|本期目录/Table of Contents|

[1]王 洋,张洪瑞*.青藏高原东南缘碰撞造山结构与物质组成:来自岩石地球化学和地球物理的联合约束[J].地球科学与环境学报,2021,43(03):449-468.[doi:10.19814/j.jese.2020.12001]
 WANG Yang,ZHANG Hong-rui*.Structure and Composition of Collisional Orogen in the Southeastern Margin of Tibetan Plateau, China: Constraints from Petrogeochemistry and Geophysics[J].Journal of Earth Sciences and Environment,2021,43(03):449-468.[doi:10.19814/j.jese.2020.12001]
点击复制

青藏高原东南缘碰撞造山结构与物质组成:来自岩石地球化学和地球物理的联合约束(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第43卷
期数:
2021年第03期
页码:
449-468
栏目:
基础地质与矿产地质
出版日期:
2021-05-15

文章信息/Info

Title:
Structure and Composition of Collisional Orogen in the Southeastern Margin of Tibetan Plateau, China: Constraints from Petrogeochemistry and Geophysics
文章编号:
1672-6561(2021)03-0449-20
作者:
王 洋12张洪瑞1*
(1. 中国地质科学院地质研究所,北京 100037; 2. 中国地质大学(北京)地球科学与资源学院,北京 100083)
Author(s):
WANG Yang12 ZHANG Hong-rui1*
(1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China; 2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China)
关键词:
岩浆岩 始新世 新生代 印度板片 板片撕裂 碰撞造山 地球物理 青藏高原东南缘
Keywords:
magmatic rock Eocene Cenozoic Indian slab slab tearing collisional orogen geophysics the southeastern margin of Tibetan Plateau
分类号:
P56
DOI:
10.19814/j.jese.2020.12001
文献标志码:
A
摘要:
青藏高原东南缘位于印度板块与欧亚板块侧向汇聚部位,是检验碰撞造山动力学模型的理想场所。尽可能全面收集该区已有地球物理和新生代岩浆岩数据,探讨这些资料对碰撞造山带结构和物质组成的指示。结果表明:青藏高原东南缘不同部位的壳幔结构和组成存在较大差异。兰坪—思茅地块、保山地块和腾冲地块等的中地壳(15~30 km深度)普遍发育低速层,表明富水层或者部分熔融物质的存在,为青藏高原物质向东南流动提供了可能。部分熔融产物以大型剪切带内具有高Sr、低Nd同位素特征的淡色花岗岩脉为代表。但是,扬子板块同等深度下却发育高速层,其组成很可能是峨眉山玄武岩,它的存在阻隔了碰撞带物质向东流动。扬子板块和兰坪—思茅地块下地壳底部均出现呈条带状展布的高速体。根据新生代具有高Sr、低Y的岩石显示的下地壳源区特征,结合该区地质演化历史,将上述两套呈条带状展布的高速体分别解释为新元古代铁镁质弧岩浆岩和二叠纪—三叠纪铁镁质弧岩浆岩。青藏高原东南缘地幔各向异性存在明显南、北分区特征,在26°N以北表现为SN向,在26°N以南表现为近EW向。这一差异跟俯冲的印度板片撕裂有密切关系。该撕裂在综合地球物理剖面上显示为突变的印度板片俯冲角度,在地表表现为苦橄岩、煌斑岩、埃达克岩以及淡色花岗岩等的集中出露。这一新模型明显区别于前人的岩石圈拆沉和对流减薄等作用。
Abstract:
The southeastern margin of Tibetan Plateau is located at the lateral convergence between Indian plate and Eurasian plate, which is an ideal place to test the geodynamic model of the collision orogen. The present geophysical and Cenozoic magmatic rock data in this area were collected as comprehensively as possible, and the indication of these data on the structure and composition of the collision orogen was discussed. It is suggested that there are great differences in the structure and composition of crust and mantle in different parts of the southeastern margin of Tibetan Plateau. Low-velocity layers are generally developed in the middle crust(the depth is 15-30 km)of Lanping-Simao, Baoshan and Tengchong blocks, indicating the existence of water-rich or partial melting material layers, which makes it possible for the material of Tibetan Plateau to flow to the southeast. The high-Sr and low-Nd leucogranite dykes in the large shear zone are derived from above partial melting layer. However, Yangtze plate develops a high-velocity body at the same depth, and its composition is likely to be Emeishan basalt, which blocks the material flow in the collision zone. High-velocity bodies with banded distribution appear at the bottom of the lower crust of both Yangtze plate and Lanping-Simao block. According to the characteristics of the lower crust source area shown by Cenozoic high-Sr and low-Y rocks, and combined with the geological evolution history of this area, these two high-velocity bodies are interpreted as Neoproterozoic mafic arc magmatic rocks and Permian-Triassic mafic arc magmatic rocks, respectively. The mantle anisotropy in the southeastern margin of Tibetan Plateau shows SN to the north of 26°N and nearly EW to the south of 26°N. This difference is closely related to the tearing of the subducted Indian slab. The slab tearing shows an abrupt change of the Indian slab subduction angle on the comprehensive geophysical profiles, and the concentrated exposure of picrite, lamprophyre, adakite and leucogranite on the surface. This new model is obviously different from the previous lithosphere delamination and convective thinning.

参考文献/References:

[1] 肖文交,李继亮,宋东方,等.增生型造山带结构解析与时空制约[J].地球科学,2019,44(5):1661-1687.
XIAO Wen-jiao,LI Ji-liang,SONG Dong-fang,et al.Structural Analyses and Spatio-temporal Constraints of Accretionary Orogens[J].Earth Sience,2019,44(5):1661-1687.
[2] 侯增谦,王 涛.同位素填图与深部物质探测(Ⅱ):揭示地壳三维架构与区域成矿规律[J].地学前缘,2018,25(6):20-41.
HOU Zeng-qian,WANG Tao.Isotopic Mapping and Deep Material Probing(Ⅱ):Imaging Crustal Architecture and Its Control on Mineral Systems[J].Earth Science Frontiers,2018,25(6):20-41.
[3] 邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004.
DENG Jin-fu,LUO Zhao-hua,SU Shang-guo,et al.Petrogenesis,Tectonic Environment and Mineralization[M].Beijing:Geological Publishing House,2004.
[4] 莫宣学.岩浆与岩浆岩:地球深部“探针”与演化记录[J].自然杂志,2011,33(5):255-259.
MO Xuan-xue.Magma and Magmatic/Igneous Rocks:A Lithoprobe into the Deep Earth and Records of the Earth's Evolution[J].Chinese Journal of Nature,2011,33(5):255-259.
[5] DICKIN A P,MCNUTT R H.Nd Model Age Mapping of the Southeast Margin of the Archean Foreland in the Grenville Province of Ontario[J].Geology,1989,17(4):299-302.
[6] MOLE D R,FIORENTINI M L,CASSIDY K F,et al.Crustal Evolution,Intra-cratonic Architecture and the Metallogeny of an Archaean Craton[J].Geological Society,London,Special Publications,2014,393:23-80.
[7] TAPPONNIER P,PELTZER G,LE DAIN A Y,et al.Propagating Extrusion Tectonics in Asia:New Insights from Simple Experiments with Plasticine[J].Geology,1982,10(12):611-616.
[8] TAPPONNIER P,XU Z Q,ROGER F,et al.Oblique Stepwise Rise and Growth of the Tibet Plateau[J].Science,2001,294:1671-1677.
[9] ROYDEN L H,BURCHFIEL B C,KING R W,et al.Surface Deformation and Lower Crustal Flow in Eastern Tibet[J].Science,1997,276:788-790.
[10] ROYDEN L H,BURCHFIEL B C,VAN DER HILST R D.The Geological Evolution of the Tibetan Plateau[J].Science,2008,321:1054-1058.
[11] CLARK M K,ROYDEN L H.Topographic Ooze:Building the Eastern Margin of Tibet by Lower Crustal Flow[J].Geology,2000,28(8):703-706.
[12] BEAUMONT C,JAMIESON R A,NGUYEN M H,et al.Himalayan Tectonics Explained by Extrusion of a Low-viscosity Crustal Channel Coupled to Focused Surface Denudation[J].Nature,2001,414:738-742.
[13] CHUNG S L,LEE T Y,LO C H,et al.Intraplate Extension Prior to Continental Extrusion Along the Ailao Shan-Red River Shear Zone[J].Geology,1997,25(4):311-314.
[14] LU Y J,KERRICH R,CAWOOD P A,et al.Zircon SHRIMP U-Pb Geochronology of Potassic Felsic Intrusions in Western Yunnan,SW China:Constraints on the Relationship of Magmatism to the Jinsha Suture[J].Gondwana Research,2012,22(2):737-747.
[15] LI C,VAN DER HILST R D,MELTZER A S,et al.Subduction of the Indian Lithosphere Beneath the Tibetan Plateau and Burma[J].Earth and Planetary Science Letters,2008,274(1/2):157-168.
[16] GUO Z F,CHENG Z H,ZHANG M L,et al.Post-collisional High-K Calc-alkaline Volcanism in Tengchong Volcanic Field,SE Tibet:Constraints on Indian Eastward Subduction and Slab Detachment[J].Journal of the Geological Society,2015,172:624-640.
[17] LU Y J,KERRICH R,MCCUAIG T C,et al.Geoche-mical,Sr-Nd-Pb,and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-like Felsic Intrusions in Western Yunnan,SW China:Petrogenesis and Tectonic Implications[J].Journal of Petrology,2013,54(7):1309-1348.
[18] LU Y J,KERRICH R,KEMP A I S,et al.Intracontinental Eocene-Oligocene Porphyry Cu Mineral Systems of Yunnan,Western South China Block,China:Compositional Characteristics,Sources,and Implications for Continental Collision Metallogeny[J].Economic Geology,2013,108:1541-1576.
[19] DENG J,WANG Q F,LI G J,et al.Cenozoic Tectono-magmatic and Metallogenic Processes in the Sanjiang Region,Southwestern China[J].Earth Science Reviews,2014,138:268-299.
[20] BAO X W,SUN X,XU M,et al.Two Crustal Low-velocity Channels Beneath SE Tibet Revealed by Joint Inversion of Rayleigh Wave Dispersion and Receiver Functions[J].Earth and Planetary Science Letters,2015,415:16-24.
[21] 张智奇,姚华建,杨 妍.青藏高原东南缘地壳上地幔三维S波速度结构及动力学意义[J].中国科学:地球科学,2020,50(9):1242-1258.
ZHANG Zhi-qi,YAO Hua-jian,YANG Yan.Shear Wave Velocity Structure of the Crust and Upper Mantle in Southeastern Tibet and Its Geodynamic Implications[J].Science China:Earth Sciences,2020,50(9):1242-1258.
[22] SUN W H,ZHOU M F,GAO J F,Yang,et al.Detrital Zircon U-Pb Geochronological and Lu-Hf Isotopic Constraints on the Precambrian Magmatic and Crustal Evolution of the Western Yangtze Block,SW China[J].Precambrian Research,2009,172(1):99-126.
[23] 侯增谦,郑远川,耿元生.克拉通边缘岩石圈金属再富集与金-钼-稀土元素成矿作用[J].矿床地质,2015,34(4):641-674.
HOU Zeng-qian,ZHENG Yuan-chuan,GENG Yuan-sheng.Metallic Refertilization of Lithosphere Along Cratonic Edges and Its Control on Au,Mo and REE Ore Systems[J].Mineral Deposits,2015,34(4):641-674.
[24] FAN W M,WANG Y J,ZHANG A M,et al.Permian Arc-back-arc Basin Development Along the Ailaoshan Tectonic Zone:Geochemical,Isotopic and Geochronological Evidence from the Mojiang Volcanic Rocks,Southwest China[J].Lithos,2010,119(3/4):553-568.
[25] ZI J W,CAWOOD P A,FAN W M,et al.Generation of Early Indosinian Enriched Mantle-derived Grani-toid Pluton in the Anjiang Orogen(SW China)in Response to Closure of the Paleo-Tethys[J].Lithos,2012,140:166-182.
[26] LAI C K,MEFFRE S,CRAWFORD A J,et al.The Western Ailaoshan Volcanic Belts and Their SE Asia Connection:A New Tectonic Model for the Eastern IndoChina Block[J].Gondwana Research,2014,26(1):52-74.
[27] LIU H C,WANG Y J,CAWOOD P A,et al.Record of Tethyan Ocean Closure and Indosinian Collision Along the Ailaoshan Suture Zone(SW China)[J].Gondwana Research,2015,27(3):1292-1306.
[28] YANG L,WANG Q F,WANG Y N,et al.Proto- to Paleo-Tethyan Evolution of the Eastern Margin of Simao Block[J].Gondwana Research,2018,62:61-74.
[29] WANG Y,ZHANG H R,CHAI P,et al.Gold in the Lithosphere of the Western South China Block,SW China:Insights from Quartz Porphyries from the Giant Zhenyuan Gold Deposit[J].Ore Geology Reviews,2020,119:103312.
[30] WANG J H,YIN A,HARRISON T M,et al.A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone[J].Earth and Planetary Science Letters,2001,188(1/2):123-133.
[31] HOU Z Q,MA H W,ZAW K,et al.The Himalayan Yulong Porphyry Copper Belt:Product of Large-scale Strike-slip Faulting in Eastern Tibet[J].Economic Geology,2003,98(1):125-145.
[32] HOU Z Q,ZENG P S,GAO Y F,et al.Himalayan Cu-Mo-Au Mineralization in the Eastern Indo-Asian Collision Zone:Constraints from Re-Os Dating of Molybdenite[J].Mineralium Deposita,2006,41(1):33-45.
[33] HOU Z Q,TIAN S H,XIE Y L,et al.The Himalayan Mianning-Dechang REE Belt Associated with Carbonatite-alkaline Complexes,Eastern Indo-Asian Collision Zone,SW China[J].Ore Geology Reviews,2009,36(1):65-89.
[34] DING H X,HOU Q Y,ZHANG Z M.Petrogenesis and Tectonic Significance of the Eocene Adakite-like Rocks in Western Yunnan,Southeastern Tibetan Plateau[J].Lithos,2016,245:161-173.
[35] CAI Y F,WANG Y J,CAWOOD P A,et al.Neoproterozoic Subduction Along the Ailaoshan Zone,South China:Geochronological and Geochemical Evidence from Amphibolite[J].Precambrian Research,2014,245:13-28.
[36] WANG Y J,ZHOU Y Z,CAI Y F,et al.Geochronological and Geochemical Constraints on the Petrogenesis of the Ailaoshan Granitic and Migmatite Rocks and Its Implications on Neoproterozoic Subduction Along the SW Yangtze Block[J].Precambrian Research,2016,283:106-124.
[37] CAWOOD P A,ZHAO G C,YAO J L,et al.Reconstructing South China in Phanerozoic and Precambrian Supercontinents[J].Earth Science Reviews,2018,186:173-194.
[38] ZHOU M F,YAN D P,KENNEDY A K,et al.SHRIMP Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-related Magmatism along the Western Margin of the Yangtze Block,South China[J].Earth and Planetary Science Letters,2002,196(1/2):51-67.
[39] ZHOU M F,MA Y,YAN D P,et al.The Yanbian Terrane(Southern Sichuan Province,SW China):A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block[J].Precambrian Research,2006,144(1/2):19-38.
[40] 云南省地质矿产勘查开发局.云南省区域地质志[M].北京:地质出版社,1990.
Yunnan Bureau of Geology and Mineral Resources.Regional Geology of Yunnan Province[M].Beijing:Geological Publishing House,1990.
[41] DENG J,WANG Q F,YANG L Q,et al.Delineation and Exploration of Geochemical Anomalies Using Fractal Models in the Heqing Area,Yunnan Province,China[J].Journal of Geochemical Exploration,2010,105(3):95-105.
[42] METCALFE I.Palaeozoic and Mesozoic Tectonic Evolution and Palaeogeography of East Asian Crustal Fragments:The Korean Peninsula in Context[J].Gondwana Research,2006,9(1/2):24-46.
[43] METCALFE I.Gondwana Dispersion and Asian Accretion:Tectonic and Palaeogeographic Evolution of Eastern Tethys[J].Journal of Asian Earth Sciences,2013,66:1-33.
[44] LEHMANN B,ZHAO X F,ZHOU M F,et al.Mid-Silurian Back-arc Spreading at the Northeastern Margin of Gondwana:The Dapingzhang Dacite-hosted Massive Sulfide Deposit,Lancangjiang Zone,Southwestern Yunnan,China[J].Gondwana Research,2013,24(2):648-663.
[45] XIN D,YANG T N,LIANG M J,et al.Syn-subduction Crustal Shortening Produced a Magmatic Flare-up in Middle Sanjiang Orogenic Belt,Southeastern Tibet Plateau:Evidence from Geochronology,Geoche-mistry,and Structural Geology[J].Gondwana Research,2018,62:93-111.
[46] 黄 勇,郝家栩,白 龙,等.滇西施甸地区晚泛非运动的地层学和岩石学相应[J].地质通报,2012,31(2):306-313.
HUANG Yong,HAO Jia-xu,BAI Long,et al.Stratigraphic and Petrologic Response to Late Pan-African Movement in Shidian Area,Western Yunnan Province[J].Geological Bulletin of China,2012,31(2):306-313.
[47] XU Y G,YANG Q J,LAN J B,et al.Temporal-spatial Distribution and Tectonic Implications of the Batholiths in the Gaoligong-Tengliang-Yingjiang Area,Western Yunnan:Constraints from Zircon U-Pb Ages and Hf Isotopes[J].Journal of Asian Earth Sciences,2012,53:151-175.
[48] CHEN X C,HU R Z,BI X W,et al.Petrogenesis of Metaluminous A-type Granitoids in the Tengchong-Lianghe Tin Belt of Southwestern China:Evidences from Zircon U-Pb Ages and Hf-O Isotopes,and Whole-rock Sr-Nd Isotopes[J].Lithos,2015,212/213/214/215:93-110.
[49] ZHAO S W,LAI S C,PEI X Z,et al.Neo-Tethyan Evolution in Southeastern Extension of Tibet:Constraints from Early Paleocene to Early Eocene Grani-tic Rocks with Associated Enclaves in Tengchong Block[J].Lithos,2020,364/365:105551.
[50] XU Y G,LAN J B,YANG Q J,et al.Eocene Break-off of the Neo-Tethyan Slab as Inferred from Intraplate-type Mafic Dykes in the Gaoligong Orogenic Belt,Eastern Tibet[J].Chemical Geology,2008,255(3/4):439-453.
[51] 喻学惠,肖晓牛,杨贵来,等.滇西“三江”南段几个花岗岩的锆石SHIRMP U-Pb定年及其地质意义[J].岩石学报,2008,24(2):377-383.
YU Xue-hui,XIAO Xiao-niu,YANG Gui-lai,et al.Zircon SHRIMP Dating of Several Granites and Geological Significance in Southern Part of “Sanjiang” Area,Western Yunnan Province[J].Acta Petrologica Sinica,2008,24(2):377-383.
[52] CHEN Y Q,HUANG J N,ZHAI X M,et al.Zircon U-Pb Age and Geochemistry of Granitoids within Jinla Pb-Zn-Ag Poly-metallic Ore Field Across China and Myanmar Border[J].Earth Science Frontiers,2009,16(1):344-362.
[53] 陈 珲,李 峰,坚润堂,等.云南澜沧老厂花岗斑岩锆石SHRIMP定年及其地质意义[J].地质学报,2010,84(4):485-491.
CHEN Hui,LI Feng,JIAN Run-tang,et al.Zircon SHRIMP Dating of the Laochang Granite Porphyry in Lancang,Yunnan and Its Geological Significance[J].Acta Geologica Sinica,2010,84(4):485-491.
[54] 李龚健.三江特提斯复合造山带构造演化与典型矿床成矿过程研究[D].北京:中国地质大学,2014.
LI Gong-jian.Tethys Tectonic Evolution and Metallogenesis of Important Mineral Deposits in the Sanjiang Region,SW China[D].Beijing:China University of Geosciences,2014.
[55] ZHANG B,ZHANG J J,ZHONG D L.Structure,Kinematics and Ages of Transpression During Strain-partitioning in the Chongshan Shear Zone,Western Yunnan,China[J].Journal of Structural Geology,2010,32(4):445-463.
[56] GUO Z F,HERTOGEN J A N,LIU J Q,et al.Potassic Magmatism in Western Sichuan and Yunnan Pro-vinces,SE Tibet,China:Petrological and Geochemical Constraints on Petrogenesis[J].Journal of Petrology,2005,46(1):33-78.
[57] XU Y G,MENZIES M A,THIRLWALL M F.Exotic Lithosphere Mantle Beneath the Western Yangtze Craton:Petrogenetic Links to Tibet Using Highly Magnesian Ultrapotassic Rocks[J].Geology,2001,29(9):863-866.
[58] LI X H,ZHOU H W,CHUNG S L,et al.Geochemical and Sr-Nd Isotopic Characteristics of Late Paleogene Ultrapotassic Magmatism in Southeastern Tibet[J].International Geology Review,2002,44(6):559-574.
[59] HUANG X L,NIU Y,XU Y G,et al.Mineralogical and Geochemical Constraints on the Petrogenesis of Post-collisional Potassic and Ultrapotassic Rocks from Western Yunnan,SW China[J].Journal of Petrology,2010,51(8):1617-1654.
[60] LU Y J,MCCUAIG T C,LI Z X,et al.Paleogene Post-collisional Lamprophyres in Western Yunnan,Western Yangtze Craton:Mantle Source and Tectonic Implications[J].Lithos,2015,233:139-161.
[61] CHUNG S L,SEARLE M P,YEH M W.The Age of the Potassic Alkaline Igneous Rocks Along the Ailao Shan-Red River Shear Zone:Implications for the Onset Age of Left-Lateral Shearing:A Discussion[J].Journal of Geology,2008,116:201-204.
[62] LIANG H Y,CAMPBELL I H,ALLEN C,et al.Zircon Ce4+/Ce3+ Ratios and Ages for Yulong Ore-bearing Porphyries in Eastern Tibet[J].Mineralium Deposita,2006,41(2):152-159.
[63] LIANG H Y,CAMPBELL I H,ALLEN C M,et al.The Age of the Potassic Alkaline Igneous Rocks Along the Ailao Shan-Red River Shear Zone:Implications for the Onset Age of Left-lateral Shearing[J].Journal of Geology,2007,115:231-242.
[64] DENG J,WANG Q F,LI G J,et al.Geology and Ge-nesis of the Giant Beiya Porphyry-skarn Gold Depo-sit,Northwestern Yangtze Block,China[J].Ore Geo-logy Reviews,2015,70:457-485.
[65] CHEN B,LONG X P,WILDE S A,et al.Delamination of Lithospheric Mantle Evidenced by Cenozoic Potassic Rocks in Yunnan,SW China:A Contribution to Uplift of the Eastern Tibetan Plateau[J].Lithos,2017,284/285:709-729.
[66] XU L L,BI X W,HU R Z,et al.Contrasting Whole-rock and Mineral Compositions of Ore-bearing(Tongchang)and Ore-barren(Shilicun)Granitic Plutons in SW China:Implications for Petrogenesis and Ore Genesis [J].Lithos,2019,336/337:54-66.
[67] LIU J L,CHEN X Y,TANG Y,et al.The Ailao Shan-Red River Shear Zone Revisited:Timing and Tectonic Implications[J].GSA Bulletin,2020,132:1165-1182.
[68] CAO S Y,NEUBAUER F,LIU J L,et al.Exhumation of the Diancang Shan Metamorphic Complex Along the Ailao Shan-Red River Belt,Southwestern Yunnan,China:Evidence from 40Ar/39Ar Thermochrono-logy[J].Journal of Asian Earth Sciences,2011,42(3):525-550.
[69] TANG Y,LIU J L,TRAN M D,et al.Timing of Left-lateral Shearing Along the Ailao Shan-Red River Shear Zone:Constraints from Zircon U-Pb Ages from Granitic Rocks in the Shear Zone Along the Ailao Shan Range,Western Yunnan,China[J].International Journal of Earth Sciences,2013,102(3):605-626.
[70] MIDDLEMOST E A K.Naming Materials in the Magma/Igneous Rock System[J].Earth Science Reviews,1994,37(3/4):215-224.
[71] PECCERILLO R,TAYLOR S R.Geochemistry of Eocene Calc-alkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey[J].Contributions to Mineralogy and Petrology,1976,58(1):63-81.
[72] MA L Y,WANG Y J,FAN W M,et al.Petrogenesis of the Early Eocene I-type Granites in West Yingjiang(SW Yunnan)and Its Implication for the Eastern Extension of the Gangdese Batholiths[J].Gondwana Research,2014,25(1):401-419.
[73] 胥磊落,毕献武,苏文超,等.云南金平铜厂斑岩Cu(Mo-Au)矿床含矿石英正长斑岩地球化学特征及成因机制探讨[J].岩石学报,2011,27(10):3109-3122.
XU Lei-luo,BI Xian-wu,SU Wen-chao,et al.Geochemical Characteristics and Petrogenesis of the Quartz Syenite Porphyry from Tongchang Porphyry Cu(Mo-Au)Deposit in Jinping County,Yunnan Pro-vince[J].Acta Petrologica Sinica,2011,27(10):3109-3122.
[74] CAMPNELL I H,STEPANOV A S,LIANG H Y,et al.The Origin of Shoshonites:New Insights from the Tertiary High-potassium Intrusions of Eastern Tibet[J].Contributions to Mineralogy and Petrology,2014,167:983.
[75] YANG T N,LIANG M J,FAN J W,et al.Paleogene Sedimentation,Volcanism,and Deformation in Eastern Tibet:Evidence from Structures,Geochemistry,and Zircon U-Pb Dating in the Jianchuan Basin,SW China[J].Gondwana Research,2014,26(2):521-535.
[76] LIU B,LIU H,ZHANG C Q,et al.Geochemistry and Geochronology of Porphyries from the Beiya Gold-polymetallic Ore Field,Western Yunnan,China[J].Ore Geology Reviews,2015,69:360-379.
[77] HE W Y,MO X X,HE Z H,et al.The Geology and Mineralogy of the Beiya Skarn Gold Deposit in Yunnan,Southwest China[J].Economic Geology,2015,110:1625-1641.
[78] HE W Y,MO X X,YANG L Q,et al.Origin of the Eocene Porphyries and Mafic Microgranular Enclaves from the Beiya Porphyry Au Polymetallic Deposit,Western Yunnan,China:Implications for Magma Mixing/Mingling and Mineralization[J].Gondwana Research,2016,40:230-248.
[79] TONG X,ZHAO Z D,NIU Y L,et al.Petrogenesis and Tectonic Implications of the Eocene-Oligocene Potassic Felsic Suites in Western Yunnan,Eastern Tibetan Plateau:Evidence from Petrology,Zircon Chronology,Elemental and Sr-Nd-Pb-Hf Isotopic Geochemistry[J].Lithos,2019,340/341:287-315.
[80] ZHOU Y,XU B,HOU Z Q,et al.Petrogenesis of Cenozoic High-Sr/Y Shoshonites and Associated Mafic Microgranular Enclaves in an Intracontinental Setting:Implications for Porphyry Cu-Au Mineralization in Western Yunnan,China[J].Lithos,2019,324/325:39-54.
[81] 黄行凯,莫宣学,喻学惠,等.东南马关和屏边地区新生代玄武岩地球化学特征及深部动力学意义[J].岩石学报,2013,29(4):1325-1337.
HUANG Xing-kai,MO Xuan-xue,YU Xue-hui,et al.Geochemical Characteristics and Geodynamic Significance of Cenozoic Basalts from Maguan and Pingbian,Southeastern Yunnan Province[J].Acta Petrologica Sinica,2013,29(4):1325-1337.
[82] 王江海,尹 安,周江羽,等.青藏东缘新生代两类高钾岩浆活动的热年代学研究[J].中国科学:D辑,地球科学,2002,32(7):529-537.
WANG Jiang-hai,YIN An,ZHOU Jiang-yu,et al.Thermochronological Constraints on Two Pulses of Cenozoic High-K Magmatism in Eastern Tibet[J].Science in China:Series D,Earth Sciences,2002,32(7):529-537.
[83] LIU J L,CHEN X Y,WU W B,et al.New Tectono-geochronological Constraints on Timing of Shearing Along the Ailao Shan-Red River Shear Zone:Implications for Genesis of Ailao Shan Gold Mineralization [J].Journal of Asian Earth Sciences,2015,103:70-86.
[84] 陈 玮,刘俊来,樊文魁,等.哀牢山—红河剪切带中段多阶段新生代花岗岩脉:同位素年代学及对于剪切应变型式转变时间的约束[J].岩石学报,2018,34(5):1347-1358.
CHEN Wei,LIU Jun-lai,FAN Wen-kui,et al.Multiple Stages of Granitic Dykes Along the Ailao Shan-Red River Shear Zone:Constraints on Timing of Switch of Shear Strain Types[J].Acta Petrologica Sinica,2018,34(5):1347-1358.
[85] 孙宏娟.藏东及滇东新生代钾质岩浆作用及其深部制约[D].北京:中国科学院地质与地球理研究所,2000.
SUN Hong-juan.The Cenozoic Potassic Magmatism in Eastern Tibet and Southeast Yunnan Province[D].Beijing:Institute of Geology and Geophysics,Chinese Academy of Sciences,2000.
[86] 张洪瑞,侯增谦.大陆碰撞造山与成矿过程:扎格罗斯和喜马拉雅造山带对比[J].地球科学与环境学报,2021,43(3):436-448.
ZHANG Hong-rui,HOU Zeng-qian.Comparisons of the Collision Processes and Related Metallogenesis of Zagros and Himalaya Orogens[J].Journal of Earth Sciences and Environment,2021,43(3):436-448.
[87] FLOWER M F J,HOANG N,LO C H,et al.Potassic Magma Genesis and the Ailao Shan-Red River Fault[J].Journal of Geodynamics,2013,69:84-105.
[88] ZOU H B,FAN Q C,SCHMITT A K,et al.U-Th Dating of Zircons from Holocene Potassic Andesites(Ma'anshan Volcano,Tengchong,SE Tibetan Pla-teau)by Depth Profiling:Time Scales and Nature of Magma Storage[J].Lithos,2010,118(1/2):202-210.
[89] SHI Y T,GAO Y,SU Y J,et al.Shear-wave Splitting Beneath Yunnan Area of Southwest China[J].Earthquake Science,2012,25(1):25-34.
[90] ZHOU M F,ROBINSON P T,WANG C Y,et al.He-terogeneous Mantle Source and Magma Differentiation of Quaternary Arc-like Volcanic Rocks from Tengchong,SE Margin of the Tibetan Plateau[J].Contributions to Mineralogy and Petrology,2012,163:841-860.
[91] 罗 愫,于常青,张 刚,等.滇西三江构造带电性结构特征:以福贡—巧家剖面为例[J].地球物理学报,2020,63(3):1026-1042.
LUO Su,YU Chang-qing,ZHANG Gang,et al.Deep Electrical Resistivity Structure of the Sanjiang Area,Western Yunnan:An Example of the Fugong-Qiaojia Profile[J].Chinese Journal of Geophysics,2020,63(3):1026-1042.
[92] BAI D H,UNSWORTH M J,MEJU M A,et al.Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging[J].Nature Geosicence,2010,3:358-362.
[93] 酆少英,李秋生,邓小娟,等.深反射大炮揭示的青藏高原侧向碰撞带地壳骨架结构[J].地球物理学报,2020,63(3):828-839.
FENG Shao-ying,LI Qiu-sheng,DENG Xiao-juan,et al.Crustal Skeleton Structure of the Lateral Collision Zone of the Qinghai-Tibet Plateau Revealed by Large-shot Set of Deep-reflecting Profiling[J].Chinese Journal of Geophysics,2020,63(3):828-839.
[94] 崔作舟,卢德源,陈纪平,等.攀西地区的深部地壳结构与构造[J].地球物理学报,1987,30(6):566-580.
CUI Zuo-zhou,LU De-yuan,CHEN Ji-ping,et al.The Deep Structural and Tectonic Features of the Crust in Panxi Area[J].Chinese Journal of Geophysics,1987,30(6):566-580.
[95] 熊绍柏,郑 桦,尹周勋,等.丽江—攀枝花—者海地带二维地壳结构及其构造意义[J].地球物理学报,1993,36(4):434-444.
XIONG Shao-bai,ZHENG Hua,YIN Zhou-xun,et al.The 2-D Structure and Its Tectonic Implications of the Crust in the Lijiang-Panzhihua-Zhehai Region[J].Chinese Journal of Geophysics,1993,36(4):434-444.
[96] 尹周勋,熊绍柏.西昌—渡口—牟定地带二维地壳结构的爆炸地震研究[J].地球物理学报,1992,35(4):451-458.
YIN Zhou-xun,XIONG Shao-bai.Explosion Seismic Study for the 2-D Crustal Structure in Xichang-Du-kou-Muding Region[J].Chinese Journal of Geophy-sics,1992,35(4):451-458.
[97] 张 智,徐春明,孟补在,等.洱源—江川宽角地震剖面的地壳反射特征[J].地球物理学报,2007,50(4):1082-1088.
ZHANG Zhi,XU Chun-ming,MENG Bu-zai,et al.Crustal Reflectivity Characters from the Eryuan-Jiangchuan Wide-angle Seismic Profile[J].Chinese Journal of Geophysics,2007,50(4):1082-1088.
[98] 张中杰,白志明,王椿镛, 等.冈瓦纳型和扬子型地块地壳结构:以滇西孟连—马龙宽角反射剖面为例[J].中国科学:D辑,地球科学,2005,35(5):387-392.ZHANG Zhong-jie,BAI Zhi-ming,WANG Chun-yong,et al.Crustal Structure of Gondwana- and Yangtze-typed Blocks:An Example by Wide-angle Seismic Profile from Menglian to Malong in Western Yunnan[J].Science in China:Series D,Earth Sciences,2005,35(5):387-392.
[99] 张中杰,白志明,王椿镛, 等.三江地区地壳结构及动力学意义:云南遮放—宾川地震反射/折射剖面的启示[J].中国科学:D辑,地球科学,2005,35(4):314-319.
ZHANG Zhong-jie,BAI Zhi-ming,WANG Chun-yong,et al.The Crustal Structure Under Sanjiang and Its Dynamic Implications:Revealed by Seismic Reflection/Refraction Profile Between Zhefang and Binchuan, Yunnan[J].Science in China:Series D,Earth Sciences,2005,35(4):314-319.
[100] LIN J Y,MOONEY W D,WANG F Y,et al.Crustal P Wave Velocity Structure Beneath the SE Margin of the Tibetan Plateau from Deep Seismic Sounding Results[J].Tectonophysics,2019,755:109-126.
[101] WANG C Y,GANG H F.Crustal Structure in Tengchong Volcano-geothermal Area,Western Yunnan,China[J].Tectonophysics,2004,380(1/2):69-87.
[102] 王帅军,刘保金,张建狮,等.南北地震带滇西南地区地壳速度结构与构造研究:勐海—耿马—泸水深地震探测剖面结果[J].中国科学:地球科学,2015,45(12):1853-1865.
WANG Shuai-jun,LIU Bao-jin,ZHANG Jian-shi,et al.Study on the Velocity Structure of the Crust in Southwest Yunnan of the North-south Seismic Belt:Results from the Menghai-Gengma-Lushui Deep Seismic Sounding Profile[J].Science China:Earth Sciences,2015,58:2175-2187.
[103] 高 原,石玉涛,王 琼.青藏高原东南缘地震各向异性及其深部构造意义[J].地球物理学报,2020,63(3):802-816.
GAO Yuan,SHI Yu-tao,WANG Qiong.Seismic Ani-sotropy in the Southeastern Margin of the Tibetan Plateau and Its Deep Tectonic Significances[J].Chinese Journal of Geophysics,2020,63(3):802-816.
[104] 张天继,金明培,刘自凤,等.滇西北地区地壳厚度与泊松比分布及其意义[J].地震研究,2020,43(1):10-18.
ZHANG Tian-ji,JIN Ming-pei,LIU Zi-feng,et al.Distribution and Significance of Crustal Thickness and Poisson's Ratio in Northwestern Yunnan[J].Journal of Seismological Research,2020,43(1):10-18.
[105] 李永华,吴庆举,田小波,等.用接收函数方法研究云南及其邻区地壳上地幔结构[J].地球物理学报,2009,52(1):67-80.
LI Yong-hua,WU Qing-ju,TIAN Xiao-bo,et al.Crustal Structure in the Yunnan Region Determined by Modeling Receiver Functions[J].Chinese Journal of Geophysics,2009,52(1):67-80.
[106] 邓嘉美,金明培,赵家本,等.云南地区地壳厚度与泊松比变化及其意义[J].中国地震,2014,30(4):583-596.
DENG Jia-mei,JIN Ming-pei,ZHAO Jia-ben,et al.Tectonic Implications from the Distribution Map of the Crust Thickness and Poisson's Ratio in the Yunnan Area[J].Earthquake Research in China,2014,30(4):583-596.
[107] HE R,SHANG X,YU C,et al.A Unified Map of Moho Depth and Vp/Vs Ratio of Continental China by Receiver Function Analysis[J].Geophysical Journal International,2014,199:1910-1918.
[108] 王兴臣,丁志峰,武 岩,等.鲁甸Ms 6.5地震震源区地壳结构及孕震环境研究[J].地球物理学报,2015,58(11):4031-4044.
WANG Xing-chen,DING Zhi-feng,WU Yan,et al.The Crustal Structure and Seismogenic Environment in the Ludian Ms 6.5 Earthquake Region[J].Chinese Journal of Geophysics,2015,58(11):4031-4044.
[109] WANG W L,WU J P,FANG L H,et al.Crustal Thickness and Poisson's Ratio in Southwest China Based on Data from Dense Seismic Arrays[J].Journal of Geophysical Research:Solid Earth,2017,122:7219-7235.
[110] 查晓惠,雷建设.云南地区地壳厚度和泊松比研究[J].中国科学:地球科学,2013,43(3):446-456.
CHA Xiao-hui,LEI Jian-she.Crustal Thickness and Poisson's Ratio Beneath the Yunnan Region[J].Science China:Earth Sciences,2013,43(3):446-456.
[111] 张 路,白志明,徐 涛,等.哀牢山地区新生代岩浆活动与掀斜式抬升:来自短周期密集台阵观测的证据[J].中国科学:地球科学,2020,50(8):1069-1082.
ZHANG Lu,BAI Zhi-ming,XU Tao,et al.Cenozoic Magmatic Activity and Oblique Uplifting of the Ailao Mountain:Evidence from a Short-period Den-se Seismic Array[J].Science China:Earth Sciences,2020,50(8):1069-1082.
[112] YAO H J,VAN DER HILST R D,MONTAGNER J P.Heterogeneity and Anisotropy of the Lithosphere of SE Tibet from Surface Wave Array Tomography[J].Journal of Geophysical Research:Solid Earth,2010,115:B12307.
[113] YAO H J.Lithospheric Structure and Deformation in SE Tibet Revealed by Ambient Noise and Earthquake Surface Wave Tomography:Recent Advances and Perspectives[J].Earthquake Science,2012,25(5):371-383.
[114] HAN F,JIA R,FU Y V.Love Wave Phase Velocity Models of the Southeastern Margin of Tibetan Pla-teau from a Dense Seismic Array[J].Tectonophysics,2017,712/713:125-131.
[115] PENG H,YANG H,HU J,et al.Three-dimensional S-velocity Structure of the Crust in the Southeast Margin of the Tibetan Plateau and Geodynamic Implications[J].Journal of Asian Earth Sciences,2017,148:210-222.
[116] FU Y V,GAO Y,LI A,et al.Lithospheric Structure of the Southeastern Margin of the Tibetan Plateau from Rayleigh Wave Tomography[J].Journal of Geophysical Research:Solid Earth,2017,122:4631-4644.
[117] FU Y V,JIA R,HAN F,et al.SH Wave Structure of the Crust and Upper Mantle in Southeastern Margin of the Tibetan Plateau from Tele Seismic Love Wave Tomography[J].Physics of the Earth and Planetary Interiors,2018,279:15-20.
[118] HU J,BADAL J,YANG H,et al.Comprehensive Cru-stal Structure and Seismological Evidence for Lower Crustal Flow in the Southeastern Margin of Tibet Revealed by Receiver Functions[J].Gondwana Research,2018,55:42-59.
[119] QIAO L,YAO H,LAI Y C,et al.Crustal Structure of Southwest China and Northern Vietnam from Ambient Noise Tomography:Implication for the Large-scale Material Transport Model in SE Tibet[J].Tectonics,2018,37:1492-1506.
[120] LI X,BAI D,Ma X,et al.Electrical Resistivity Structure of the Xiaojiang Strike-slip Fault System(SW China)and Its Tectonic Implications[J].Journal of Asian Earth Sciences,2019,176:57-67.
[121] XU L,RONDENAY S,VAN DER HILST R D.Structure of the Crust Beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions[J].Physics of the Earth and Planetary Interiors,2007,165(3/4):176-193.
[122] SUN X,BAO X,XU M,et al.Crustal Structure Beneath SE Tibet from Joint Analysis of Receiver Functions and Rayleigh Wave Dispersion[J].Geophysical Research Letters,2014,41(5):1479-1484.
[123] HU S B,HE L J,WANG J Y.Heat Flow in the Continental Area of China:A New Dataset[J].Earth and Planetary Science Letters,2000,179(2):407-419.
[124] CHEN Y,XU Y G,CHEN T,et al.Magmatic Underplating and Crustal Growth in the Emeishan Large Igneous Province,SW China,Revealed by a Passive Seismic Experiment[J].Earth and Planetary Science Letters,2015,432:103-114.
[125] 吴 鹏,高 原,陈安国,等.青藏高原东南缘三江地区上地壳各向异性初步研究[J].地球物理学报,2020,63(3):1104-1116.
WU Peng,GAO Yuan,CHEN An-guo,et al.Preliminary Study on the Anisotropy of the Upper Crust in the Sanjiang Area,Southeastern Margin of the Tibe-tan Plateau[J].Chinese Journal of Geophysics,2020,63(3):1104-1116.
[126] CHEN M,HUANG H,YAO H,et al.Low Wave Speed Zones in the Crust Beneath SE Tibet Revealed by Ambient Noise Adjoint Tomography[J].Geophy-sical Research Letters,2014,41(2):334-340.
[127] CHEN H P,ZHU L B,SU Y J.Low Velocity Crustal Flow and Crust-mantle Coupling Mechanism in Yunnan,SE Tibet,Revealed by 3D S-wave Velocity and Azimuthal Anisotropy[J].Tectonophysics,2016,685:8-20.
[128] LI M K,ZHANG S X,WANG F,et al.Crustal and Upper-mantle Structure of the Southeastern Tibetan Plateau from Joint Analysis of Surface Wave Dispersion and Receiver Functions[J].Journal of Asian Earth Sciences,2016,117:52-63.
[129] GAN W,ZHANG P,SHEN Z K,et al.Present-day Crustal Motion Within the Tibetan Plateau Inferred from GPS Measurements[J].Journal of Geophysical Research:Solid Earth,2007,112:2156-2202.
[130] SHEN Z K,LV J,WANG M,et al.Contemporary Crustal Deformation Around the Southeast Borderland of the Tibetan Plateau[J].Journal of Geophysical Research:Solid Earth,2005,110:2156-2202.
[131] LIANG S,GAN W,SHEN C,et al.Three-dimensional Velocity Field of Present-day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements[J].Journal of Geophysical Research:Solid Earth,2013,118(10):5722-5732.
[132] CHEN Y,ZHANG Z J,SUN C Q.Crustal Anisotropy from Moho Converted Ps Wave Splitting Analysis and Geodynamic Implications Beneath the Eastern Margin of Tibet and Surrounding Regions[J].Gondwana Research,2013,24(3/4):946-957.
[133] CAI Y,WU J,FANG L,et al.Crustal Anisotropy and Deformation of the Southeastern Margin of the Tibe-tan Plateau Revealed by PmS Splitting[J].Journal of Asian Earth Sciences,2016,121:120-126.
[134] KONG F,WU J,LIU K H,et al.Crustal Anisotropy and Ductile Flow Beneath the Eastern Tibetan Plateau and Adjacent Areas[J].Earth and Planetary Science Letters,2016,442:72-79.
[135] FLESCH L M,HOLT W E,SILVER P G,et al.Constraining the Extent of Crust-mantle Coupling in Central Asia Using GPS,Geologic,and Shear Wave Splitting Data[J].Earth and Planetary Science Letters,2005,238(1):248-268.
[136] LEV E,LONG M D,VAN DER HILST R D.Seismic Anisotropy in Eastern Tibetan Plateau from Shear Wave Splitting Reveals Changes in Lithospheric Deformation[J].Earth and Planetary Science Letters,2006,251(3):293-304.
[137] SOL S,MELTZER A,BURGMANN R,et al.Geodynamics of the Southeastern Tibetan Plateau from Seismic Anisotropy and Geodesy[J].Geology,2007,35(6):563-566.
[138] WANG C Y,FLESCH L M,SILVER P G,et al.Evi-dence for Mechanically Coupled Lithosphere in Central Asia and Resulting Implications[J].Geology,2008,36(5):363-366.
[139] 常利军,王椿镛,丁志峰,等.喜马拉雅东构造结及周边地区上地幔各向异性[J].中国科学:地球科学,2015,45(5):577-588.
CHANG Li-jun,WANG Chun-yong,DING Zhi-feng,et al.Upper Mantle Anisotropy of the Eastern Himalayan Syntaxis and Surrounding Regions from Shear Wave Splitting Analysis[J].Science China:Earth Sciences,2015,45(5):577-588.
[140] 常利军,丁志峰,王椿镛.南北构造带南段上地幔各向异性特征[J].地球物理学报,2015,58(11):4052-4067.
CHANG Li-jun,DING Zhi-feng,WANG Chun-yong.Upper Mantle Anisotropy Beneath the Southern Segment of North-south Tectonic Belt,China[J].Chinese Journal of Geophysics,2015,58(11):4052-4067.
[141] HUANG Z C,WANG P,XU M J,et al.Mantle Structure and Dynamics Beneath SE Tibet Revealed by New Seismic Images[J].Earth and Planetary Science Letters,2015,411:100-111.
[142] 商咏梅,杨 彧,杨晓松.青藏高原东南缘中下地壳地震波各向异性成因:来自云南六合深源包体组构学的约束[J].地球物理学报,2020,63(2):460-477.
SHANG Yong-mei,YANG Yu,YANG Xiao-song.Origin of the Middle-Lower Crust Seismic Anisotropy in SE Tibetan Plateau:Constrained from the EBSD Data on Deep-derived Xenoliths in Liuhe,Yunnan Province[J].Chinese Journal of Geophysics,2020,63(2):460-477.
[143] LEI J S,LI Y,XIE F R,et al.Pn Anisotropic Tomography and Dynamics Under Eastern Tibetan Plateau[J].Journal of Geophysical Research:Solid Earth,2014,119:2174-2198.
[144] HUANG H H,XU Z J,WU Y M,et al.First Local Seismic Tomography for Red River Shear Zone,Northern Vietnam:Stepwise Inversion Employing Crustal P and Pn Waves[J].Tectonophysics,2013,584:230-239.

相似文献/References:

[1]解小龙,牛漫兰,吴齐,等.秦祁昆结合部三叠纪岩浆岩岩石学特征及其构造环境[J].地球科学与环境学报,2015,37(06):72.
 XIE Xiao-long,NIU Man-lan,WU Qi,et al.Petrological Characteristics of Triassic Magmatic Rocks from the Conjunction of Qinling, Qilian and Kunlun Orogens and Their Tectonic Environment[J].Journal of Earth Sciences and Environment,2015,37(03):72.
[2]杨晓勇,古黄玲,严志忠,等.安徽贵池地区燕山期岩浆岩与铜金钼成矿关系:来自地质-地球化学-地球物理证据[J].地球科学与环境学报,2016,38(04):444.
 YANG Xiao-yong,GU Huang-ling,YAN Zhi-zhong,et al.Metallogenic Relationship Between Yanshanian Magmatic Rocks and Cu-Au-Mo Deposits in Guichi Area of Anhui: Evidences from Geological-geochemical-geophysical Characteristics[J].Journal of Earth Sciences and Environment,2016,38(03):444.
[3]余吉远,钱壮志,闫海卿,等.新疆天山冰达坂一带岩体地质特征及其分布[J].地球科学与环境学报,2006,28(01):13.
 YU Ji-yuan,QIAN Zhuang-zhi,YAN Hai-qing,et al.Geological Feature and Distribution of Bingdaban Magmatic Rocks in West Tianshan,Xinjiang Province[J].Journal of Earth Sciences and Environment,2006,28(03):13.
[4]李注苍,等.西秦岭糜署岭岩浆混合花岗岩 地球化学特征及构造意义[J].地球科学与环境学报,2005,27(02):12.
 LI Zhu-cang,LI Yong-jun,ZENG Jun-jie,et al.Geochemical features of Mishuling hybrid magma granite and its tectonic significance in Western Qinling[J].Journal of Earth Sciences and Environment,2005,27(03):12.
[5]徐晓春,安昱华,许心悦,等.安徽南陵—宣城地区岩浆岩锆石U-Pb年龄及元素地球化学特征[J].地球科学与环境学报,2020,42(01):15.[doi:10.19814/j.jese.2019.05023]
 XU Xiao-chun,AN Yu-hua,XU Xin-yue,et al.Zircon U-Pb Ages and Element Geochemistry Characteristics of Magmatic Rocks in Nanling-Xuancheng Area of Anhui, China[J].Journal of Earth Sciences and Environment,2020,42(03):15.[doi:10.19814/j.jese.2019.05023]

备注/Memo

备注/Memo:
收稿日期:2020-12-02; 修回日期:2020-12-24
基金项目:国家自然科学基金项目(91962105,41772088,91855214,41922022); 中国地质调查局地质调查项目(DD20190001)
作者简介:王 洋(1988-),男,河北邢台人,中国地质大学(北京)理学博士研究生,E-mail:ywang1018@126.com。
*通讯作者:张洪瑞(1982-),男,河北衡水人,研究员,博士研究生导师,理学博士,2000~2004年在长安大学资源勘查工程专业攻读学士学位,2004~2007年在长安大学构造地质学专业攻读硕士学位,E-mail:zhanghr@yeah.net。
更新日期/Last Update: 2021-05-01