[1] XU K,LU R Y,MAO J Y,et al.Circulation Anomalies in the Mid-high Latitudes Responsible for the Extremely Hot Summer of 2018 over Northeast Asia[J].Atmospheric and Oceanic Science Letters,2019,12(4):231-237.
[2] YAO Y,ZHANG W Q,LUO D H,et al.Seasonal Cumulative Effect of Ural Blocking Episodes on the Frequent Cold Events in China During the Early Winter of 2020/21[J].Advances in Atmospheric Sciences,2022,39(4):609-624.
[3] DU Z Y,ZHOU L T,YIN X X.An Interdecadal Enhancement of Relationship Between Northwest and North China Summer Precipitation Since Early 2000[J].Theoretical and Applied Climatology,2022,150(3/4):1131-1144.
[4] 孙晓晴,金荣花,肖天贵,等.江淮梅雨季亚洲阻塞高压活动统计特征[J].气象学报,2020,78(4):580-592.
SUN Xiao-qing,JIN Rong-hua,XIAO Tian-gui,et al.Statistical Characteristics of Asian Blocking Activity During the Yangtze-Huaihe Meiyu Season[J].Acta Meteorologica Sinica,2020,78(4):580-592.
[5] YU R,ZHAI P M.Changes in Summer Persistent Pre-cipitation over the Middle-lower Reaches of the Yang-tze River and Associated Atmospheric Circulation Patterns[J].Journal of Meteorological Research,2021,35(3):393-401.
[6] CHEN Y,ZHAI P M.Synoptic-scale Precursors of the East Asia/Pacific Teleconnection Pattern Responsible for Persistent Extreme Precipitation in the Yang-tze River Valley[J].Quarterly Journal of the Royal Meteorological Society,2015,141:1389-1403.
A表示-86 400×1/g∫300p0Δ·(q^- V^-)'dp; B表示-86 400215;1/g∫300p0Δ·(q^- V')'dp; C表示-86 400×1/g∫300p0Δ·(q^- V″)'dp;
D表示-86 400215;1/g∫300p0Δ·(q' V^-)'dp; E表示-86 400×1/g∫300p0Δ·(q' V')'dp; F表示-86 400215;1/g∫300p0Δ·(q' V″)'dp;
G表示-86 400×1/g∫300p0Δ·(q″ V^-)'dp; H表示-86 400215;1/g∫300p0Δ·(q″ V')'dp; I表示-86 400×1/g∫300p0Δ·(q″ V″)'dp
图10 长江流域区域平均整层水汽通量辐合项的贡献
Fig.10 Contributions of Integrated Moisture Flux Convergence Terms Averaged in Yangtze River BasinA1表示-86 400215;1/g∫300p0(q^- Δ·V^-)'dp; A2表示-86 400×1/g∫300p0(V^-·Δq^-)'dp; B1表示-86 400215;1/g∫300p0(q^- Δ·V')'dp;
B2表示-86 400×1/g∫300p0(V'·Δq^-)'dp; C1表示-86 400215;1/g∫300p0(q^- Δ·V″)'dp; C2表示-86 400×1/g∫300p0(V″·Δq^-)'dp^-)'d11 长江流域区域平均水汽辐合项和水汽平流项的贡献
Fig.11 Contributions of Moisture Convergence Terms and Moisture Advection Terms Averaged in Yangtze River Basin[7] WANG L J,WANG C,GUO D.Evolution Mechanism of Synoptic-scale EAP Teleconnection Pattern and Its Relationship to Summer Precipitation in China[J].At-mospheric Research,2018,214:150-162.
[8] 郭紫薇,王黎娟,刘丹玲.“丝绸之路”型与东亚—太平洋型遥相关的低频特征及其对江淮流域夏季降水的影响[J].地球科学与环境学报,2023,45(6):1341-1354.
GUO Zi-wei,WANG Li-juan,LIU Dan-ling.Low-frequency Characteristics of Silk-road and East Asia-Pacific Patterns and Their Effects on Summer Precipitation in Jianghuai River Basin,China[J].Journal of Earth Sciences and Environment,2023,45(6):1341-1354.
[9] YANG S Y,LI T.The Role of Intraseasonal Variabi-lity at Mid-high Latitudes in Regulating Pacific Blockings During Boreal Winter[J].International Journal of Climatology,2017,37(S1):1248-1256.
[10] MADDEN R A,JULIAN P R.Detection of a 40-50 Day Oscillation in the Zonal Wind in the Tropical Pacific[J].Journal of the Atmospheric Sciences,1971,28(5):702-708.
[11] 徐 敏,丁小俊,罗连升,等.淮河流域夏季旱涝急转的低频环流成因[J].气象学报,2013,71(1):86-95.
XU Min,DING Xiao-jun,LUO Lian-sheng,et al.A Possible Cause of the Low Frequency Circulation of Summertime Drought-flood Abrupt Alternation over the Huaihe River Basin[J].Acta Meteorologica Sinica,2013,71(1):86-95.
[12] ZHOU F,FANG Y H,SHI J,et al.Modulation of Mid-high-latitude Intraseasonal Variability on the Occurrence Frequency of Northeast China Cold Vortex in Early Summer[J].Journal of Climate,2023,36(12):4235-4253.
[13] ZHU T,YANG J.Two Types of Mid-high-latitude Low-frequency Intraseasonal Oscillations near the Ural Mountains During Boreal Summer[J].Journal of Climate,2021,34(11):4279-4296.
[14] WANG Y F,XU Y P,LEI C G,et al.Spatio-temporal Characteristics of Precipitation and Dryness/Wetness in Yangtze River Delta,Eastern China,During 1960-2012[J].Atmospheric Research,2016,172/173:196-205.
[15] CHEN J P,WEN Z P,WU R G,et al.Influences of Northward Propagating 25-90 Day and Quasi-biweekly Oscillations on Eastern China Summer Rainfall[J].Climate Dynamics,2015,45(1):105-124.
[16] 杨秋明.全球环流20~30 d振荡与长江下游强降水[J].中国科学:D辑,地球科学,2009,39(11):1515-1529.
YANG Qiu-ming.The 20-30-day Oscillation of the Global Circulation and Heavy Precipitation over the Lower Reaches of the Yangtze River Valley[J].Scien-ce in China:Series D,Earth Sciences,2009,39(11):1515-1529.
[17] 王黎娟,庞 玥,于 波,等.江淮流域梅雨期持续性强降水及其10~30 d低频环流特征[J].热带气象学报,2014,30(5):851-860.
WANG Li-juan,PANG Yue,YU Bo,et al.The Cha-racteristics of Persistent Heavy Rain Events and 10-30 Day Low-frequency Circulation in Yangtze-Huaihe River Basin During Meiyu Period[J].Journal of Tro-pical Meteorology,2014,30(5):851-860.
[18] HERSBACH H,BELL B,BERRISFORD P,et al.The ERA5 Global Reanalysis[J].Quarterly Journal of the Royal Meteorological Society,2020,146:1999-2049.
[19] 吴 佳,高学杰.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报,2013,56(4):1102-1111.
WU Jia,GAO Xue-jie.A Gridded Daily Observation Dataset over China Region and Comparison with the Other Datasets[J].Chinese Journal of Geophysics,2013,56(4):1102-1111.
[20] 潘 婕,王盘兴,纪立人.夏季欧亚中高纬持续流型特征Ⅰ:流型指数与持续流型[J].气象科学,2004,24(2):127-136.
PAN Jie,WANG Pan-xing,JI Li-ren.Study on the Summertime Persistent Circulation Pattern Features over Asian-European Mid-high Latitude PartⅠ:Circulation Pattern Index and Persistent Circulation Pattern[J].Scientia Meteorologica Sinica,2004,24(2):127-136.
[21] TORRENCE C,COMPO G P.A Practical Guide to Wavelet Analysis[J].Bulletin of the American Meteo-rological Society,1998,79(1):61-78.
[22] DUCHON C E.Lanczos Filtering in One and Two Dimensions[J].Journal of Applied Meteorology,1979,18(8):1016-1022.
[23] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.
WEI Feng-ying.The Statistical Diagnosis and Prediction Techniques of Modern Climatology[M].Beijing:China Meteorological Press,2007.
[24] HSU P C,XIE J H,LEE J Y,et al.Multiscale Intera-ctions Driving the Devastaing Floods in Henan Pro-vince,China During July 2021[J].Weather and Climate Extremes,2023,39:100541.
[25] JIANG X N,LI T,WANG B.Structures and Mechanisms of the Northward Propagating Boreal Summer Intraseasonal Oscillation[J].Journal of Climate,2004,17(5):1022-1039.
[26] YANG D,WANG L J.The Summertime Circulation Types over Eurasia and Their Connections with the North Atlantic Oscillation Modulated by North Atlan-tic SST[J].Atmosphere,2022,13(12):2093.
[1]郭紫薇,王黎娟*,刘丹玲.“丝绸之路”型与东亚—太平洋型遥相关的低频特征及其对江淮流域夏季降水的影响[J].地球科学与环境学报,2023,45(06):1341.[doi:10.19814/j.jese.2023.05040]
GUO Zi-wei,WANG Li-juan*,LIU Dan-ling.Low-frequency Characteristics of Silk-road and East Asia-Pacific Patterns and Their Effects on Summer Precipitation in Jianghuai River Basin, China[J].Journal of Earth Sciences and Environment,2023,45(01):1341.[doi:10.19814/j.jese.2023.05040]