|本期目录/Table of Contents|

[1]李振炫,桂尉竣,苏 畅,等.方解石与柠檬酸/酒石酸模拟实验中的反应规律[J].地球科学与环境学报,2023,45(06):1398-1413.[doi:10.19814/j.jese.2023.06028]
 LI Zhen-xuan,GUI Wei-jun,SU Chang,et al.Reaction Pattern of Calcite with Citric Acid/Tartaric Acid in Simulation Experiments[J].Journal of Earth Sciences and Environment,2023,45(06):1398-1413.[doi:10.19814/j.jese.2023.06028]
点击复制

方解石与柠檬酸/酒石酸模拟实验中的反应规律(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第45卷
期数:
2023年第06期
页码:
1398-1413
栏目:
矿产资源综合利用
出版日期:
2023-11-15

文章信息/Info

Title:
Reaction Pattern of Calcite with Citric Acid/Tartaric Acid in Simulation Experiments
文章编号:
1672-6561(2023)06-1398-16
作者:
李振炫12桂尉竣12苏 畅1向育斌3孙晓雯1吴超越4*黄利东5David DECROOCQ6
(1. 南京信息工程大学 江苏省大气环境与装备技术协同创新中心/江苏省大气环境监测与污染控制高技术重点实验室,江苏 南京 210044; 2. 南京信息工程大学 气候与环境变化教育部国际合作联合实验室,江苏 南京 210044; 3. 南京信息工程大学 化学与材料学院,江苏 南京 210044; 4. 生态环境部南京环境科学研究所,江苏 南京 210042; 5. 南京信息工程大学 应用气象学院,江苏 南京 210044; 6. 里尔大学 地球科学学院,诺尔 里尔 59650)
Author(s):
LI Zhen-xuan12 GUI Wei-jun12 SU Chang1 XIANG Yu-bin3 SUN Xiao-wen1 WU Chao-yue4* HUANG Li-dong5 David DECROOCQ6
(1. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology/Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 2. Joint International Research Laboratory of Climate and Environment Change(ILCEC), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 3. School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 4. Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; 5. School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 6. Département des Sciences de la Terre, Université de Lille, Lille 59650, Nord, France)
关键词:
方解石 柠檬酸 酒石酸 吸附 溶解 络合 沉淀 溶液化学
Keywords:
calcite citric acid tartaric acid adsorption dissolution complex precipitation solution chemistry
分类号:
X703.1
DOI:
10.19814/j.jese.2023.06028
文献标志码:
A
摘要:
柠檬酸/酒石酸可使方解石产生矿物溶蚀及生物矿化等现象,研究它们之间的反应规律对富含有机酸环境中方解石矿物的稳定性评估及相应的地球化学效应研究具有重要意义。通过批量平衡法,研究开放系统条件下方解石与柠檬酸/酒石酸之间的反应规律及对应的溶液化学变化。结果表明:①初始浓度为20 mg?L-1条件下,初始pH值由7.7升至9.7,柠檬酸与酒石酸的反应去除量均显著下降,这是由于方解石表面的静电效应及溶液中HCO-3与CO2-3的竞争效应不断增强,对两种酸的表面吸附反应起抑制作用。②初始pH值为7.7及8.3条件下,初始浓度为20 mg?L-1的两种酸与方解石反应7 h后便达到平衡,pH值和Ca浓度较空白值变化不大,辅证了反应的主导机制为表面吸附。③在0~900 mg?L-1浓度范围内,柠檬酸和酒石酸在初始pH值为8.3条件下,其反应去除量均能用Langmuir吸附模型很好地拟合,辅证了以上的反应去除机制均为表面吸附; 初始pH值为7.7条件下,柠檬酸的反应去除量可用Langmuir吸附模型拟合,反应的主导机制仍为表面吸附,而酒石酸的反应去除量呈现持续陡增现象,Langmuir与Freundlich吸附模型均难以拟合,这是由于酒石酸的反应主导机制是沉淀反应。④初始pH值为8.3,在0~900 mg?L-1浓度范围内,在5 ℃、20 ℃、35 ℃温度条件下,两种酸的反应去除结果均可用Langmuir吸附模型拟合,反应的主导机制仍为表面吸附。与酒石酸相比,随着温度的升高,柠檬酸吸附量的增幅更大; 同时,3种温度条件下柠檬酸带来的pH值和Ca浓度增幅均比酒石酸带来的更大。
Abstract:
Citric acid/tartaric acid can cause mineral dissolution and biomineralization of calcite, so the study on reaction pattern between them is of great significance for the assessment of the stability of calcite minerals and the study on the corresponding geochemical effects in organic acid-rich environments. The reaction between calcite and citric acid/tartaric acid and the corresponding solution chemistry change were studied by batch equilibrium method under open system conditions. The results show that ① at the initial concentration of 20 mg?L-1, the reaction removal of citric acid and tartaric acid decreases significantly when the initial pH value increases from 7.7 to 9.7; this is attributed to the electrostatic effect on the surface of calcite and the increasing competition between HCO-3 and CO2-3 in the solution, which inhibit the surface adsorption reaction of the two acids on calcite. ② At the initial pH of 7.7 and 8.3, the reaction of the two acids with an initial concentration of 20 mg?L-1 and calcite reaches equilibrium after 7 h; compared with the blank values, the pH and Ca concentration have little change, which prove that the dominant mechanism of the reaction is surface adsorption. ③ In the concentration range of 0-900 mg?L-1, the reaction removal results of citric acid and tartaric acid at the initial pH of 8.3 could be well fitted by the Langmuir adsorption model, which proves that both of the above removal mechanisms are surface adsorption; at the initial pH of 7.7, the reaction removal results of citric acid still could be fitted by the Langmuir adsorption model, and the removal mechanism is still surface adsorption; while the removal of tartaric acid shows a continuous steep increase, which cannot be fitted by the Langmuir or Freundlich adsorption model, and this is due to the fact that the dominant mechanism of tartaric acid removal by reaction is precipitation reaction. ④ At an initial pH of 8.3, a concentration range of 0-900 mg?L-1 and the temperatures of 5 ℃, 20 ℃, and 35℃, the removal results of both acids could be fitted by the Langmuir adsorption model, and the removal mechanism is still surface adsorption; the increase in the saturation adsorption of citric acid with increasing temperature is greater than that of tartaric acid; meanwhile, citric acid at all three temperatures brings about a greater increase in pH and Ca concentration than that of tartaric acid.

参考文献/References:

[1] LAZO D E,DYER L G,ALORRO R D.Silicate,Pho-sphate and Carbonate Mineral Dissolution Behaviour in the Presence of Organic Acids:A Review[J].Mine-rals Engineering,2017,100:115-123.
[2] 王建萍,李琼芳,董发勤,等.3 种常见细菌胞外特征有机酸对方解石的溶蚀研究[J].岩石矿物学杂志,2015,34(3):387-392.
WANG Jian-ping,LI Qiong-fang,DONG Fa-qin,et al.A Study of the Dissolution of Calcite by Three Common Bacterial Typical Extracellular Organic Acids[J].Acta Petrologica et Mineralogica,2015,34(3):387-392.
[3] EHRLICH H,KOUTSOUKOS P G,DEMADIS K D,et al.Principles of Demineralization:Modern Strategies for the Isolation of Organic Frameworks:Part Ⅱ.Decalcification[J].Micron,2009,40(2):169-193.
[4] MARTINEZ R E,GARDES E,POKROVSKY O S,et al.Do Photosynthetic Bacteria Have a Protective Mechanism Against Carbonate Precipitation at Their Surfaces?[J].Geochimica et Cosmochimica Acta,2010,74(4):1329-1337.
[5] MENDONCA F G,FILHO E J S,BERTOLI A C,et al.Use of Montmorillonite to Recover Carboxylic Acids from Aqueous Medium[J].Separation and Puri-fication Technology,2019,229:115751.
[6] RHEE S H,TANAKA J.Effect of Citric Acid on the Nucleation of Hydroxyapatite in a Simulated Body Fluid[J].Biomaterials,1999,20(22):2155-2160.
[7] 吴雁雯,张金池,郭晓平,等.应用于矿山修复的高效菌株鉴定与溶岩机制:基于增强回归树分析[J].环境科学,2017,38(1):283-293.
WU Yan-wen,ZHANG Jin-chi,GUO Xiao-ping,et al.Identification of Efficient Strain Applied to Mining Rehabilitation and Its Rock Corrosion Mechanism:Based on Boosted Regression Tree Analysis[J].Environmental Science,2017,38(1):283-293.
[8] CHUN B J,LEE S G,CHOI J I,et al.Adsorption of Carboxylate on Calcium Carbonate(1014)Surface:Molecular Simulation Approach[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,474:9-17.
[9] MARTIN W R,SAYLES F L.CaCO3 Dissolution in Sediments of the Ceara Rise,Western Equatorial Atlantic[J].Geochimica et Cosmochimica Acta,1996,60(2):243-263.
[10] LI Z,HOFMANN A,WOLTHERS M,et al.Reversibility of Cadmium Sorption to Calcite Revisited[J].Journal of Colloid and Interface Science,2012,368(1):434-442.
图11 不同温度下柠檬酸、酒石酸等温吸附的pH值和Ca浓度变化
Fig.11 Changes in pH and Ca Concentration During Isothermal Adsorption of Citric Acid and Tartaric Acid
at Different Temperatures[11] LI Z X,SUN X W,HUANG L D,et al.Phosphate Adsorption and Precipitation on Calcite Under Calco-carbonic Equilibrium Condition[J].Chemosphere,2017,183:419-428.
[12] LI Z X,GUO M X,SUN X W,et al.High Concentration Phosphate Removal by Calcite and Its Subsequent Utilization for Tetracycline Removal[J].Journal of Water Process Engineering,2020,37:101412.
[13] ASHRAF M,ZAFAR Z I,ANSARI T M,et al.Selective Leaching Kinetics of Calcareous Phosphate Rock in Phosphoric Acid[J].Journal of Applied Sciences,2005,5(10):1722-1727.
[14] 高 山,曲希玉,李玉钤,等.有机酸对储层改造作用的模拟实验研究[C]∥成都理工大学.2020油气田勘探与开发国际会议论文集.成都:成都理工大学,2020:2-3.
GAO Shan,QU Xi-yu,LI Yu-qian,et al.Simulation Experiment Study on the Effect of Organic Acidon Reservoir Reconstruction[C]∥Chengdu University of Technology.Proceedings of the International Field Exploration and Development Conference in 2020.Chengdu:Chengdu University of Technology,2020:2-3.
[15] 马倩倩.有机酸对储层矿物的溶蚀作用研究[D].青岛:中国石油大学(华东),2017.
MA Qian-qian.Study on Dissolution of Organic Acids to Reservoir Mineral[D].Qingdao:China University of Petroleum,2017.
[16] REDDY M M,HOCH A R.Calcite Crystal Growth Rate Inhibition by Polycarboxylic Acids[J].Journal of Colloid and Interface Science,2001,235(2):365-370.
[17] MEYER H J.The Influence of Impurities on the Growth Rate of Calcite[J].Journal of Crystal Growth,1984,66(3):639-646.
[18] KITANO Y,HOOD D W.The Influence of Organic Material on the Polymorphic Crystallization of Calcium Carbonate[J].Geochimica et Cosmochimica Acta,1965,29(1):29-41.
[19] AL-KHALDI M H,NASR-El-DIN H A,MEHTA S,et al.Reaction of Citric Acid with Calcite[J].Chemical Engineering Science,2007,62(21):5880-5896.
[20] 高艳芳.柠檬酸钠调控碳酸钙晶体晶型与形貌的研究[D].广州:华南理工大学,2015.
GAO Yan-fang.Control of Crystalline Polymorphs and Morphologies for CaCO3 with Sodium Citrate[D].Guangzhou:South China University of Techno-logy,2015.
[21] UKRAINCZYK M,STELLING J,VUCAK M,et al.Influence of Etidronic Acid and Tartaric Acid on the Growth of Different Calcite Morphologies[J].Journal of Crystal Growth,2013,369:21-31.
[22] PLANK J,BASSIONI G.Adsorption of Carboxylate Anions on a CaCO3 Surface[J].Zeitschrift für Natur-forschung B,2007,62(10):1277-1284.
[23] KULP E A,SWITZER J A.Electrochemical Biomine-ralization:The Deposition of Calcite with Chiral Morphologies[J].Journal of the American Chemical Socie-ty,2007,129(49):15120-15121.
[24] PHILLIPS B L,LEE Y J,REEDER R J.Organic Coprecipitates with Calcite:NMR Spectroscopic Eviden-ce[J].Environmental Science & Technology,2005,39(12):4533-4539.
[25] 王晓蓉.环境化学[M].南京:南京大学出版社,1993.
WANG Xiao-rong.Environmental Chemistry[M].Nanjing:Nanjing University Press,1993.
[26] 闫志为,刘辉利,张志卫.温度及CO2对方解石、白云石溶解度影响特征分析[J].中国岩溶,2009,28(1):7-10.
YAN Zhi-wei,LIU Hui-li,ZHANG Zhi-wei.Influen-ces of Temperature and ρCO2 on the Solubility of Calcite and Dolomite[J].Carsologica Sinica,2009,28(1):7-10.
[27] 钱 会,张益谦.开放系统中CaCO3的溶解与沉淀对水溶液的成分及其性质的影响[J].中国岩溶,1995,14(4):352-361.
QIAN Hui,ZHANG Yi-qian.The Effects of Dissolution and Precipitation of CaCO3 on the Compositions and Properties of Water in an Open System[J].Carsologica Sinica,1995,14(4):352-361.
[28] 钱 会,李雨新.封闭系统中CaCO3在天然水中溶解或沉淀的水化学后果[J].西安工程学院学报,1994,16(2):54-60.
QIAN Hui,LI Yu-xin.On a Water-chemical Consequences Caused by the Dissolution or Precipitation of CaCO3 in a Closed Systems of Natural Water[J].Journal of Xi'an College of Geology,1994,16(2):54-60.
[29] CAPPELLEN V P,CHARLET L,STUMM W,et al.A Surface Complexation Model of the Carbonate Mi-neral-aqueous Solution Interface[J].Geochimica et Cosmochimica Acta,1993,57(15):3505-3518.
[30] 李振炫,黄利东,徐 佳,等.开放系统中碳酸盐矿物(方解石)对四环素的吸附[J].环境科学与技术,2015,38(12):215-221.
LI Zhen-xuan,HUANG Li-dong,XU Jia,et al.Sorption of Tetracycline onto Carbonate Mineral(Calcite)in Open-system[J].Environmental Science & Technology,2015,38(12):215-221.
[31] MICHARD G.Chimie des Eaux Naturelles[M].Pairs:Publisud,2002.
[32] 姚晓芹,马文奇,楚建周.磷酸对石灰性土壤pH及微量元素有效性的影响[J].中国土壤肥料,2005(2):14-16,20.
YAO Xiao-qin,MA Wen-qi,CHU Jian-zhou.Effect of Phosphoric Acid on pH and Micronutrient Availability in Calcareous Soil[J].Soil and Fertilizer Sciences in China,2005(2):14-16,20.
[33] 殷允相.对石灰性土壤pH测定中一些问题的探讨[J].土壤通报,1979(3):15-17.
YIN Yun-xiang.Discussion of Some Problems in pH Determination of Calcareous Soils[J].Chinese Journal of Soil Science,1979(3):15-17.
[34] 沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性[J].土壤学报,1992,29(1):80-86.
SHEN Ren-fang,JIANG Bo-fan.Distribution and Availability of Various Forms of Inorganic-P in Calcareous Soils[J].Acta Pedologica Sinica,1992,29(1):80-86.
[35] GUSTAFSSON J P.Visual MINTEQ ver.3.1[EB/OL].(2013-12-21)[2023-06-15].http:∥www2.lwr.kth.se/English/Oursoftware/vminteq/download.html.
[36] GEFFROY C,FOISSY A,PERSELLO J,et al.Surfa-ce Complexation of Calcite by Carboxylates in Water[J].Journal of Colloid and Interface Science,1999,211(1):45-53.
[37] 刘永红,马舒威,岳霞丽,等.土壤环境中的小分子有机酸及其环境效应[J].华中农业大学学报,2014,33(2):133-138.
LIU Yong-hong,MA Shu-wei,YUE Xia-li,et al.Low Molecular Weight Organic Acids in Soils and Its Environmental Effects[J].Journal of Huazhong Agricultural University,2014,33(2):133-138.
[38] MORADI N,SADAGHIANI M R,SEPEHR E,et al.Effects of Low-molecular-weight Organic Acids on Phosphorus Sorption Characteristics in Some Calcareous Soils[J].Turkish Journal of Agriculture and Fo-restry,2012,36(4):459-468.
[39] WANG X X,LI Q M,DING J H,et al.An Improved Method for the Extraction of Low Molecular Weight Organic Acids in Variable Charge Soils[J].Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry,2007,23(5):539-543.
[40] 吴大清,彭金莲,刁桂仪,等.沉积CaCO3与金属离子界面反应动力学研究[J].地球化学,2000,29(1):56-61.
WU Da-qing,PENG Jin-lian,DIAO Gui-yi,et al.Kinetic Study of the Interface Reactions Between Metal Ions and Sediment CaCO3[J].Geochimica,2000,29(1):56-61.
[41] LI Z X,XIAO J T,HUANG L D,et al.Comparative Study of Carboxylic Acid Adsorption on Calcite:L-malic Acid,D-malic Acid and Succinic Acid[J].Carbonates and Evaporites,2019,34(3):1131-1139.
[42] 李振炫,黄利东,陈艳芳,等.开放系统下丙二酸在方解石上的吸附[J].环境化学,2015,34(10):1940-1947.
LI Zhen-xuan,HUANG Li-dong,CHEN Yan-fang,et al.Sorption of Malonate onto Calcite in Open-system[J].Environmental Chemistry,2015,34(10):1940-1947.
[43] 李振炫,黄利东,陈艳芳,等.开放系统下方解石对邻苯二甲酸的吸附[J].环境科学,2015,36(7):2547-2553.
LI Zhen-xuan,HUANG Li-dong,CHEN Yan-fang,et al.Sorption of Ophthalate onto Calcite in Open-sys-tem[J].Environmental Science,2015,36(7):2547-2553.
[44] 李鹏飞.低分子量有机酸对珊瑚砂风化溶解促进作用的研究[D].兰州:兰州交通大学,2019.
LI Peng-fei.Study on the Promotion of Weathering and Dissolution of Coral Sand by Low Molecular Wei-ght Organic Acids[D].Lanzhou:Lanzhou Jiaotong University,2019.
[45] KAN A T,FU G,TOMSON M B.Adsorption and Precipitation of an Aminoalkylphosphonate onto Calcite[J].Journal of Colloid and Interface Science,2005,281(2):275-284.
[46] 喻艳红,李清曼,张桃林,等.红壤中低分子量有机酸的吸附特征[J].土壤通报,2011,42(1):33-37.
YU Yan-hong,LI Qing-man,ZHANG Tao-lin,et al.Adsorption Characteristics of Low Molecular Weight Organic Acids in Red Soil[J].Chinese Journal of Soil Science,2011,42(1):33-37.
[47] MÖLLER P,SASTRI C S.Estimation of the Number of Surface Layers of Calcite Involved in Ca-45 Ca Isotopic Exchange with Solution[J].Zeitschrift für Phy-sikalische Chemie,1974,89(1/2/3/4):80-87.
[48] 陆文龙,曹一平,张福锁.低分子量有机酸对不同磷酸盐的活化作用[J].华北农学报,2001,16(1):99-104.
LU Wen-long,CAO Yi-ping,ZHANG Fu-suo.The Effect of Low-molecular-weight Organic Acids on Phosphorus Release from Different Phosphates[J].Acta Agriculturae Boreali-Sinica,2001(1):99-104.
[49] 刘再华,DREYBRODT W,韩 军,等.CaCO3-CO2-H2O岩溶系统的平衡化学及其分析[J].中国岩溶,2005,24(1):1-14.
LIU Zai-hua,DREYBRODT W,HAN Jun,et al.Equilibrium Chemistry of the CaCO3-CO2-H2O System and Discussions[J].Carsologica Sinica,2005,24(1):1-14.
[50] PLUMMER L N,BUSENBERG E.The Solubilities of Calcite,Aragonite and Vaterite in CO2-H2O Solutions Between 0 and 90 ℃,and an Evaluation of the Aqueous Model for the System CaCO3-CO2-H2O[J].Geo-chimica et Cosmochimica Acta,1982,46(6):1011-1040.
[51] USLU H,INCI I.Adsorption Equilibria of L-(+)-tartaric Acid onto Alumina[J].Journal of Chemi-cal & Engineering Data,2009,54(7):1997-2001.
[52] 张建珍,樊晓红,薛丽华.EDTA络合滴定法连续测定铁矿石中钙和镁[J].冶金分析,2011,31(8):74-78.
ZHANG Jian-zhen,FAN Xiao-hong,XUE Li-hua.Continuous Determination of Calcium and Magnesium in Iron Ore by EDTA Complexometric Titration[J].Metallurgical Analysis,2011,31(8):74-78.
[53] 靳玉正.比较不同的碳酸盐在葡萄酒中的应用[J].葡萄栽培与酿酒,1997(1):38-39.
JIN Yu-zheng.Comparison of Different Carbonates in Wine[J].Sino-overseas Grapevine & Wine,1997(1):38-39.
[54] 李海燕,汪东风,于丽娜,等.球状壳聚糖树脂对柠檬酸的吸附行为[J].过程工程学报,2009,9(1):12-17.
LI Hai-yan,WANG Dong-feng,YU Li-na,et al.Adsorption Behavior of Citric Acid on Resin of Chitosan Microspheres[J].The Chinese Journal of Process Engineering,2009,9(1):12-17.

相似文献/References:

[1]黄成刚,袁剑英,曹正林,等.咸化湖盆中酸性流体对碎屑岩储层的改造作用[J].地球科学与环境学报,2014,36(03):52.
 HUANG Cheng-gang,YUAN Jian-ying,CAO Zheng-lin,et al.Reconstruction of Acid Fluid on Clastic Reservoir in Saline Lacustrine Basin[J].Journal of Earth Sciences and Environment,2014,36(06):52.
[2]李金宝,车明,李鑫,等.鄂尔多斯盆地东胜铀矿成矿作用研究[J].地球科学与环境学报,2006,28(02):37.
 LI Jin-bao,CHE Ming,LI Xin,et al.Preliminary Study onMetallization of Dongsheng UOre in Ordos Basin[J].Journal of Earth Sciences and Environment,2006,28(06):37.

备注/Memo

备注/Memo:
收稿日期:2023-06-20; 修回日期:2023-08-25
基金项目:国家自然科学基金项目(41303096,41201515); 教育部留学回国科研启动基金项目(S131304001); 江苏省自然科学基金项目(BK20210655)
作者简介:李振炫(1981-),男,江苏靖江人,副教授,工学博士,E-mail:zhenxuan325@163.com。
*通讯作者:吴超越(1993-),女,江苏如皋人,助理研究员,E-mail:wuchaoyue1206@163.com。
更新日期/Last Update: 2023-12-01