|本期目录/Table of Contents|

[1]郭 斐,李佰瀚,张治宇,等.利用GNSS反射信号监测海面高度变化——基于法国BRST站2019~2021年数据[J].地球科学与环境学报,2023,45(03):548-558.[doi:10.19814/j.jese.2023.01018]
 GUO Fei,LI Bai-han,ZHANG Zhi-yu,et al.Change of Sea Surface Height Monitored by GNSS Reflected Signals—Based on Data from BRST Station in France from 2019 to 2021[J].Journal of Earth Sciences and Environment,2023,45(03):548-558.[doi:10.19814/j.jese.2023.01018]
点击复制

利用GNSS反射信号监测海面高度变化——基于法国BRST站2019~2021年数据(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第45卷
期数:
2023年第03期
页码:
548-558
栏目:
大地测量、遥感与地学大数据
出版日期:
2023-05-15

文章信息/Info

Title:
Change of Sea Surface Height Monitored by GNSS Reflected Signals—Based on Data from BRST Station in France from 2019 to 2021
文章编号:
1672-6561(2023)03-0548-11
作者:
郭 斐李佰瀚张治宇刘万科*
(武汉大学 测绘学院,湖北 武汉 430079)
Author(s):
GUO Fei LI Bai-han ZHANG Zhi-yu LIU Wan-ke*
(School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, Hubei, China)
关键词:
GNSS反射测量 海面高度 海平面变化 信噪比 反射信号 动态潮位改正 分潮提取 遥感
Keywords:
GNSS reflectometry sea surface height sea level change signal-to-noise ratio reflected signal dynamic tide level correction tidal constituent extraction remote sensing
分类号:
P228
DOI:
10.19814/j.jese.2023.01018
文献标志码:
A
摘要:
GNSS反射测量(GNSS-R)技术凭借其数据来源广泛、低成本、高时空分辨率等优势,在地表与海洋环境监测等方面展现巨大潜力,已成为海面高度(SSH)反演的重要技术途径。现有研究大多聚焦于3~6个月内的短期GPS潮位反演,难以反映海面高度的季节性变化及年际特征,且在动态海面改正时仅考虑了垂向速度的影响,忽视了海面波动的垂向加速度,导致低潮位与高潮位的反演精度较差。基于此,以法国某一岸基跟踪站——BRST站为例,利用其连续3年的BDS/GPS/GLONASS/Galileo四系统反射信号,通过Lomb-Scargle谱分析和二阶动态潮位改正模型,采取稳健回归策略反演海面高度,并将最终结果与验潮站观测值进行对比,分析潮位变化趋势。结果表明:GNSS-R技术反演结果与验潮站观测值具有较好的一致性,反演精度有逐年提升的趋势,均方根误差(RMSE)为7.57 cm,相关系数为0.935; 海面高度的季节性变化特征明显,秋、冬季平均海面高度偏高,夏季平均海面高度偏低,且海面高度的季节性变化与温度的季节性变化存在着相反的趋势; M2、S2、K1、O1、N2、K2、P1、Q1、M4等9个分潮的振幅差为0.06~6.76 cm,其平均绝对误差(MAE)为1.60 cm,迟角差为0.03°~6.96°,其平均绝对误差为2.45°,在频域上进一步验证了GNSS-R技术监测海面高度变化的可靠性。
Abstract:
Global navigation satellite system reflectometry(GNSS-R)has shown great potential in surface and marine environment parameters monitoring, with the advantages of extensive data sources, low cost, high spatial and temporal resolution, and has become an important approach for sea surface height(SSH)inversion. The existing research mainly focuses on the short-term GPS sea surface inversion within 3-6 months, which is difficult to reflect the seasonal variation and interannual characteristics of SSH. Meanwhile, only the influence of vertical velocity is considered in the dynamic sea surface correction, and the vertical acceleration of sea surface fluctuation is ignored, resulting in the poor estimation accuracy of low and high tide levels. For the above issues, a shore-based tracking station BRST in France was taken as an example, and the reflected signals of 3 consecutive years from BDS/GPS/GLONASS/Galileo system were used to estimate SSH. Based on Lomb-Scargle spectrum analysis and second-order dynamic tide level correction model, a robust regression strategy was adopted. The estimation results were compared with tide gauge records to analyze the trend of sea level change. The results show that the inversion results of GNSS-R technology are in good agreement with tide gauge records, and the inversion accuracy has a tendency to improve year by year, with a root mean square error(RMSE)of 7.57 cm and a correlation coefficient of 0.935 for the three-year daily average; the seasonal variation of SSH is obvious, the average SSH is high in autumn and winter, and low in summer, and the seasonal variation of SSH is opposite to that of temperature; the differences of amplitude for nine tidal constituents including M2, S2, K1, O1, N2, K2, P1, Q1 and M4, range from 0.06 cm to 6.76 cm with the mean absolute error(MAE)of 1.60 cm, and the differences of phase range from 0.03° to 6.96° with the MAE of 2.45°. It is further verified that the reliability of GNSS-R technology in monitoring SSH change in the frequency domain.

参考文献/References:

[1] 蔡榕硕,谭红建.海平面加速上升对低海拔岛屿、沿海地区及社会的影响和风险[J].气候变化研究进展,2020,16(2):163-171.
CAI Rong-shuo,TAN Hong-jian.Impacts and Risks of Accelerating Sea Level Rise on Low Lying Islands,Coasts and Communities[J].Climate Change Resear-ch,2020,16(2):163-171.
[2] BOUFFARD J,ROBLOU L,BIROL F,et al.Introduction and Assessment of Improved Coastal Altimetry Strategies:Case Study over the Northwestern Me-diterranean Sea[M]∥VIGNUDELLI S,KOSTIAN-OY A G,CIPOLLINI P.Coastal Altimetry.Berlin:Springer-Verlag,2011:297-330.
[3] WOODWORTH P L,WÖPPELMANN G,MARCOS M,et al.Why We Must Tie Satellite Positioning to Tide Gauge Data[J].Earth & Space Science News,2017,98(4):13-15.
[4] LARSON K M,GUTMANN E D,ZAVOROTNY V U,et al.Can We Measure Snow Depth with GPS Re-ceivers?[J].Geophysical Research Letters,2009,36(17):L17502.
[5] ZHANG Z Y,GUO F,ZHANG X H.Triple-frequency Multi-GNSS Reflectometry Snow Depth Retrieval by Using Clustering and Normalization Algorithm to Compensate Terrain Variation[J].GPS Solutions,2020,24(2):52.
[6] LARSON K M,SMALL E E,GUTMANN E D,et al.Use of GPS Receivers as a Soil Moisture Network for Water Cycle Studies[J].Geophysical Research Letters,2008,35(24):L24405.
[7] ZHU Y F,GUO F,ZHANG X H.Effect of Surface Temperature on Soil Moisture Retrieval Using CYGNSS[J].International Journal of Applied Earth Observation and Geoinformation,2022,112:102929.
[8] LÖFGREN J S,HAAS R,SCHERNECK H G,et al.Three Months of Local Sea Level Derived from Reflected GNSS Signals[J].Radio Science,2011,46(6):2011RS004693.
[9] LARSON K M,LÖFGREN J S,HAAS R.Coastal Sea Level Measurements Using a Single Geodetic GPS Receiver[J].Advances in Space Research,2013,51(8):1301-1310.
[10] FOTI G,GOMMENGINGER C,JALES P,et al.Spaceborne GNSS Reflectometry for Ocean Winds:First Results from the UK TechDemoSat-1 Mission[J].Geophysical Research Letters,2015,42(13):5435-5441.
[11] CHEN F D,ZHANG X H,GUO F,et al.TDS-1 GNSS Reflectometry Wind Geophysical Model Function Response to GPS Block Types[J].Geo-spatial Information Science,2022,25(2):312-324.
[12] CHEN F D,GUO F,LIU L L,et al.An Improved Method for Pan-tropical Above-ground Biomass and Canopy Height Retrieval Using CYGNSS[J].Remote Sensing,2021,13(13):2491.
[13] MARTIN-NEIRA M.A Passive Reflectometry and Interferometry System(PARIS):Application to Ocean Altimetry[J].ESA Journal,1993,17(4):331-355.
[14] MARTIN-NEIRA M,CAPARRINI M,FONT-ROSSELLO J,et al.The PARIS Concept:An Experimental Demonstration of Sea Surface Altimetry Using GPS Reflected Signals[J].IEEE Transactions on Geo-science and Remote Sensing,2001,39(1):142-150.
[15] ANDERSON K D.Determination of Water Level and Tides Using Interferometric Observations of GPS Signals[J].Journal of Atmospheric and Oceanic Techno-logy,2000,17(8):1118-1127.
[16] CAPARRINI M,EGIDO A,SOULAT F,et al.Ocean-pal:Monitoring Sea State with a GNSS-R Coastal Instrument[C]∥IGARSS.2007 IEEE International Geoscience and Remote Sensing Symposium.Barcelona:IGARSS,2007:5080-5083.
[17] RIVAS M B,MARTIN-NEIRA M.Coherent GPS Reflections from the Sea Surface[J].IEEE Geoscience and Remote Sensing Letters,2006,3(1):28-31.
[18] LÖFGREN J S,HAAS R,JOHANSSON J M.Monitoring Coastal Sea Level Using Reflected GNSS Signals[J].Advances in Space Research,2011,47(2):213-220.
[19] LARSON K M,RAY R D,WILLIAMS S D P.A 10-year Comparison of Water Levels Measured with a Geodetic GPS Receiver Versus a Conventional Tide Gauge[J].Journal of Atmospheric and Oceanic Technology,2017,34(2):295-307.
[20] LÖFGREN J S,HAAS R,SCHERNECK H.Sea Le-vel Time Series and Ocean Tide Analysis from Multipath Signals at Five GPS Sites in Different Parts of the World[J].Journal of Geodynamics,2014,80:66-80.
[21] LIMSUPAVANICH N,GUO B F,FU X M.Application of RNN on GNSS Reflectometry Sea Level Monitoring[J].International Journal of Remote Sensing,2022,43(10):3592-3608.
[22] ZHANG Z Y,GUO F,ZHANG X H,et al.First Result of GNSS-R-based Sea Level Retrieval with CMC and Its Combination with the SNR Method[J].GPS Solutions,2022,26(1):20.
[23] LARSON K M,RAY R D,NIEVINSKI F G,et al.The Accidental Tide Gauge:A GPS Reflection Case Study from Kachemak Bay,Alaska[J].IEEE Geoscience and Remote Sensing Letters,2013,10(5):1200-1204.
[24] ROUSSEL N,RAMILLIEN G,FRAPPART F,et al.Sea Level Monitoring and Sea State Estimate Using a Single Geodetic Receiver[J].Remote Sensing of Environment,2015,171:261-277.
[25] WANG X L,HE X F,ZHANG Q.Evaluation and Combination of Quad-constellation Multi-GNSS Multipath Reflectometry Applied to Sea Level Retrieval[J].Remote Sensing of Environment,2019,231:111229.
[26] TABIBI S,GEREMIA-NIEVINSKI F,FRANCIS O,et al.Tidal Analysis of GNSS Reflectometry Applied for Coastal Sea Level Sensing in Antarctica and Greenland[J].Remote Sensing of Environment,2020,248:111959.
[27] HOLLAND P W,WELSCH R E.Robust Regression Using Iteratively Reweighted Least-squares[J].Communications in Statistics:Theory and Methods,1977,6(9):813-827.
[28] ROUSSEEUW P J,LEROY A M.Robust Regression and Outlier Detection[M].New York:John Wiley & Sons,1987.
[29] 方国洪,郑文振,陈宗镛,等.潮汐和潮流的分析和预报[M].北京:海洋出版社,1986.
FANG Guo-hong,ZHENG Wen-zhen,CHEN Zong-yong,et al.Analysis and Prediction of Tides and Tidal Currents[M].Beijing:Ocean Press,1986.
[30] PAWLOWICZ R,BEARDSLEY B,LENTZ S.Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB Using T_TIDE[J].Computers & Geosciences,2002,28(8):929-937.
[31] PAN H D,LV X Q,WANG Y Y,et al.Exploration of Tidal-fluvial Interaction in the Columbia River Estuary Using S_TIDE[J].Journal of Geophysical Research:Oceans,2018,123(9):6598-6619.
[32] JIN G Z,PAN H D,ZHANG Q L,et al.Determination of Harmonic Parameters with Temporal Variations:An Enhanced Harmonic Analysis Algorithm and Application to Internal Tidal Currents in the South China Sea[J].Journal of Atmospheric and Ocea-nic Technology,2018,35(7):1375-1398.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-01-17; 修回日期:2023-03-18
基金项目:国家重点研发计划项目(2022YFB3903902); 湖北省杰出青年科学基金项目(2021CFA039)
作者简介:郭 斐(1984-),男,江西万安人,教授,博士研究生导师,工学博士,E-mail:fguo@sgg.whu.edu.cn。
*通讯作者:刘万科(1978-),男,陕西扶风人,教授,博士研究生导师,工学博士,E-mail:wkliu@sgg.whu.edu.cn。
更新日期/Last Update: 2023-05-30