|本期目录/Table of Contents|

[1]方 巍,齐媚涵.基于深度学习的高时空分辨率降水临近预报方法[J].地球科学与环境学报,2023,45(03):706-718.[doi:10.19814/j.jese.2023.01010]
 FANG Wei,QI Mei-han.Precipitation Nowcasting Method with High Spatio-temporal Resolution Based on Deep Learning[J].Journal of Earth Sciences and Environment,2023,45(03):706-718.[doi:10.19814/j.jese.2023.01010]
点击复制

基于深度学习的高时空分辨率降水临近预报方法(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第45卷
期数:
2023年第03期
页码:
706-718
栏目:
环境与可持续发展
出版日期:
2023-05-15

文章信息/Info

Title:
Precipitation Nowcasting Method with High Spatio-temporal Resolution Based on Deep Learning
文章编号:
1672-6561(2023)03-0706-13
作者:
方 巍123齐媚涵1
(1. 南京信息工程大学 计算机学院,江苏 南京 210044; 2. 南京信息工程大学 江苏省大气环境与装备技术协同创新中心,江苏 南京 210044; 3. 苏州大学 江苏省计算机信息处理技术重点实验室,江苏 苏州 215006)
Author(s):
FANG Wei123 QI Mei-han1
(1. School of Computer Science, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 2. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 3. Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou 215006, Jiangsu, China)
关键词:
降水临近预报 强对流天气 深度学习 雷达回波外推 SwinAt-UNet模型 时空分辨率 天气雷达探测
Keywords:
precipitation nowcasting severe convective weather deep learning radar echo extrapolation SwinAt-UNet model spatio-temporal resolution weather radar detection
分类号:
P456.1; X43
DOI:
10.19814/j.jese.2023.01010
文献标志码:
A
摘要:
降水临近预报在强对流天气监测预警中具有重要地位,对于防灾减灾至关重要。在气象业务中,主要采用雷达回波外推方法解决高时空分辨率的临近预报问题。针对传统雷达回波外推方法中普遍存在的资料信息利用率不足和预报准确率低的问题,利用上海地区多年的高时空分辨率天气雷达探测资料,基于数据驱动的深度学习方法进行雷达回波外推,提出了一种新的降水临近预报模型——SwinAt-UNet模型。该预报模型通过融合UNet模型和Swin Transformer结构捕捉历史天气雷达探测资料中的短期和长期动态变化特征,可以自适应地学习潜在的雷达回波生消演变规律。此外,为提高模型的泛化能力和预报准确率,引入深度可分离卷积和卷积块注意力模块。结果表明:在不同基本反射率阈值下,SwinAt-UNet模型的预报准确率均高于UNet、SmaAt-UNet、TransUNet和AA-TransUNet模型; 在45 dBZ的基本反射率阈值下,SwinAt-UNet模型临界成功指数提高了13%,同时在预报时效上具有一定的优越性; SwinAt-UNet模型外推图像具有更加清晰的边缘和细节性纹理,对降水范围、移动方向和强度变化的预测更为准确。
Abstract:
Precipitation nowcasting plays an important role in severe convective weather monitoring and warning, and is very important for disaster prevention and mitigation. In meteorological services, the radar echo extrapolation method is mainly used to solve the nowcasting problem with high spatio-temporal resolution. In order to solve the problems of insufficient utilization of data information and low forecast accuracy in traditional radar echo extrapolation method, the high spatio-temporal resolution weather radar detection data in Shanghai area over many years were used to extrapolate radar echo based on data-driven deep learning method, and a new precipitation nowcasting model(SwinAt-UNet)was proposed. By fusing the UNet model and Swin Transformer structure to capture the short-term and long-term dynamic variation characteristics of historical weather radar detection data, the SwinAt-UNet model could adaptively learn the potential radar echo evolution laws of generation, dissipation, accumulation and deformation. In addition, in order to improve the generalization ability and forecast accuracy of the model, the depthwise-separable convolution and convolutional block attention module(CBAM)were introduced. The results show that the forecast accuracy of SwinAt-UNet model is higher than that of UNet, SmaAt-UNet, TransUNet and AA-TransUNet models under different base reflectivity thresholds; the critical success index of SwinAt-UNet model is increased by 13% at the base reflectivity threshold of 45 dBZ, and the period validity is improved; the image extrapolated by SwinAt-UNet model has clearer edge and detailed texture, and the predictions of precipitation range, moving direction and intensity change are more accurate.

参考文献/References:

[1] 谌 芸,曹 勇,孙 健,等.中央气象台精细化网格降水预报技术的发展和思考[J].气象,2021,47(6):655-670.
CHEN Yun,CAO Yong,SUN Jian,et al.Progress of Fine Gridded Quantitative Precipitation Forecast Te-chnology of National Meteorological Centre[J].Me-teorological Monthly,2021,47(6):655-670.
[2] 肖 蕾,杜小玲,武正敏,等.贵州省短时强降水时空分布特征分析[J].暴雨灾害,2021,40(4):383-392.
XIAO Lei,DU Xiao-ling,WU Zheng-min,et al.Temporal and Spatial Distribution Characteristics of Sho-rt-time Heavy Rainfall in Guizhou Province[J].Torrential Rain and Disasters,2021,40(4):383-392.
[3] 程丛兰,陈 敏,陈明轩,等.临近预报的两种高时空分辨率定量降水预报融合算法的对比试验[J].气象学报,2019,77(4):701-714.
CHENG Cong-lan,CHEN Min,CHEN Ming-xuan,et al.Comparative Experiments on Two High Spatiotemporal Resolution Blending Algorithms for Quantitative Precipitation Nowcasting[J].Acta Meteorologica Sinica,2019,77(4):701-714.
[4] LIANG H,CHEN H N,ZHANG W,et al.Convective Precipitation Nowcasting Using U-Net Model [C]∥IEEE.2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.Brussels:IEEE,2021:7134-7137.
[5] CRANE R K.Automatic Cell Detection and Tracking[J].IEEE Transactions on Geoscience Electronics,1979,17(4):250-262.
[6] AUSTIN G L,BELLON A.The Use of Digital Wea-ther Radar Records for Short-term Precipitation Forecasting[J].Quarterly Journal of the Royal Meteorological Society,1974,100:658-664.
[7] GIBSON J J.The Ecological Approach to Visual Perception:Classic Edition[M].London:Psychology Pre-ss,2014.
[8] 王 芬,李腹广,张 辉.风暴单体识别与跟踪(SCIT)算法评估[J].气象,2010,36(12):128-133.
WANG Fen,LI Fu-guang,ZHANG Hui.Storm Cell Identification and Tracking Algorithm for Assessment of SCIT[J].Meteorological Monthly,2010,36(12):128-133.
[9] 俞小鼎,周小刚,王秀明.雷暴与强对流临近天气预报技术进展[J].气象学报,2012,70(3):311-337.
YU Xiao-ding,ZHOU Xiao-gang,WANG Xiu-ming.The Advances in the Nowcasting Techniques on Thunderstorms and Severe Convection[J].Acta Meteorologica Sinica,2012,70(3):311-337.
[10] 田 刚,陈良华,魏 凡,等.基于光流法雷达外推的2020年长江致洪降水临近预报检验评估[J].暴雨灾害,2021,40(3):316-325.
TIAN Gang,CHEN Liang-hua,WEI Fan,et al.Eva-luation of Flood-producing Rainfall Nowcasting Based on Radar Extrapolation with the Variational Optical Flow Method in the Yangtze River Basin in 2020[J].Torrential Rain and Disasters,2021,40(3):316-325.
[11] 张梦涵,魏 进,卞海丁.基于机器学习的边坡稳定性分析方法:以国内618个边坡为例[J].地球科学与环境学报,2022,44(6):1083-1095.
ZHANG Meng-han,WEI Jin,BIAN Hai-ding.Slope Stability Analysis Method Based on Machine Learning:Taking 618 Slopes in China as Examples[J].Journal of Earth Sciences and Environment,2022,44(6):1083-1095.
[12] 杨 玲,魏 静,许子伏.基于平滑先验法-麻雀搜索算法-支持向量机回归模型的滑坡位移预测:以三峡库区八字门和白水河滑坡为例[J].地球科学与环境学报,2022,44(6):1096-1110.
YANG Ling,WEI Jing,XU Zi-fu.Dispalcement Prediction of Landslide Based on SPA-SSA-SVR Model:Taking Bazimen and Baishuihe Landslides in Three Gorges Reservoir Area,China as Examples[J].Journal of Earth Sciences and Environment,2022,44(6):1096-1110.
[13] 黄兴友,马玉蓉,胡苏蔓.基于深度学习的天气雷达回波序列外推及效果分析[J].气象学报,2021,79(5):817-827.
HUANG Xing-you,MA Yu-rong,HU Su-man.Extrapolation and Effect Analysis of Weather Radar Ec-ho Sequence Based on Deep Learning[J].Acta Meteorologica Sinica,2021,79(5):817-827.
[14] FANG W,PANG L,YI W N,et al.AttEF:Convolutional LSTM Encoder-forecaster with Attention Module for Precipitation Nowcasting[J].Intelligent Automation & Soft Computing,2021,29(3):453-466.
[15] SHI X J,CHEN Z R,WANG H,et al.Convolutional LSTM Network:A Machine Learning Approach for Precipitation Nowcasting[C]∥CORTES C,LEE D D,SUGIYAMA M,et al.Proceedings of the 28th International Conference on Neural Information Processing Systems.Montreal:ACM,2015:802-810.
[16] SHI X J,GAO Z H,LAUSEN L,et al.Deep Learning for Precipitation Nowcasting:A Benchmark and a New Model[C]∥VON LUXBURG U,GUYON I.Proceedings of the 31st International Conference on Neural Information Processing Systems.New York:ACM,2017:5622-5632.
[17] WANG Y B,WU H X,ZHANG J J,et al.PredRNN:A Recurrent Neural Network for Spatiotemporal Predictive Learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(2):2208-2225.
[18] WANG Y B,GAO Z F,LONG M S,et al.Pred-RNN++:Towards a Resolution of the Deep-in-time Dilemma in Spatiotemporal Predictive Learning[C]∥PMLR.Proceedings of the 35th International Conference on Machine Learning.Stockholm:PMLR,2018:5123-5132.
[19] WANG Y B,ZHANG J J,ZHU H Y,et al.Memory in Memory:A Predictive Neural Network for Learning Higher-order Non-stationarity from Spatiotemporal Dynamics[C]∥IEEE.Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Re-cognition.Long Beach:IEEE,2019:9154-9162.
[20] WU H X,YAO Z Y,WANG J M,et al.MotionRNN:A Flexible Model for Video Prediction with Spacetime-varying Motions[C]∥IEEE.Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:15435-15444.
[21] RAVURI S,LENC K,WILLSON M,et al.Skilful Precipitation Nowcasting Using Deep Generative Models of Radar[J].Nature,2021,597:672-677.
[22] LUO C Y,ZHAO X Y,SUN Y X,et al.PredRANN:The Spatiotemporal Attention Convolution Recurrent Neural Network for Precipitation Nowcasting[J].Knowledge-based Systems,2022,239:107900.
[23] EHSANI M R,ZAREI A,GUPTA H V,et al.NowCasting-Nets:Representation Learning to Mitigate Latency Gap of Satellite Precipitation Products Using Convolutional and Recurrent Neural Networks[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:4706021.
[24] 方 巍,庞 林,张飞鸿,等.对抗型长短期记忆网络的雷达回波外推算法[J].中国图象图形学报,2021,26(5):1067-1080.
FANG Wei,PANG Lin,ZHANG Fei-hong,et al.Radar Echo Extrapolation Algorithm Based on Adversarial Long Short-term Memory Network[J].Journal of Image and Graphics,2021,26(5):1067-1080.
[25] RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolutional Networks for Biomedical Image Segmentation[C]∥NAVAB N,HORNEGGER J,WELLS W M,et al.International Conference on Medical Image Computing and Computer-assisted Intervention:MICCAI 2015.Munich:Springer,2015:234-241.
[26] TRNBING K,STANCZYK T,MEHRKANOON S.SmaAt-UNet:Precipitation Nowcasting Using a Small Attention-UNet Architecture[J].Pattern Recognition Letters,2021,145:178-186.
[27] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is All You Need[C]∥VON LUXBURG U,GUYON I.Proceedings of the 31st International Conference on Neural Information Processing Systems.New York:ACM,2017:6000-6010.
[28] DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.An Image Is Worth 16×16 Words:Transformers for Image Recognition at Scale[EB/OL].(2020-10-22)[2022-12-20].https:∥arxiv.org/abs/2010.11929.
[29] LIU Z,LIN Y T,CAO Y,et al.Swin Transformer:Hierarchical Vision Transformer Using Shifted Windows[C]∥IEEE.Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:9992-10002.
[30] NOGUEIRA R,JIANG Z,LIN J.Investigating the Li-mitations of Transformers with Simple Arithmetic Tasks[EB/OL].(2021-02-25)[2022-12-20].https:∥arxiv.org/abs/2102.13019.
[31] CHEN J,LU Y,YU Q,et al.TransUNet:Transfor-mers Make Strong Encoders for Medical Image Segmentation[EB/OL].(2021-02-08)[2022-12-20].https:∥arxiv.org/abs/2102.04306.
[32] YANG Y M,MEHRKANOON S.AA-TransUNet:Attention Augmented TransUNet for Nowcasting Ta-sks[C]∥IEEE.2022 International Joint Conference on Neural Networks(IJCNN).Padua:IEEE,2022:1-8.
[33] CHOLLET F.Xception:Deep Learning with Depthwise Separable Convolutions[C]∥IEEE.2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:IEEE,2017:1800-1807.
[34] WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional Block Attention Module[C]∥FERRARI V,HEBERT M,SMINCHISESCU C,et al.Computer Vision-ECCV 2018.Munich:Spriner,2018:3-19.
[35] 张 林,李 峰,吴 蕾,等.CINRAD/SAD双偏振雷达非降水回波识别技术[J].应用气象学报,2022,33(6):724-735.
ZHANG Lin,LI Feng,WU Lei,et al.Non-precipitation Identification Technique for CINRAD/SAD Dual Polarimetric Weather Radar[J].Journal of Applied Meteorological Science,2022,33(6):724-735.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2023-01-07; 修回日期:2023-02-23
基金项目:国家自然科学基金项目(42075007); 灾害天气国家重点实验室开放项目(2021LASWB19); 江苏省研究生科研创新计划项目(KYCX22_1218); 中国气象局交通气象重点开放实验室开放研究基金项目(北极阁基金项目)(BJG202306)
作者简介:方 巍(1975-),男,安徽黄山人,南京信息工程大学教授,博士研究生导师,工学博士,博士后,E-mail:hsfangwei@sina.com。
更新日期/Last Update: 2023-05-30