[1] Herzig P M,Hannington M D.Polymetallic Massive Sulfides at the Modern Seafloor:a Review[J].Ore Geology Reviews,1995,10(2):95-115.
[2] Ohmoto H.Formation of Volcanogenic Massive Sulfide Deposits:the Kuroko Perspective[J].Ore Geology Reviews,1996,10(3/6):135-177.
[3] Rona P A,Scott S D.A Special Issue on Sea-floor Hydrothermal Mineralization; New Perspectives; Preface[J].Economic Geology,1993,88(8):1935-1976.
[4] Schmidt K,Koschinsky A,Garbe-Schöenberg D,et al.Geochemistry of Hydrothermal Fluids from the Ultramafic-hosted Logatchev Hydrothermal Field,15°N on the Mid-Atlantic Ridge; Temporal and Spatial Investigation[J].Chemical Geology,2007,242(1/2):1-21.
[5] Augustin N,Lackschewitz K S,Kuhn T,et al.Mineralogical and Chemical Mass Changes in Mafic and Ultramafic Rocks from the Logatchev Hydrothermal Field(MAR 15°N)[J].Marine Geology,2008,256(1/4):18-29.
[6] 孙 枢.大洋钻探与中国地球科学[J].地球科学进展,1995,10(3):213-214.
[7] Fouquet Y.Where are the Hydrothermal Sulfide Deposits in the Ocean?[J].Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences,1997,355:427-441.
[8] Wilson M.Igneous Petrogenesis:a Global Tectonic Approach[M].London:Springer,1989.
[9] 柴东浩,陈廷愚.新地球观:从大陆漂移到板块构造[M].太原:山西科学技术出版社,2000.
[10] Urabe T,Marumo K.A New Model for Kuroko-type Depo-sits of Japan[J].Episodes,1991,14(3):246-251.
[11] Butuzova G Y.Mineralization and Certain Aspects of Ore-bearing Sediment Genesis in the Red Sea:PartⅡ,General Processes of Mineralization and Ore-formation in the AtlantisⅡ Deep[J].Lithology and Mineral Resources,1984,19:193-311.
[12] Binns R A,Scott S D,Bogdanov Y A,et al.Hydrothermal Oxide and Gold-rich Sulfate Deposits of Franklin Seamount,Western Woodlark Basin,Papua New Guinea[J].Economic Geology,1993,88(8):2122-2153.
[13] Rona P A,Hannington M D,Raman C V,et al.Active and Relict Sea-floor Hydrothermal Mineralization at the TAG Hydrothermal Field,Mid-Atlantic Ridge[J].Economic Geology,1993,88(8):1989-2017.
[14] Francheteau J,Needham H D,Choukroune P,et al.Massive Deep-sea Sulphide Ore Deposits Discovered on the East Pacific Rise[J].Nature,1979,277:523-528.
[15] Halbach P,Nakamura K,Wahsner M,et al.Probable Modern Analogue of Kuroko-type Massive Sulphide Deposits in the Okinawa Trough Back-arc Basin[J].Nature,1989,338:496-499.
[16] Halbach P,Pracejus B,Maerten A.Geology and Mineralogy of Massive Sulfide Ores from the Central Okinawa Trough,Japan[J].Economic Geology,1993,88(8):2210-2225.
[17] Horibe Y,Kim K R,Craig H.Hydrothermal Methane Plumes in the Mariana Back-arc Spreading Centre[J].Nature,1986,324:131-133.
[18] Yang K H,Scott S D.Possible Contribution of a Metal-rich Magmatic Fluid to a Sea-floor Hydrothermal System[J].Nature,1996,383:420-423.
[19] Yang K H,Scott S D.Magmatic Degassing of Volatiles and Ore Metals into a Hydrothermal System on the Modern Sea Floor of the Eastern Manus Back-arc Basin,Western Pacific[J].Economic Geology,2002,97(5):1079-1100.
[20] Franklin J M,Sangster D M,Lydon J W.Volcanic-associated Massive Sulfide Deposits[C]∥Skinner B J.Economic Geology Seventy-fifth Anniversary Volume.Littleton:Society of Economic Geologists,1981:485-627.
[21] Ohmoto H,Skinner B J.The Kuroko and Related Volcanogenic Massive Sulfide Deposits[M].Littleton:Economic Geology Publishing Company,1983.
[22] Lydon J W.Ore Deposit Models 14,Volcanogenic Massive Sulfide Deposits Part 2:Tenetic Models[J].Geoscience Canada,1988,15(1):43-65.
[23] 崔汝勇.大洋中大型热液硫化物矿床的形成条件[J].海洋地质动态,2001,17(2):1-4.
[24] 侯增谦,韩 发,夏林圻,等.现代与古代海底热水成矿作用:以若干火山成因块状硫化物矿床为例[M].北京:地质出版社,2003.
[25] Stoltz J,Large R R.Evaluation of the Source-rock Control on Precious Metal Grades in Volcanic-hosted Massive Sulfide Deposits from Western Tasmania[J].Economic Geology,1992,87(3):720-738.
[26] 叶庆同,傅旭杰,张晓华.阿舍勒铜锌块状硫化物矿床地质特征和成因[J].矿床地质,1997,16(2):97-106.
[27] Stanton R L.Magmatic Evolution and the Ore Type-lava Type Affiliations of Volcanic Exhalative Ores[C]∥Committee of Australian Institute of Mining and Metallurgy.Australian Institute of Mining and Metallurgy Monograph 15.Carlton South:Australian Institute of Mining and Metallurgy,1990:101-107.
[28] Urabe T,Kusakabe M.Barite Silica Chimneys from the Sumi-su Rift,Izu-bonin Arc:Possible Analog to Hematitic Chert Associated with Kuroko Deposits[J].Earth and Planetary Science Letters,1990,100(1/3):283-290.
[29] Alt J C,Shanks W C,Jackson M C.Cycling of Sulfur in Subduction Zones; the Geochemistry of Sulfur in the Mariana Island Arc and Back-arc Trough[J].Earth and Planetary Science Letters,1993,119(4):477-494.
[30] Large R R.Australian Volcanic-hosted Massive Sulfide Deposits; Features,Styles,and Genetic Models[J].Economic Geology,1992,87(3):471-510.
[31] Sawkins F J.Integrated Tectonic-genetic Model for Volcanic-hosted Massive Sulfide Deposits[J].Geology,1990,18(11):1061-1064.
[32] Ulrich T,Gunther D,Heinrich C A.Gold Concentrations of Magmatic Brines and the Metal Budget of Porphyry Copper Deposits[J].Nature,1999,399:676-679.
[33] Sasso A M,Clark A H.The Farallon Negro Group,Northwestern Argentina:Magmatic,Hydrothermal and Tectonic Evolution and Implications for Cu-Au Metallogeny in the Andean Back-arc[J].Society of Economic Geologist Newsletter,1998,34:1-18.
[34] Bai T B,Koster A F.The Distribution of Na,K,Rb,Sr,Al,Ge,Cu,W,Mo,La,and Ce Between Granitic Melts and Co-existing Aqueous Fluids[J].Geochimica et Cosmochimica Acata,1999,63(7/8):1117-1131.
[35] Taylor H P.Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits[C]∥Barnes H L.Geoche-
mistry of Hydrothermal Ore Deposits.2nd ed.New York:John Wiley,1979:236-277.
[36] Whitney J A.Volatiles in Magmatic Systems[J].Reviews in Economic Geology,1984,1:155-175.
[37] Stanton R L.Ore Elements in Arc Lavas[M].Oxford:Oxford University Press,1994.
[38] Roedder E,Weiblen P W.Lunar Petrology of Silicate Melt Inclusions, Apollo 11 Rocks[C]∥Levinson A A.Geochimica et Cosmochimica Acta Supplement Volume 1:Mineralogy and Petrology.New York: Pergammon Press,1970:801-837.
[39] Scott S D.Submarine Hydrothermal Systems and Deposits[C]∥Barnes H L.Geochemistry of Hydrothermal Ore Deposits.3rd ed.New York:John Wiley and Scons,1997,797-876.
[40] Lowenstern J B,Mahood G A,Rivers M L,et al.Evidence for Extreme Partitioning of Copper into a Magmatic Vapor Phase[J].Science,1991,252:1405-1409.
[41] Gill J,Torssander P,Lapierre H,et al.Explosive Deep Water Basalt in the Sumisu Backarc Rift[J].Science,1990,248:1214-1217.
[42] Bischoff J L,Rosenbauser R J.Salinity Variations in Submarine Hydrothermal Systems by Layered Double-diffusive Convection[J].The Journal of Geology,1989,97:613-623.
[43] Jamesa R H,Rudnickib M D,Palmerc M R.The Alkali Element and Boron Geochemistry of the Escanaba Trough Sediment-hosted Hydrothermal System[J].Earth and Planetary Science Letters,1999,171(1):157-169.
[44] Wheat C G,Mottl M J.Hydrothermal Circulation,Juan de Fuca Ridge Eastern Flank:Factors Controlling Basement Water Composition[J].Journal of Geophysical Research,1994,99(B2):3067-3080.
[45] Hannington M D,Scott S D.Sulfidation Equilibria as Guides to Gold Mineralization in Volcanogenic Massive Sulfides; Evidence from Sulfide Mineralogy and the Composition of Sphalerite[J].Economic Geology,1989,84(7):1978-1995.
[1]焦永玲,汪洋.岩浆热液的软硬酸碱性质与金属成矿专属性的关系[J].地球科学与环境学报,2014,36(03):83.
JIAO Yong-ling,WANG Yang.Relationship Between the Hard-soft Acid-base Properties of Magmatic Hydrothermal and the Metal Metallogenic Specificity[J].Journal of Earth Sciences and Environment,2014,36(01):83.
[2]高景刚,梁婷,李文渊,等.新疆额尔齐斯韧性剪切带新生锆石及其年代学意义[J].地球科学与环境学报,2015,37(04):15.
GAO Jing-gang,LIANG Ting,LI Wen-yuan,et al.Neogenic Zircons in Ertix Ductile Shear Zone of Xinjiang and Their Geochronological Significance[J].Journal of Earth Sciences and Environment,2015,37(01):15.
[3]隗合明,赵国斌,焦建刚.河南夏馆—二郎坪一带叠加
改造型金矿床地质特征及成矿模式[J].地球科学与环境学报,2005,27(01):39.
WEI He-ming,ZHAO Guo-bin,JIAO Jian-gang.Geological features and metallogenic model of
hydrothermal superimposion (regeneration) gold
deposits from Xiaguan to Erlangping in Henan[J].Journal of Earth Sciences and Environment,2005,27(01):39.