|本期目录/Table of Contents|

[1]豆敬兆,何 俊,黄曦光,等.西秦岭造山带早中生代花岗岩成分多样性及形成机制[J].地球科学与环境学报,2023,45(02):227-239.[doi:10.19814/j.jese.2022.11041]
 DOU Jing-zhao,HE Jun,HUANG Xi-guang,et al.Compositional Diversity of Early Mesozoic Granites in the West Qinling Orogen, China and Their Genetic Mechanism[J].Journal of Earth Sciences and Environment,2023,45(02):227-239.[doi:10.19814/j.jese.2022.11041]
点击复制

西秦岭造山带早中生代花岗岩成分多样性及形成机制(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第45卷
期数:
2023年第02期
页码:
227-239
栏目:
基础地质与矿床地质
出版日期:
2023-03-15

文章信息/Info

Title:
Compositional Diversity of Early Mesozoic Granites in the West Qinling Orogen, China and Their Genetic Mechanism
文章编号:
1672-6561(2023)02-0227-13
作者:
豆敬兆12何 俊2黄曦光2陈福坤2*
(1. 中国科学院广州地球化学研究所 中国科学院矿物学与成矿学重点实验室,广东 广州 510640; 2. 中国科学技术大学 地球和空间科学学院,安徽 合肥 230026)
Author(s):
DOU Jing-zhao12 HE Jun2 HUANG Xi-guang2 CHEN Fu-kun2*
(1. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China; 2. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, Anhui, China)
关键词:
花岗岩 地球化学 早中生代 成分多样性 不一致熔融 岩浆混合 多期岩浆侵位 西秦岭
Keywords:
granite geochemistry Early Mesozoic compositional diversity incongruent melting magma mixing incremental assembly of magma batches West Qinling
分类号:
P588.12; P581
DOI:
10.19814/j.jese.2022.11041
文献标志码:
A
摘要:
花岗质岩体产状及组成上的差异主要受控于源区性质和岩浆过程。以西秦岭造山带内几个代表性早中生代花岗岩为例,简要介绍其形成中所记录的岩浆过程,探讨花岗岩成分多样性的原因。西秦岭造山带内S型花岗岩是变泥质岩部分熔融的产物; 根据地球化学特征可分为两类,即高Sr含量、低Rb/Sr值和稀土元素总含量的Group A,及低Sr含量、高Rb/Sr值和稀土元素总含量的Group B,其分别可由白云母水致熔融和脱水熔融形成。糜署岭岩体的暗色微粒包体中发育3类晶形和成分不同的锆石,其与寄主岩石的锆石具有一致的U-Pb年龄; 其中,暗色微粒包体中的类型3锆石与寄主岩石中锆石具有一致的晶形和εHf(t)值,捕获于寄主岩石,而类型1和类型2锆石具有较高的Th/U值和εHf(t)值,结晶于混合程度不同的基性岩浆,其基性端元可能来自幔源岩浆; 因此,糜署岭岩体的暗色微粒包体记录了壳-幔岩浆混合过程。中川岩体由形成时代没有明显差异的5个岩相呈同心环状产出; 边部的似斑状花岗闪长岩被含斑中粒黑云母二长花岗岩侵入,中粒黑云母二长花岗岩被中粒电气石二云母花岗岩侵入,后者又被细粒黑云母二长花岗岩侵入; Rb-Sr-Ba微量元素特征显示各岩性之间不存在成分分异趋势; 因此,中川岩体的环带结构是由多期次岩浆侵位、聚集形成的。
Abstract:
The occurrence and compositional diversity of granitic pluton is determined by properties of source rocks and conditions of partial melting, and can be further modified by magmatic processes such as magma mixing, crystal fractionation and assimilation during the transfer. However, the role and relative importance of each process during pluton construction are still elusive. Several representative Early Mesozoic granitic plutons in the West Qinling orogen were chosen to illustrate how the magmatic processes control the compositional variation of granitic plutons. The S-type granites in the West Qinling orogen were derived from partial melting of metapelite and can be classified into two categories based on geochemical features, i.e., high Sr content, and low Rb/Sr ratio and REE content(Group A), and low Sr content, and high Rb/Sr ratio and REE content(Group B). Groups A and B might have been produced through fluid-present and fluid-absent incongruent melting of muscovite, respectively, which can well explain respective contrasting major and trace elemental characteristics, and zircon and monazite saturation temperatures. Three types of zircon were identified in the microgranular mafic enclaves(MMEs)from Mishuling pluton based on the morphology. They have consistent zircon U-Pb age but different trace elemental and Hf isotopic compositions. Type-3 zircon develops {100} prisms and has εHf(t)similar to these of zircon in the host granite. Hence type-3 zircon is interpreted as xenocryst captured from the host granitic magma. Type-1 and type-2 zircons are characterized by {100}+{110} and {110} prisms, respectively. They have relatively higher Th/U ratio and εHf(t)values than type-1 zircon, and may have crystallized from hybridized magmas with varying degrees of the mixing. The mafic endmember of the hybridized magma likely has mantle-derived affinity. Thus, the MMEs in Mishuling pluton record crust-mantle interaction. Zhongchuan pluton is comprised of five rock units from the periphery to the center, which mostly have indistinguishable zircon U-Pb ages. The peripheric porphyritic granodiorite is intruded by phenocryst-bearing(K-feldspar and quartz)medium-grained biotite monzogranite; medium-grained biotite monzogranite is crosscut by medium-grained two-mica tourmaline granite, which is inversely invaded by fine-grained biotite monzogranite in the center. Moreover, the correlations between contents of Rb and Ba, and contents of Rb and Sr for these rock units are not observed. Therefore, Zhongchuan pluton might have been formed by incremental assembly of at least five magma batches.

参考文献/References:

[1] SIAL A N,BETTENCOURT J S,DE CAMPOS C P,et al.Granite-related Ore Deposits:An Introduction[J].Geological Society,London,Special Publications,2011,350:1-5.
[2] 王登红,陈振宇,黄 凡,等.南岭岩浆岩成矿专属性及相关问题探讨[J].大地构造与成矿学,2014,38(2):230-238.
WANG Deng-hong,CHEN Zhen-yu,HUANG Fan,et al.Discussion on Metallogenic Specialization of the Magmatic Rocks and Related Issues in the Nanling Region[J].Geotectonica et Metallogenia,2014,38(2):230-238.
[3] 翟明国.花岗岩:大陆地质研究的突破口以及若干关键科学问题——“岩石学报”花岗岩专辑代序[J].岩石学报,2017,33(5):1369-1380.
ZHAI Ming-guo.Granites:Leading Study Issue for Continental Evolution[J].Acta Petrologica Sinica,2017,33(5):1369-1380.
[4] COLEMAN D S,BARTLEY J M,GLAZNER A F,et al.Is Chemical Zonation in Plutonic Rocks Driven by Changes in Source Magma Composition or Shallow-crustal Differentiation?[J].Geosphere,2012,8(6):1568-1587.
[5] PETFORD N,CRUDEN A R,MCCAFFREY K J W,et al.Granite Magma Formation,Transport and Emplacement in the Earth's Crust[J].Nature,2000,408:669-673.
[6] VILLAROS A,BUICK I S,STEVENS G.Isotopic Variations in S-type Granites:An Inheritance from a Heterogeneous Source?[J].Contributions to Minera-logy and Petrology,2012,163(2):243-257.
[7] HUANG X G,DOU J Z,WU G H,et al.Source Ro-cks Control the Geochemical Diversity of Granite:The Lincang Pluton in the Western Yunnan Tethyan Belt,SW China[J].Lithos,2021,382/383:105950.
[8] LI S,MILLER C F,WANG T,et al.Role of Sediment in Generating Contemporaneous,Diverse “Type” Gra-nitoid Magmas[J].Geology,2022,50(4):427-431.
[9] HARRIS N B W,INGER S.Trace Element Modelling of Pelite-derived Granites[J].Contributions to Mine-ralogy and Petrology,1992,110(1):46-56.
[10] ZENG L S,ASIMOW P D,SALEEBY J B.Coupling of Anatectic Reactions and Dissolution of Accessory Phases and the Sr and Nd Isotope Systematics of Ana-tectic Melts from a Metasedimentary Source[J].Geo-chimica et Cosmochimica Acta,2005,69(14):3671-3682.
[11] STEVENS G,VILLAROS A,MOYEN J F.Selective Peritectic Garnet Entrainment as the Origin of Geochemical Diversity in S-type Granites[J].Geology,2007,35(1):9-12.
[12] GAO P,GARCÍA-ARIAS M,GU H O,et al.Magnesium Isotopes and Zircon Geochemistry Verify the Entrainment of Garnet Increasing the Maficity of S-type Granites[J].Geochimica et Cosmochimica Acta,2022,337:1-13.
[13] ÓDRI Á,HARRIS C,LE ROUX P.The Role of Cru-stal Contamination in the Petrogenesis of Nepheline Syenite to Granite Magmas in the Ditru Complex,Romania:Evidence from O-,Nd-,Sr-and Pb-isotopes[J].Contributions to Mineralogy and Petrology,2020,175(11):1-25.
[14] FARINA F,MAYNE M J,STEVENS G,et al.Phase Equilibria Constraints on Crystallization Differentiation:Insights into the Petrogenesis of the Normally Zoned Buddusò Pluton in North-Central Sardinia[J].Geological Society,London,Special Publications,2020,491:243-265.
[15] WANG D,WANG X L.Dual Mixing for the Formation of Neoproterozoic Granitic Intrusions Within the Composite Jiuling Batholith,South China[J].Contributions to Mineralogy and Petrology,2021,176:1-21.
[16] GUO C L,WILDE S A,HENDERSON R A,et al.Cogenetic Dykes the Key to Identifying Diverse Magma Batches in the Assembly of Granitic Plutons[J].Journal of Petrology,2021,61(11/12):egaa105.
[17] GAO P,ZHENG Y F,YAKYMCHUK C,et al.The Effects of Source Mixing and Fractional Crystallization on the Composition of Eocene Granites in the Himalayan Orogen[J].Journal of Petrology,2021,62(7):egab037.
[18] COLEMAN D S,GRAY W,GLAZNER A F.Rethinking the Emplacement and Evolution of Zoned Plutons:Geochronologic Evidence for Incremental Assembly of the Tuolumne Intrusive Suite,California[J].Geology,2004,32(5):433-436.
[19] LEE C T A,MORTON D M.High Silica Granites:Terminal Porosity and Crystal Settling in Shallow Magma Chambers[J].Earth and Planetary Science Letters,2015,409:23-31.
[20] WERTS K,BARNES C G,MEMETI V,et al.Hornblende as a Tool for Assessing Mineral-melt Equilibrium and Recognition of Crystal Accumulation[J].American Mineralogist,2020,105(1):77-91.
[21] BARNES C G,WERTS K,MEMETI V,et al.Most Granitoid Rocks Are Cumulates:Deductions from Hornblende Compositions and Zircon Saturation[J].Journal of Petrology,2019,60(11):2227-2240.
[22] ZHAN Q Y,ZHU D C,WEINBERG R F,et al.Cumulate Granites:A Perspective from New Apatite MgO Partition Coefficients[J].Geology,2022,50(6):681-685.
[23] CORNET J,BACHMANN O,GANNE J,et al.Assessing the Effect of Melt Extraction from Mushy Re-servoirs on Compositions of Granitoids:From a Glo-bal Database to a Single Batholith[J].Geosphere,2022,18(3):985-999.
[24] HOLNESS M B.Melt Segregation from Silicic Crystal Mushes:A Critical Appraisal of Possible Mechanisms and Their Microstructural Record[J].Contributions to Mineralogy and Petrology,2018,173(6):1-17.
[25] PETFORD N,KOENDERS M A,CLEMENS J D.Igneous Differentiation by Deformation[J].Contributions to Mineralogy and Petrology,2020,175(5):1-21.
[26] WEINBERG R F,VERNON R H,SCHMELING H.Processes in Mushes and Their Role in the Differentiation of Granitic Rocks[J].Earth-science Reviews,2021,220:103665.
[27] VAN ZALINGE M E,MARK D F,SPARKS R S,et al.Timescales for Pluton Growth,Magma-chamber Formation and Super-eruptions[J].Nature,2022,608:87-92.
[28] 马昌前,邹博文,高 珂,等.晶粥储存、侵入体累积组装与花岗岩成因[J].地球科学,2020,45(12):4332-4351.
MA Chang-qian,ZOU Bo-wen,GAO Ke,et al.Crystal Mush Storage,Incremental Pluton Assembly and Granitic Petrogenesis[J].Earth Science,2020,45(12):4332-4351.
[29] 张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001.
ZHANG Guo-wei,ZHANG Ben-ren,YUAN Xue-cheng,et al.Qinling Orogenic Belt and Continental Dynamics[J].Beijing:Science Press,2001.
[30] 冯益民,曹宣铎,张二朋,等.西秦岭造山带的演化、构造格局和性质[J].西北地质,2003,36(1):1-10.
FENG Yi-min,CAO Xuan-duo,ZHANG Er-peng,et al.Tectonic Evolution Framework and Nature of the West Qinling Orogenic Belt[J].Northwestern Geology,2003,36(1):1-10.
[31] 黄雄飞,莫宣学,喻学惠,等.西秦岭宕昌地区晚三叠世酸性火山岩的锆石 U-Pb 年代学、地球化学及其地质意义[J].岩石学报,2013,29(11):3968-3980.
HUANG Xiong-fei,MO Xuan-xue,YU Xue-hui,et al.Zircon U-Pb Chronology,Geochemistry of the Late Triassic Acid Volcanic Rocks in Tanchang Area,West Qinling and Their Geological Significance[J].Acta Petrologica Sinica,2013,29(11):3968-3980.
[32] LI X W,MO X X,YU X H,et al.Petrology and Geochemistry of the Early Mesozoic Pyroxene Andesites in the Maixiu Area,West Qinling,China:Products of Subduction or Syn-collision?[J].Lithos,2013,172/173:158-174.
[33] LUO B J,ZHANG H F,XU W C,et al.The Magma-tic Plumbing System for Mesozoic High-Mg Andesi-tes,Garnet-bearing Dacites and Porphyries,Rhyolites and Leucogranites from West Qinling,Central China[J].Journal of Petrology,2018,59(3):447-482.
[34] 高永伟,李向民,辜平阳,等.西秦岭造山带三叠纪大规模成矿作用背景:来自恰冬铜矿高镁安山岩的证据[J].岩石学报,2022,38(10):3143-3164.
GAO Yong-wei,LI Xiang-min,GU Ping-yang,et al.The Geodynamic Setting of Triassic Large-scale Mi-neralization Event in the West Qinling Orogen:Evidence from High-Mg Andesite in the Qiadong Copper Deposit[J].Acta Petrologica Sinica,2022,38(10):3143-3164.
[35] LUO B J,ZHANG H F,LV X B.U-Pb Zircon Dating,Geochemical and Sr-Nd-Hf Isotopic Compositions of Early Indosinian Intrusive Rocks in West Qinling,Central China:Petrogenesis and Tectonic Implications[J].Contributions to Mineralogy and Petrology,2012,164(4):551-569.
[36] LI X W,MO X X,BADER T,et al.Petrology,Geochemistry and Geochronology of the Magmatic Suite from the Jianzha Complex,Central China:Petrogenesis and Geodynamic Implications[J].Journal of Asian Earth Sciences,2014,95:164-181.
[37] 张成立,王 涛,王晓霞.秦岭造山带早中生代花岗岩成因及其构造环境[J].高校地质学报,2008,14(3):304-316.
ZHANG Cheng-li,WANG Tao,WANG Xiao-xia.Origin and Tectonic Setting of the Early Mesozoic Gra-nitoids in Qinling Orogenic Belt[J].Geological Journal of China Universities,2008,14(3):304-316.
[38] WANG X X,WANG T,ZHANG C L.Neoproterozoic,Paleozoic,and Mesozoic Granitoid Magmatism in the Qinling Orogen,China:Constraints on Orogenic Process[J].Journal of Asian Earth Sciences,2013,72:129-151.
[39] 王晓霞,王 涛,张成立.秦岭造山带花岗质岩浆作用与造山带演化[J].中国科学:地球科学,2015,45(8):1109-1125.
WANG Xiao-xia,WANG Tao,ZHANG Cheng-li.Gra-nitoid Magmatism in the Qinling Orogen,Central China and Its Bearing on Orogenic Evolution[J].Science China:Earth Sciences,2015,45(8):1109-1125.
[40] QIU K F,YU H C,GOU Z Y,et al.Nature and Origin of Triassic Igneous Activity in the Western Qinling Orogen:The Wenquan Composite Pluton Example[J].International Geology Review,2018,60(2):242-266.
[41] 金维浚,张 旗,何登发,等.西秦岭埃达克岩的 SHRIMP 定年及其构造意义[J].岩石学报,2005,21(3):959-966.
JIN Wei-jun,ZHANG Qi,HE Deng-fa,et al.SHRI-MP Dating of Adakites in Western Qinling and Their Implications[J].Acta Petrologica Sinica,2005,21(3):959-966.
[42] 徐学义,陈隽璐,高 婷,等.西秦岭北缘花岗质岩浆作用及构造演化[J].岩石学报,2014,30(2):371-389.
XU Xue-yi,CHEN Jun-lu,GAO Ting,et al.Grani-toid Magmatism and Tectonic Evolution in Northern Edge of the Western Qinling Terrane[J].Acta Petrologica Sinica,2014,30(2):371-389.
[43] QIN J F,LAI S C,GRAPES R,et al.Geochemical Evidence for Origin of Magma Mixing for the Triassic Monzonitic Granite and Its Enclaves at Mishuling in the Qinling Orogen(Central China)[J].Lithos,2009,112(3/4):259-276.
[44] ZHU L M,ZHANG G W,YANG T,et al.Geochronology,Petrogenesis and Tectonic Implications of the Zhongchuan Granitic Pluton in the Western Qinling Metallogenic Belt,China[J].Geological Journal,2013,48(4):310-334.
[45] WANG M,PEI X Z,LI R B,et al.Early Indosinian High-Mg# and High-Sr/Y Ratio Granodiorites in the Xiahe Area,West Qinling,Central China:Petrogenesis and Geodynamic Implications[J].Lithos,2019,332/333:162-174.
[46] DOU J Z,HUANG X G,CHEN F K.Successive Magma Mixing in Deep-seated Magma Chambers Recorded in Zircon from Mafic Microgranular Enclaves in the Triassic Mishuling Granitic Pluton,Western Qinling,Central China[J].Journal of Asian Earth Sciences,2021,207:104656.
[47] SUN W D,LI S G,CHEN Y D,et al.Timing of Synorogenic Granitoids in the South Qinling,Central China:Constraints on the Evolution of the Qinling-Dabie Orogenic Belt[J].The Journal of Geology,2002,110(4):457-468.
[48] LI N,CHEN Y J,SANTOSH M,et al.Compositional Polarity of Triassic Granitoids in the Qinling Orogen,China:Implication for Termination of the Northernmost Paleo-Tethys[J].Gondwana Research,2015,27(1):244-257.
[49] HARRIS N,AYRES M,MASSEY J.Geochemistry of Granitic Melts Produced During the Incongruent Melting of Muscovite:Implications for the Extraction of Himalayan Leucogranite Magmas[J].Journal of Geophysical Research:Solid Earth,1995,100(B8):15767-15777.
[50] PATIÑO DOUCE A E,HARRIS N.Experimental Constraints on Himalayan Anatexis[J].Journal of Petrology,1998,39(4):689-710.
[51] INGER S,HARRIS N.Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley,Nepal Himalaya[J].Journal of Petrology,1993,34(2):345-368.
[52] GAO L E,ZENG L S,ASIMOW P D.Contrasting Geochemical Signatures of Fluid-absent Versus Fluid-fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites[J].Geology,2017,45(1):39-42.
[53] 曾令森,高利娥.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩[J].岩石学报,2017,33(5):1420-1444.
ZENG Ling-sen,GAO Li-e.Cenozoic Crustal Anate-xis and the Leucogranites in the Himalayan Collisio-nal Orogenic Belt[J].Acta Petrologica Sinica,2017,33(5):1420-1444.
[54] DOU J Z,SIEBEL W,HE J,et al.Different Melting Conditions and Petrogenesis of Peraluminous Granites in Western Qinling,China,and Tectonic Implications[J].Lithos,2019,336/337:97-111.
[55] DENG Z B,LIU S W,ZHANG W Y,et al.Petrogenesis of the Guangtoushan Granitoid Suite,Central China:Implications for Early Mesozoic Geodynamic Evolution of the Qinling Orogenic Belt[J].Gondwana Research,2016,30:112-131.
[56] LU Y H,ZHAO Z F,ZHENG Y F.Geochemical Constraints on the Source Nature and Melting Conditions of Triassic Granites from South Qinling in Central China[J].Lithos,2016,264:141-157.
[57] JUNG S,PFÄNDER J A.Source Composition and Melting Temperatures of Orogenic Granitoids:Constraints from CaO/Na2O,Al2O3/TiO2 and Accessory Mineral Saturation Thermometry[J].European Journal of Mineralogy,2007,19(6):859-870.
[58] PETFORD N.Rheology of Granitic Magmas During Ascent and Emplacement[J].Annual Review of Earth and Planetary Sciences,2003,31(1):399-427.
[59] RONG W,ZHANG S B,ZHENG Y F,et al.Mixing of Felsic Magmas in Granite Petrogenesis:Geochemical Records of Zircon and Garnet in Peraluminous Granitoids from South China[J].Journal of Geophysical Research:Solid Earth,2018,123(4):2738-2769.
[60] VERNON R H.Microgranitoid Enclaves in Granites:Globules of Hybrid Magma Quenched in a Plutonic Environment[J].Nature,1984,309:438-439.
[61] ELBURG M A.Evidence of Isotopic Equilibration Between Microgranitoid Enclaves and Host Granodio-rite,Warburton Granodiorite,Lachlan Fold Belt,Australia[J].Lithos,1996,38(1/2):1-22.
[62] BARBARIN B.Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith,California:Nature,Origin,and Relations with the Hosts[J].Lithos,2005,80(1/2/3/4):155-177.
[63] DUAN M,NIU Y L,KONG J J,et al.Zircon U-Pb Geochronology,Sr-Nd-Hf Isotopic Composition and Geological Significance of the Late Triassic Baijia-zhuang and Lvjing Granitic Plutons in West Qinling Orogen[J].Lithos,2016,260:443-456.
[64] XIONG X,ZHU L M,ZHANG G W,et al.Petroge-nesis and Tectonic Implications of Indosinian Grani-toids from Western Qinling Orogen,China:Products of Magma-mixing and Fractionation[J].Geoscience Frontiers,2020,11(4):1305-1321.
[65] LU Y H,GAO P,ZHAO Z F,et al.Whole-rock Geochemical and Zircon Hf-O Isotopic Constraints on the Origin of Granitoids and Their Mafic Enclaves from the Triassic Mishuling Pluton in West Qinling,Central China[J].Journal of Asian Earth Sciences,2020,189:104136.
[66] KONG J J,NIU Y L,DUAN M,et al.Petrogenesis of Luchuba and Wuchaba Granitoids in Western Qinling:Geochronological and Geochemical Evidence[J].Mineralogy and Petrology,2017,111(6):887-908.
[67] KONG J J,NIU Y L,DUAN M,et al.The Syncollisional Granitoid Magmatism and Crust Growth During the West Qinling Orogeny,China:Insights from the Jiaochangba Pluton[J].Geological Journal,2019,54(6):4014-4033.
[68] WANG X,GRIFFIN W L,CHEN J,et al.U and Th Contents and Th/U Ratios of Zircon in Felsic and Mafic Magmatic Rocks:Improved Zircon-melt Distribution Coefficients[J].Acta Geologica Sinica(English Edition),2011,85(1):164-174.
[69] 汪 相,KIENAST J R.微粒暗色包体中锆石的形态演化及其制约机制[J].中国科学:D辑,地球科学,2000,30(2):180-187.
WANG Xiang,KIENAST J R.Morphology and Geochemistry of Zircon:A Case Study on Zircon from the Microgranitoid Enclaves[J].Science in China:Series D,Earth Sciences,2000,30(2):180-187.
[70] BURGESS S D,MILLER J S.Construction,Solidification and Internal Differentiation of a Large Felsic Arc Pluton:Cathedral Peak Granodiorite,Sierra Nevada Batholith[J].Geological Society,London,Special Publications,2008,304:203-233.
[71] ZORPI M J,COULON C,ORSINI J B,et al.Magma Mingling,Zoning and Emplacement in Calc-alkaline Granitoid Plutons[J].Tectonophysics,1989,157(4):315-329.
[72] GRAY W,GLAZNER A F,COLEMAN D S,et al.Long-term Geochemical Variability of the Late Cretaceous Tuolumne Intrusive Suite,Central Sierra Nevada,California[J].Geological Society,London,Special Publications,2008,304:183-201.
[73] GLAZNER A F,BARTLEY J M,COLEMAN D S,et al.Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers?[J].GSA Today,2004,14(4/5):4-12.
[74] MICHEL J,BAUMGARTNER L,PUTLITZ B,et al.Incremental Growth of the Patagonian Torres del Paine Laccolith over 90 k.y.[J].Geology,2008,36(6):459-462.
[75] FARINA F,STEVENS G,VILLAROS A.Multi-bat-ch,Incremental Assembly of a Dynamic Magma Cham-ber:The Case of the Peninsula Pluton Granite(Cape Granite Suite,South Africa)[J].Mineralogy and Petrology,2012,106(3):193-216.
[76] PITCHER W S.The Nature and Origin of Granite[M].Dordrecht:Springer,1997.
[77] PUPIER E,BARBEY P,TOPLIS M J,et al.Igneous Layering,Fractional Crystallization and Growth of Granitic Plutons:The Dolbel Batholith in SW Niger[J].Journal of Petrology,2008,49(6):1043-1068.
[78] 彭 璇.西秦岭中川岩体群同源性及其构造意义[D].西安:长安大学,2012.
PENG Xuan.Magmatic Consanguinity and Tectonic Significance of Zhongchuan Rock Group in Western Qinling[D].Xi'an:Chang'an University,2012.
[79] 李宏卫,娄 峰,许冠军,等.多次重熔的成矿作用:对甘肃中川岩体成岩成矿过程的再认识[J].地学前缘,2011,18(1):126-132.
LI Hong-wei,LOU Feng,XU Guan-jun,et al.Minera-lization Relevant to Repeated Crustal Melting:An Example from the ZCGB,Gansu Province[J].Earth Science Frontiers,2011,18(1):126-132.
[80] YANG S S,LIU J J,ZHANG F F,et al.Petrogenesis and Geodynamic Setting of the Triassic Granitoid Plutons in West Qinling,China:Insights from LA-ICP-MS Zircon U-Pb Ages,Lu-Hf Isotope Signatures and Geochemical Characteristics of the Zhongchuan Pluton[J].International Geology Review,2017,59(15):1908-1928.
[81] 柯昌辉,王晓霞,聂政融,等.西秦岭中川岩体年代学、元素地球化学、Nd-Hf 同位素组成及其与金成矿的关系[J].中国地质,2020,47(4):1127-1154.
KE Chang-hui,WANG Xiao-xia,NIE Zheng-rong,et al.Age,Geochemistry,Nd-Hf Isotopes and Relationship Between Granite and Gold Mineralization of Zhongchuan Granitoid Pluton in West Qinling[J].Geology in China,2020,47(4):1127-1154.
[82] 豆敬兆.西秦岭造山带早中生代花岗质岩浆作用与成分多样性研究[D].合肥:中国科学技术大学,2020.
DOU Jing-zhao.On the Compositional Diversity of the Early Mesozoic Granitic Magmatism in the West Qinling Orogenic Belt in Central China[D].Hefei:University of Science and Technology of China,2020.

相似文献/References:

[1]赵磊,漆富勇,李江东.江西赣县洋西坑钼矿床地质特征及Re-Os同位素测年[J].地球科学与环境学报,2013,35(04):77.
 ZHAO Lei,QI Fu-yong,LI Jiang-dong.Geological Characteristics and Re-Os Isotopic Dating of Yangxikeng Molybdenum Deposit in Ganxian of Jiangxi[J].Journal of Earth Sciences and Environment,2013,35(02):77.
[2]毕君辉,葛文春,张彦龙,等.佳木斯地块东部二叠纪锦山花岗杂岩体的成因及其地质意义[J].地球科学与环境学报,2014,36(04):16.
 BI Jun-hui,GE Wen-chun,ZHANG Yan-long,et al.Petrogenesis of Permian Jinshan Granitic Complex in the Eastern Jiamusi Massif and Its Geological Implication[J].Journal of Earth Sciences and Environment,2014,36(02):16.
[3]周争艳,杨家喜,徐涛,等.西秦岭天水地区早中生代草川铺花岗岩年代学、地球化学特征及其地质意义[J].地球科学与环境学报,2015,37(02):11.
 ZHOU Zheng-yan,YANG Jia-xi,XU Tao,et al.Geochronological and Geochemical Characteristics of Early Mesozoic Caochuanpu Granitoids in Tianshui Area of West Qinling and Their Geological Significance[J].Journal of Earth Sciences and Environment,2015,37(02):11.
[4]赖绍聪,赵少伟.川西北塔公石英闪长岩地球化学特征和岩石成因[J].地球科学与环境学报,2015,37(03):1.
 LAI Shao-cong,ZHAO Shao-wei.Geochemistry and Petrogenesis of Quartz Diorite in Tagong Area of Northwest Sichuan[J].Journal of Earth Sciences and Environment,2015,37(02):1.
[5]翟明国.大陆动力学的物质演化研究方向与思路[J].地球科学与环境学报,2015,37(04):1.
 ZHAI Ming-guo.New Research Interests and Concept of Material Evolution for Continental Dynamics[J].Journal of Earth Sciences and Environment,2015,37(02):1.
[6]高景刚,梁婷,李文渊,等.新疆额尔齐斯韧性剪切带新生锆石及其年代学意义[J].地球科学与环境学报,2015,37(04):15.
 GAO Jing-gang,LIANG Ting,LI Wen-yuan,et al.Neogenic Zircons in Ertix Ductile Shear Zone of Xinjiang and Their Geochronological Significance[J].Journal of Earth Sciences and Environment,2015,37(02):15.
[7]王超,陈斌,马星华,等.东天山三岔口地区早、晚古生代岩体成因及其对康古尔缝合带演化的意义[J].地球科学与环境学报,2015,37(05):52.
 WANG Chao,CHEN Bin,MA Xing-hua,et al.Petrogenesis of Early and Late Paleozoic Plutons in Sanchakou Area of East Tianshan and Their Implications for Evolution of Kangur Suture Zone[J].Journal of Earth Sciences and Environment,2015,37(02):52.
[8]冯罡,万乐,刘正宏,等.内蒙古巴林右旗晚侏罗世巴彦琥硕花岗岩地球化学特征、锆石U-Pb年龄及Hf同位素组成[J].地球科学与环境学报,2015,37(06):33.
 FENG Gang,WAN Le,LIU Zheng-hong,et al.Geochemical Characteristics, Zircon U-Pb Age and Hf Isotopic Composition of Late Jurassic Bayanhushuo Granites in Balinyou Banner of Inner Mongolia[J].Journal of Earth Sciences and Environment,2015,37(02):33.
[9]叶永钦,叶松鑫,许幼,等.粤北长江铀矿田长排地区花岗岩体地球化学特征及其意义[J].地球科学与环境学报,2015,37(06):101.
 YE Yong-qin,YE Song-xin,XU You,et al.Geochemical Characteristics of Granite Body in Changpai Area of Changjiang Uranium Orefield, the Northern Guangdong and Their Significance[J].Journal of Earth Sciences and Environment,2015,37(02):101.
[10]孙兰兰,杨家喜,周争艳,等.适用于壳幔混合物源成因花岗岩中暗色微粒包体的单斜辉石压力计[J].地球科学与环境学报,2016,38(01):34.
 SUN Lan-lan,YANG Jia-xi,ZHOU Zheng-yan,et al.Clinopyroxene Geobarometer Applied to Mafic Microgranular Enclaves in Granite Originated from Crust-mantle Mixed Source[J].Journal of Earth Sciences and Environment,2016,38(02):34.
[11]李强,杨富全*,杨成栋.新疆阿尔泰大喀拉苏花岗岩年代学、地球化学特征及其构造意义[J].地球科学与环境学报,2019,41(04):396.
 LI Qiang,YANG Fu-quan*,YANG Cheng-dong.Geochronology and Geochemical Characteristics of Dakalasu Granite in Altay of Xinjiang, China and Their Tectonic Significance[J].Journal of Earth Sciences and Environment,2019,41(02):396.
[12]马涛,鲁有朋,代俊峰*,等.西秦岭多哇地区萨日加岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J].地球科学与环境学报,2020,42(02):231.[doi:10.19814/j.jese.2019.10052]
 MA Tao,LU You-peng,DAI Jun-feng*,et al.LA-ICP-MS Zircon U-Pb Ages and Geochemical Characteristics of Sarijia Intrusion in Duowa Area of West Qinling, China and Their Geological Implications[J].Journal of Earth Sciences and Environment,2020,42(02):231.[doi:10.19814/j.jese.2019.10052]
[13]陈贵民,刘俊辰,王义天*,等.西昆仑苏纳克早古生代花岗岩锆石U-Pb年龄、地球化学特征及其地质意义[J].地球科学与环境学报,2020,42(04):427.[doi:10.19814/j.jese.2020.03026]
 CHEN Gui-min,LIU Jun-chen,WANG Yi-tian*,et al.Zircon U-Pb Dating and Geochemical Characteristics of Early Paleozoic Granite in the Southern Sunake of West Kunlun, Northwest China and Their Geological Significances[J].Journal of Earth Sciences and Environment,2020,42(02):427.[doi:10.19814/j.jese.2020.03026]
[14]封铿,李瑞保*,裴先治,等.东昆仑造山带东段大格勒花岗岩锆石U-Pb年代学、地球化学特征及其构造意义[J].地球科学与环境学报,2020,42(04):442.[doi:10.19814/j.jese.2020.05009]
 FENG Keng,LI Rui-bao*,PEI Xian-zhi,et al.Zircon U-Pb Dating and Geochemical Characteristics of Dagele Granite in the Eastern Margin of East Kunlun Orogenic Belt, China and Their Tectonic Implications[J].Journal of Earth Sciences and Environment,2020,42(02):442.[doi:10.19814/j.jese.2020.05009]

备注/Memo

备注/Memo:
收稿日期:2022-11-12; 修回日期:2023-01-10
基金项目:中国博士后基金项目(2021M703224); 国家自然科学基金项目(41872049)
作者简介:豆敬兆(1990-),男,河北邢台人,理学博士,博士后,E-mail:jzdou@mail.ustc.edu.cn。
*通讯作者:陈福坤(1964-),男,福建龙海人,教授,博士研究生导师,理学博士,E-mail:fkchen@ustc.edu.cn。
更新日期/Last Update: 2023-05-20