|本期目录/Table of Contents|

[1]秦勇,吴艳艳,刘金钟,等.钼催化作用下的煤成烷烃气碳同位素演化[J].地球科学与环境学报,2012,34(03):1-6.
 QIN Yong,WU Yan-yan,LIU Jin-zhong,et al.Evolution of Carbon Isotope in Coal-derived Alkane Gas Under Catalysis of Molybdenum[J].Journal of Earth Sciences and Environment,2012,34(03):1-6.
点击复制

钼催化作用下的煤成烷烃气碳同位素演化(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第34卷
期数:
2012年第03期
页码:
1-6
栏目:
基础地质与矿产地质
出版日期:
2012-09-20

文章信息/Info

Title:
Evolution of Carbon Isotope in Coal-derived Alkane Gas Under Catalysis of Molybdenum
作者:
秦勇1吴艳艳2刘金钟3申建1
1.中国矿业大学 煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221116; 2.中国石油化工股份有限公司 华东分公司 石油勘探开发研究院,江苏 南京 210011; 3.中国科学院 广州地球化学研究所,广东 广州 510640
Author(s):
QIN Yong1 WU Yan-yan2 LIU Jin-zhong3 SHEN Jian1
1. Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; 2. Petroleum Exploration and Development Institute, East China Company, Sinopec, Nanjing 210011, Jiangsu, China; 3. Guangzhou Institute of Geochemistry,Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China
关键词:
催化 烷烃气 碳同位素 演化 模拟
Keywords:
coal molybdenum catalysis alkane gas carbon isotope evolution simulation
分类号:
P618.11
DOI:
-
文献标志码:
-
摘要:
为了阐释钼催化作用下的煤成气碳同位素演化特征和机理,采用在原煤中添加单质钼的方式,开展催化生气模拟试验,测定模拟系列气样的单体烷烃气碳同位素组成,并对其演化规律和模式进行探讨。结果表明:无论加钼与否,模拟气甲烷碳同位素组成(δ(13C1))均以镜质组反射率1.1%为界分为演化趋势截然相反的2个阶段,乙烷碳同位素组成(δ(13C2))不存在明显的演化阶段性,但加钼煤样δ(13C2)由在较低成熟度阶段重于原煤样变为在较高成熟度阶段轻于原煤样; 加钼条件下,模拟烷烃气呈现出正碳同位素系列,δ(13C1)为(-25~-45)×10-3,δ(13C2)重于-29×10-3,表明钼催化成因气属于有机热成因气范畴。对比模拟烷烃气碳同位素组成与镜质组反射率之间的关系,发现模拟烷烃气碳同位素组成演化规律与前人模式有所不同。加钼煤样的不同单体烷烃气碳同位素组成随有机质成熟度变化速率的不同而不同,指示生气作用在钼催化作用下得到增强,这一效应在裂解气生成过程中更为显著; 加钼煤样δ(13C2)在较高成熟度条件下轻于原煤样δ(13C2)的原因可能在于钼催化效应促进了煤中壳质组裂解生气。
Abstract:
In order to understand the mechanism of coal-derived alkane gas under the catalysis of molybdenum(Mo), gas generation simulations from the raw coal sample and Mo-added coal sample were carried out, and the simulated carbon isotopic compositions of monomeric alkane gas were measured, and the evolution pattern of carbon isotope was discussed. The results showed that carbon isotopic composition of methane(δ(13C1))of simulated gas was evolved in two stages whether or not Mo was added, 1.1% of vitrinitereflectance was the demarcation point; there was no obvious evolutionary stage for carbon isotopic composition of ethane(δ(13C2)), but for the Mo-added coal sample, there was a significant change for the δ(13C2), δ(13C2)was heavier than that of raw coal sample in lower maturity stage at first, and then lighter in higher maturity stage; for the Mo-added coal sample, there was a positive carbon isotope series for simulated alkane gas, δ(13C1)was(-25--45)×10-3, δ(13C2)was heavier than -29×10-3, so the Mo-catalytic gas was thermogenic gas from the organic matters in coal. The relationship between carbon isotopic composition and vitrinite reflectance of simulated alkane gas showed that the evolution was different with others' results. Carbon isotopic compositions of different monomeric alkane gases was different for the Mo-added coal sample with the rate of maturity of organic matter, so gas generation was strengthened under the Mo catalyst and the catalysis was more significant during the pyrolysis gas generation. The reason that δ(13C2)was lighter than that of raw coal sample in higher maturity stage for the Mo-added coal sample, could be that Mo catalytic effect improved the generation of pyrolysis gas generation from exinite group in coal.

参考文献/References:

[1] 唐修义,黄文辉.中国煤中微量元素[M].北京:商务印书馆,2004. TANG Xiu-yi,HUANG Wen-hui.Trace Element of Coals in China[M].Beijing:The Commercial Press,2004.
[2]
苗永霞,杨新丽,刘建平.钼在催化中的应用[J].化工进展,2011,30(11):2433-2437. MIAO Yong-xia,YANG Xin-li,LIU Jian-ping.The Application of Mo in Catalysis [J].Chemical Industry and Engineering Progress,2011,30(11):2433-2437.
[3]
卢红选,孟自芳, ,.微量元素对褐煤有机质热解成烃的影响[J].油气地质与采收率,2008,15(2):64-66. LU Hong-xuan,MENG Zi-fang,LI Bin,et al.Effects of Trace Element on Pyrogenic Hydrocarbon Generation of Lignite [J].Petroleum Geology and Recovery Efficiency,2008,15(2):64-66.
[4]
吴艳艳, .煤中矿物/金属元素在生气过程中的催化作用[J].地球科学进展,2009,24(8):882-890. WU Yan-yan,QIN Yong.Catalysis of Mineral/Metal Elements During Coal Bed Gas Generation[J].Advances in Earth Science,2009,24(8):882-890.
[5]
戴金星.各类烷烃气的鉴别[J].中国科学:B,1992,35(2):185-193. DAI Jin-xing.Identification and Distinction of Various Alkane Gases[J].Science in China:Series B,1992,35(2):185-193.
[6]
戴金星,夏新宇,秦胜飞,.中国有机烷烃气碳同位素系列倒转的成因[J].石油与天然气地质,2003,24(1):1-6. DAI Jin-xing,XIA Xin-yu,QIN Sheng-fei,et al.Causation of Partly Reversed Orders of p>13C in Biogenic Alkane Gas in China[J].Oil and Gas Geology,2003,24(1):1-6.
[7] DAI J X,YANG S F,CHEN H L,et al.Geochemistry and Occurrence of Inorganic Gas Accumulations in Chinese Sedimentary Basins[J].Organic Geochemistry,2005,36(12):1664-1688.
[8] 戴金星,邹才能,张水昌,等.无机成因和有机成因烷烃气的鉴别[J].中国科学:D辑,2008,38(11):1329-1341. DAI Jin-xing,ZOU Cai-neng,ZHANG Shui-chang,et al.Identification of Inorganic and Organic Alkane Gases[J].Science in China:Series D,2008,38(11):1329-1341.
[9] 戴金星.天然气中烷烃气碳同位素研究的意义[J].天然气工业,2011,31(12):1-6. DAI Jin-xing.Significance of the Study on Carbon Isotopes of Alkane Gases[J].Natural Gas Industry,2011,31(12):1-6.
[10] 宋 岩,徐永昌.天然气成因类型及其鉴别[J].石油勘探与开发,2005,32(4):24-29. SONG Yan,XU Yong-chang.Origin and Identification of Natural Gases[J].Petroleum Exploration and Development,2005,32(4):24-29.
[11] 刘文汇,徐永昌.天然气成因类型及判别标志[J].沉积学报,1996,14(1):110-116. LIU Wen-hui,XU Yong-chang.Genetic Indicators for Natural Gases[J].Acta Sedimentologica Sinica,1996,14(1):110-116.
[12] 吴艳艳,秦 勇,刘金钟,等.矿物/金属元素在煤成烃过程中的作用[J].天然气地球科学,2012,23(1):141-152. WU Yan-yan,QIN Yong,LIU Jin-zhong,et al.Catalysis Action of Mineral/Metal Elements During Coal-derived Hydrocarbons Process[J].Natural Gas Geoscience,2012,23(1):141-152.
[13] SWEENEY J,BURNHAM A K.Evaluation of a Simple Model of Vitrinite Reflectance Based on Chemical Kinetics[J].AAPG Bulletin,1990,74(7):1559-1570.
[14] 秦 勇,宋党育.山西南部煤化作用及其古地热系统[M].北京:地质出版社,1998. QIN Yong,SONG Dang-yu.Coalification in Southern Shanxi and Its Ancient Geothermal System[M].Beijing:Geology Publishing House,1998.
[15] MANGO F D.Transition Metal Catalysis in the Generation of Petroleum and Natural Gas[J].Geochimica et Cosmochimica Acta,1992,56(1):553-555.
[16] 王世谦.四川盆地侏罗系—震旦系天然气的地球化学特征[J].天然气工业,1994,14(6):1-5. WANG Shi-qian.Geochemical Characteristics of Jurassic-Sinian Gas in Sichuan Basin[J].Natural Gas Industry,1994,14(6):1-5.
[17] 戴金星,倪云燕,邹才能,等.四川盆地须家河组煤系烷烃气碳同位素特征及气源对比意义[J].石油与天然气地质,2009,30(5):519-529. DAI Jin-xing,NI Yun-yan,ZOU Cai-neng,et al.Carbon Isotope Features of Alkane Gases in the Coal Measures of the Xujiahe Formation in the Sichuan Basin and Their Significance to Gas-source Correlation[J].Oil and Gas Geology,2009,30(5):519-529.
[18] 胡国艺,李 谨,李志生,等.煤成气轻烃组分和碳同位素分布特征与天然气勘探[J].石油学报,2010,31(1):42-48. HU Guo-yi,LI Jin,LI Zhi-sheng,et al.Composition and Carbon Isotopic Distribution Characteristics of Light Hydrocarbon in Coal-derived Gas and Natural Gas Exploration[J].Acta Petrolei Sinica,2010,31(1):42-48.
[19] 王晓锋,徐永昌,沈 平,等.低熟气地球化学特征与判识指标[J].天然气地球科学,2010,21(1):1-6. WANG Xiao-feng,XU Yong-chang,SHEN Ping,et al.Geochemical Characteristics and Identification Indexes of Low-mature Gases[J].Natural Gas Geoscience,2010,21(1):1-6.

相似文献/References:

[1]王丹,吴柏林,寸小妮,等.柴达木盆地多种能源矿产同盆共存及其地质意义[J].地球科学与环境学报,2015,37(03):55.
 WANG Dan,WU Bai-lin,CUN Xiao-ni,et al.Coexistence of Multiple Energy Minerals in Qaidam Basin and Its Geological Significance[J].Journal of Earth Sciences and Environment,2015,37(03):55.
[2]曹庆一,钱雅慧,杨 柳*.煤中重金属元素的溶出潜力及其影响因素[J].地球科学与环境学报,2023,45(02):437.[doi:10.19814/j.jese.2022.09048]
 CAO Qing-yi,QIAN Ya-hui,YANG Liu*.Dissolution Potential of Heavy Metal Elements in Coal and Its Influence Factors[J].Journal of Earth Sciences and Environment,2023,45(03):437.[doi:10.19814/j.jese.2022.09048]

备注/Memo

备注/Memo:
收稿日期:2012-06-25
基金项目:国家自然科学基金重点项目(40730422); 国家科技重大专项项目(2011ZX05034)
作者简介:秦 勇(1957-),男,重庆市人,教授,博士研究生导师,工学博士,E-mail:yongqin@cumt.edu.cn。

更新日期/Last Update: 2012-09-20