail:zhang_wen@jlu.edu.cn。

更新日期/Last Update: 2022-11-25