|本期目录/Table of Contents|

[1]邢 腾,朱园园,李 靖,等.沉积岩中不同形态氮的提取方法及其在古环境研究中的意义[J].地球科学与环境学报,2023,45(04):941-952.
 XING Teng,ZHU Yuan-yuan,LI Jing,et al.Extraction Methods of Different Forms of Nitrogen from Sedimentary Rocks and Their Significance in Palaeo-environmental Research[J].Journal of Earth Sciences and Environment,2023,45(04):941-952.
点击复制

沉积岩中不同形态氮的提取方法及其在古环境研究中的意义(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第45卷
期数:
2023年第04期
页码:
941-952
栏目:
环境与可持续发展专刊
出版日期:
2023-07-15

文章信息/Info

Title:
Extraction Methods of Different Forms of Nitrogen from Sedimentary Rocks and Their Significance in Palaeo-environmental Research
文章编号:
1672-6561(2023)04-0941-12
作者:
邢 腾1朱园园2李 靖1王诗宇1杜 勇1邱海鸥3宋虎跃1*
(1. 中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北 武汉 430074; 2. 古生物与地质环境演化湖北省重点实验室,湖北 武汉 430223; 3. 中国地质大学(武汉)材料与化学学院,湖北 武汉 430074)
Author(s):
XING Teng1 ZHU Yuan-yuan2 LI Jing1 WANG Shi-yu1 DU Yong1 QIU Hai-ou3 SONG Hu-yue1*
(1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China; 2. Hubei Key Laboratory of Paleontology and Geological Environment Evolution, Wuhan 430223, Hubei, China; 3. Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China)
关键词:
古环境 古海洋 氮循环 沉积岩 稳定氮同位素 干酪根 固定铵 可溶性有机氮
Keywords:
palaeo-environment paleo-marine nitrogen cycle sedimentary rock stable nitrogen isotope kerogen fixed ammonium soluble organic nitrogen
分类号:
P736.4
DOI:
-
文献标志码:
A
摘要:
近年来,沉积岩中的氮同位素组成(δ15N)已成为生命起源和古环境研究的有效地球化学指标,并为这些领域的原创性发现提供了重要科学证据。沉降的有机质在经过生物地球化学过程和地质作用的改造后转化为不同形态的含氮物质(如干酪根结合氮、可溶性有机氮以及NH+4等),并保存于沉积岩中。不同形态氮可能具有独特的古环境意义,有必要进行单独的分离和提取,丰度较低的氮组分(如固定铵)也逐渐得到重视。当前,学者们主要利用全岩和干酪根的氮同位素组成开展相关研究工作,但由于地质过程复杂,特定含氮物质提取同位素测试和解译难度较高,何种形态的氮能代表原始的古海水信号尚不明确。在前人研究的基础上,归纳了含氮物质在不同地质作用中的演化历程,系统总结了沉积岩中不同形态氮的提取方法,阐明了它们的古环境意义,并对不同形态氮应用于古环境研究存在的问题进行了讨论; 同时,提出古海洋氮循环研究亟需开展的工作,为推动氮同位素的高精度测试及古环境研究提供参考。
Abstract:
In recent years, the nitrogen isotopic composition of sedimentary rocks has become a valid geochemical proxy in the origin of life and palaeo-environmental research, providing important evidence for the original discoveries in these fields. Sedimentary organic nitrogen is transformed into different species(such as kerogen-bound nitrogen, soluble organic nitrogen, and NH+4)during biogeochemical and geological processes, and is contained in sedimentary rocks. Different forms of nitrogen may have unique palaeo-environmental significance, necessitating separate isolation and extraction. Less abundant nitrogen fractions(such as fixed ammonium)are also gaining attention. At present, researchers mainly use the nitrogen isotopic composition of whole rock and kerogen for palaeo-environmental interpretations. However, due to the complex geological processes, it is difficult to extract and analyze compound-specific nitrogen isotopes. And it is uncertain which nitrogen species more faithfully record the original seawater signal. Here the evolution process of nitrogenous substances in different episodes of geological processes, the extraction methods of different nitrogen species, and the palaeo-environmental significance of different forms of nitrogenous substances are summarized, and the problems in palaeo-environmental research are discussed. And some suggestions for the follow-up work of the palaeo-marine nitrogen cycle research are presented for the reference of the high-precision palaeo-environmental research of nitrogen isotopes.

参考文献/References:

[1] HOEFS J.Stable Isotope Geochemistry[M].Berlin:Springer-Verlag,2009.
[2] SIGMAN D M,FRIPIAT F.Nitrogen Isotopes in the Ocean[M]∥COCHRAN J K,BOKUNIEWICZ H J,YAGER P L.Encyclopedia of Ocean Sciences.Amsterdam:Elsevier,2019:263-278.
[3] NAAFS B D A,MONTEIRO F M,PEARSON A,et al.Fundamentally Different Global Marine Nitrogen Cycling in Response to Severe Ocean Deoxygena-tion[J].PNAS,2019,116(50):24979-24984.
[4] HODGSKISS M S W,SANSJOFRE P,KUNZMANN M,et al.A High-TOC Shale in a Low Productivity World:The Late Mesoproterozoic Arctic Bay Formation,Nunavut[J].Earth and Planetary Science Letters,2020,544:116384.
[5] DU Y,SONG H Y,GRASBY S E,et al.Recovery from Persistent Nutrient-N Limitation Following the Permian-Triassic Mass Extinction[J].Earth and Planetary Science Letters,2023,602:117944.
[6] XIA L W,CAO J,STÜEKEN E E,et al.Linkages Between Nitrogen Cycling,Nitrogen Isotopes,and Environmental Properties in Paleo-lake Basins[J].Geolo-gical Society of America Bulletin,2022,134(9/10):2359-2372.
[7] DU Y,SONG H Y,TONG J N,et al.Changes in Productivity Associated with Algal-microbial Shifts During the Early Triassic Recovery of Marine Ecosystems[J].Geological Society of America Bulletin,2021,133(1/2):362-378.
[8] WANG Y F,OSSA F O,SPANGENBERG J E,et al.Restricted Oxygen-deficient Basins on the Northern European Epicontinental Shelf Across the Toarcian Carbon Isotope Excursion Interval[J].Paleoceanography and Paleoclimatology,2021,36(6):e2020PA-004207.
[9] KIPP M A,STÜEKEN E E,YUN M,et al.Pervasive Aerobic Nitrogen Cycling in the Surface Ocean Across the Paleoproterozoic Era[J].Earth and Planetary Science Letters,2018,500:117-126.
[10] TAO J,ZHANG J C,LIU Y,et al.A Stable and Mo-derate Nitrate Pool in Largely Anoxic Mesoprotero-zoic Oceans and Implications for Eukaryote Evolution[J].Precambrian Research,2022,381:106868.
[11] XU D T,WANG X Q,SHI X Y,et al.Feedback Between Carbon and Nitrogen Cycles During the Ediacaran Shuram Excursion[J].Frontiers in Earth Science,2021,9:678149.
[12] ADER M,THOMAZO C,SANSJOFRE P,et al.Interpretation of the Nitrogen Isotopic Composition of Precambrian Sedimentary Rocks:Assumptions and Perspectives[J].Chemical Geology,2016,429:93-110.
[13] 李婷婷,朱光有,赵 坤,等.氮循环及氮同位素在古老烃源岩形成环境重建与油源对比中的应用[J].天然气地球科学,2020,31(5):721-734.
LI Ting-ting,ZHU Guang-you,ZHAO Kun,et al.Nitrogen Cycle and Nitrogen Isotope Application in Paleoenvironment Reconstruction of Ancient Hydrocarbon Source Rocks and Oil-source Correlations[J].Natural Gas Geoscience,2020,31(5):721-734.
[14] ADER M,STÜEKEN E,SANSJOFRE P,et al.Editorial:Refining the Interpretation of Nitrogen Isotopes in Deep-time Systems[J].Frontiers in Earth Science,2022,10:966090.
[15] HUTCHINS D A,CAPONE D G.The Marine Nitrogen Cycle:New Developments and Global Change[J].Nature Reviews Microbiology,2022,20(7):401-414.
[16] PATIENCE R L,BAXBY M,BARTLE K D,et al.The Functionality of Organic Nitrogen in Some Recent Sediments from the Peru Upwelling Region[J].Organic Geochemistry,1992,18(2):161-169.
[17] 朱艳宸,李 丽,王 鹏,等.海洋氮循环中稳定氮同位素变化与地质记录研究进展[J].地球科学进展,2020,35(2):167-179.
ZHU Yan-chen,LI Li,WANG Peng,et al.Progress in the Study of Marine Stable Nitrogen Isotopic Changes and Its Geological Records[J].Advances in Earth Science,2020,35(2):167-179.
[18] MYSEN B.Nitrogen in the Earth:Abundance and Transport[J].Progress in Earth and Planetary Science,2019,6(1):38.
[19] ROBINSON R S,KIENAST M,LUIZA ALBUQUERQUE A,et al.A Review of Nitrogen Isotopic Alteration in Marine Sediments[J].Paleoceanography and Paleoclimatology,2012,27(4):2012PA002321.
[20] IKORO D O,OKEKE O C,ABUBARKAR M T,et al.The Role of Clay Minerals in Hydrocarbon Generation,Migration and Accumulation[J].International Journal of Scientific & Engineering Research,2022,DOI:10.14299/ijser.2022.09.01.
[21] SCHIMMELMANN A,LIS G P.Nitrogen Isotopic Exchange During Maturation of Organic Matter[J].Organic Geochemistry,2010,41(1):63-70.
[22] BOUDOU J P,SCHIMMELMANN A,ADER M,et al.Organic Nitrogen Chemistry During Low-grade Metamorphism[J].Geochimica et Cosmochimica Acta,2008,72(4):1199-1221.
[23] VANDENBROUCKE M,LARGEAU C.Kerogen Origin,Evolution and Structure[J].Organic Geochemi-stry,2007,38(5):719-833.
[24] 肖七林,何 生,李水福.沉积有机含氮化合物的成因及其分布综述[J].地质科技情报,2005,24(3):60-66.
XIAO Qi-lin,HE Sheng,LI Shui-fu.Review of Distribution and Origin of Organic Nitrogen Compounds in Sediments[J].Geological Science and Technology Information,2005,24(3):60-66.
[25] DIAS L C,BAHIA P V B,DO AMARAL D N,et al.Nitrogen Compounds as Molecular Markers:An Over-view of Analytical Methodologies for Its Determination in Crude Oils and Source Rock Extracts[J].Microchemical Journal,2020,157:105039.
[26] HOLLOWAY J A M,DAHLGREN R A.Nitrogen in Rock:Occurrences and Biogeochemical Implications[J].Global Biogeochemical Cycles,2002,16(4):2002-GB001862.
[27] OTTO B A.Characterization of Devonian Black Shale Depositional Environments and Diagenetic/Catagene-tic Processes Using Nitrogen Isotopes and Other Geochemical Proxies:Ohio Shale,Eastern Kentucky[D].Stillwater:Oklahoma State University,2015.
[28] BRODIE C R,CASFORD J S L,LLOYD J M,et al.Evidence for Bias in C/N,δ13C and δ15N Values of Bulk Organic Matter,and on Environmental Interpretation,from a Lake Sedimentary Sequence by Pre-analysis Acid Treatment Methods[J].Quaternary Science Reviews,2011,30(21/22):3076-3087.
[29] BRODIE C R,HEATON T H E,LENG M J,et al.Evidence for Bias in Measured δ15N Values of Terrestrial and Aquatic Organic Materials Due to Pre-analysis Acid Treatment Methods[J].Rapid Communications in Mass Spectrometry,2011,25(8):1089-1099.
[30] WANG X Q,JIANG G Q,SHI X Y,et al.Nitrogen Isotope Constraints on the Early Ediacaran Ocean Re-dox Structure[J].Geochimica et Cosmochimica Acta,2018,240:220-235.
[31] FUJISAKI W,MATSUI Y,UEDA H,et al.Pre-treatment Methods for Accurate Determination of Total Nitrogen and Organic Carbon Contents and Their Stable Isotopic Compositions:Re-evaluation from Geological Reference Materials[J].Geostandards and Geoanalytical Research,2022,46(1):5-19.
[32] KOMADA T,ANDERSON M R,DORFMEIER C L.Carbonate Removal from Coastal Sediments for the Determination of Organic Carbon and Its Isotopic Signatures,δ13C and Δ14C:Comparison of Fumigation and Direct Acidification by Hydrochloric Acid[J].Limnology and Oceanography:Methods,2008,6(6):254-262.
[33] KENNEDY P,KENNEDY H,PAPADIMITRIOU S.The Effect of Acidification on the Determination of Organic Carbon,Total Nitrogen and Their Stable Isotopic Composition in Algae and Marine Sediment[J].Rapid Communications in Mass Spectrometry,2005,19(8):1063-1068.
[34] KIM M S,LEE W S,SURESH KUMAR K,et al.Ef-fects of HCl Pretreatment,Drying,and Storage on the Stable Isotope Ratios of Soil and Sediment Samples[J].Rapid Communications in Mass Spectrometry,2016,30(13):1567-1575.
[35] DURAND B,NICAISE G.Kerogen:Insoluble Organic Matter from Sedimentary Rocks[M].Paris:Technip Editions,1980.
[36] ROBL T L,DAVIS B H.Comparison of the HF-HCl and HF-BF3 Maceration Techniques and the Chemi-stry of Resultant Organic Concentrates[J].Organic Geochemistry,1993,20(2):249-255.
[37] DE CASTRO M D L,GARCIA-AYUSO L E.Soxhlet Extraction of Solid Materials:An Outdated Technique with a Promising Innovative Future[J].Analytica Chimica Acta,1998,369(1/2):1-10.
[38] HUANG H,BOWLER B F J,ZHANG Z,et al.Influence of Biodegradation on Carbazole and Benzocarbazole Distributions in Oil Columns from the Liaohe Basin,NE China[J].Organic Geochemistry,2003,34(7):951-969.
[39] AKINLUA A,JOCHMANN M A,LORENZO-PARODI N,et al.A Green Approach for the Extraction of Diamondoids from Petroleum Source Rock[J].Analytica Chimica Acta,2019,1091:23-29.
[40] KEENEY D R,NELSON D W.Nitrogen-inorganic Forms[C]∥PAGE A L.Methods of Soil Analysis:Part 2 Chemical and Microbiological Properties.Chichester:John Wiley & Sons,1983:643-698.
[41] STARK J M,HART S C.Diffusion Technique for Preparing Salt Solutions,Kjeldahl Digests,and Persulfate Digests for Nitrogen-15 Analysis[J].Soil Science Society of America Journal,1996,60(6):1846-1855.
[42] STOCK P,HÖSCH A,BURGHARDT D.δ15N Ana-lysis of Ammonium in Freeze-dried Natural Ground-water Samples by Precipitation with Sodium Tetraphenylborate[J].Rapid Communications in Mass Spe-ctrometry,2019,33(22):1730-1738.
[43] KAWASHIMA H,YOSHIDA O,SUTO N.Ion-exchange Resin and Denitrification Pretreatment for Determining δ15N-NH+415N-NO-3,and δ18O-NO-3 Va-lues[J].Rapid Communications in Mass Spectrometry,2021,35(6):e9027.
[44] 项妍琨,曹 芳,杨笑影,等.利用次溴酸盐氧化结合盐酸羟胺还原法测定大气气溶胶样品铵态氮同位素[J].应用生态学报,2019,30(6):1847-1853.
XIANG Yan-kun,CAO Fang,YANG Xiao-ying,et al.Hypobromite Oxidation Combined with Hydroxylamine Hydrochloride Reduction Method for Analyzing Ammonium Nitrogen Isotope in Atmospheric Samples[J].Chinese Journal of Applied Ecology,2019,30(6):1847-1853.
[45] STANKIEWICZ B A,KRUGE M A,CRELLING J C,et al.Density Gradient Centrifugation:Application to the Separation of Macerals of Type Ⅰ,Ⅱ,and Ⅲ Sedimentary Organic Matter[J].Energy & Fuels,1994,8(6):1513-1521.
[46] CRADDOCK P R,BAKE K D,POMERANTZ A E.Chemical,Molecular,and Microstructural Evolution of Kerogen During Thermal Maturation:Case Study from the Woodford Shale of Oklahoma[J].Energy & Fuels,2018,32(4):4859-4872.
[47] JAGADISAN A,HEIDARI Z.Experimental Quantification of the Effect of Thermal Maturity of Kerogen on Its Wettability[J].SPE Reservoir Evaluation & Engineering,2019,22(4):1323-1333.
[48] VANDENBROUCKE M.Kerogen:From Types to Mo-dels of Chemical Structure[J].Oil & Gas Science and Technology,2003,58(2):243-269.
[49] STÜEKEN E E,PRAVE A R.Diagenetic Nutrient Supplies to the Proterozoic Biosphere Archived in Divergent Nitrogen Isotopic Ratios Between Kerogen and Silicate Minerals[J].Geobiology,2022,20(5):623-633.
[50] HAN H,LIU P W,DING Z G,et al.The Influence of Extractable Organic Matter on Pore Development in the Late Triassic Chang-7 Lacustrine Shales,Yanchang Formation,Ordos Basin,China[J].Acta Geologica Sinica(English Edition),2018,92(4):1508-1522.
[51] CHANG Z,CHU M.The Chemical Composition and Pyrolysis Characteristics of Thermal Bitumen Derived from Pyrolyzing Huadian Oil Shale,China[J].Oil Shale,2019,36(1):62-75.
[52] KOTARBA M J,WIECLAW D,JUREK K,et al.Va-riations of Bitumen Fraction,Biomarker,Stable Carbon Isotope and Maceral Compositions of Dispersed Organic Matter in the Miocene Strata(Carpathian Foredeep,Poland)During Maturation Simulated by Hydrous Pyrolysis[J].Marine and Petroleum Geology,2022,137:105487.
[53] SIMNOFSKE D,MOLLENHAUER K.Precision of Iatroscan Method for Assessment of SARA Compounds in Bitumen[M]∥POULIKAKOS L D,FALCHETTO A C,WISTUBA M P,et al.RILEM 252-CMB-Symposium on Chemo Mechanical Characterization of Bituminous Materials.Cham:Springer,2018:162-167.
[54] JENSEN W B.The Origin of the Soxhlet Extractor[J].Journal of Chemical Education,2007,84(12):1913.
[55] ISAJI Y,YOSHIKAWA C,OGAWA N O,et al.Nitrogen Sources for Phytoplankton in the Eastern Indian Ocean Determined from δ15N of Chlorophyll a and Divinylchlorophyll a[J].Geochemistry,Geophysics,Geosystems,2022,23(4):e2021GC010057.
[56] KROOSS B M,JURISCH A,PLESSEN B.Investigation of the Fate of Nitrogen in Palaeozoic Shales of the Central European Basin[J].Journal of Geochemical Exploration,2006,89(1/2/3):191-194.
[57] SCHACHTSCHABEL P.Bestimmung des Fixierten Ammoniums im Boden[J].Zeitschrift für Pflanzener-nährung,Düngung,Bodenkunde,1961,93(2):125-136.
[58] ANDERSON J U.An Improved Pretreatment for Mi-neralogical Analysis of Samples Containing Organic Matter[J].Clays and Clay Minerals,1961,10(1):380-388.
[59] SILVA J A,BREMNER J M.Determination and Isotope-ratio Analysis of Different Forms of Nitrogen in Soils:5.Fixed Ammonium[J].Soil Science Society of America Journal,1966,30(5):587-594.
[60] FREUDENTHAL T,WAGNER T,WENZHÖFER F,et al.Early Diagenesis of Organic Matter from Sediments of the Eastern Subtropical Atlantic:Evidence from Stable Nitrogen and Carbon Isotopes[J].Geo-chimica et Cosmochimica Acta,2001,65(11):1795-1808.
[61] JO J,YAMANAKA T,KASHIMURA T,et al.Mi-neral Nitrogen Isotope Signature in Clay Minerals Formed Under High Ammonium Environment Conditions in Sediment Associated with Ammonium-rich Sediment-hosted Hydrothermal System[J].Geoche-mical Journal,2018,52(4):317-333.
[62] HONG Y G,WU J P,GUAN F J,et al.Nitrogen Removal in the Sediments of the Pearl River Estuary,China:Evidence from the Distribution and Forms of Nitrogen in the Sediment Cores[J].Marine Pollution Bulletin,2019,138:115-124.
[63] XIANG H,HONG Y,WU J,et al.Nitrogen Distribution and Forms in Sediment Cores of Daya Bay,China[J].Regional Studies in Marine Science,2022,49:102092.
[64] WILLIAMS L B,FERRELL JR R E,HUTCHEON I,et al.Nitrogen Isotope Geochemistry of Organic Matter and Minerals During Diagenesis and Hydrocarbon Migration[J].Geochimica et Cosmochimica Acta,1995,59(4):765-779.
[65] NUNES V L N,MULVANEY R L,GRIESHEIM K L.Simple Diffusion Methods for Determination of Non-exchangeable Ammonium in Soils[J].Soil Science Society of America Journal,2019,83(5):1421-1430.
[66] CADEAU P,ADER M,JÉZÉQUEL D,et al.Nitrogen Isotope Discrepancy Between Primary Producers and Sediments in an Anoxic and Alkaline Lake[J].Frontiers in Earth Science,2021,9:787386.
[67] SIGMAN D M,ALTABET M A,MCCORKLE D C,et al.The δ15N of Nitrate in the Southern Ocean:Nitrogen Cycling and Circulation in the Ocean Interior[J].Journal of Geophysical Research:Oceans,2000,105(C8):19599-19614.
[68] TESDAL J E,GALBRAITH E D,KIENAST M.Nitrogen Isotopes in Bulk Marine Sediment:Linking Seafloor Observations with Subseafloor Records[J].Biogeosciences,2013,10(1):101-118.
[69] LUO G M,JUNIUM C K,IZON G,et al.Nitrogen Fixation Sustained Productivity in the Wake of the Palaeoproterozoic Great Oxygenation Event[J].Nature Communications,2018,9(1):978.
[70] STÜEKEN E E,BUICK R,SCHAUER A J.Nitrogen Isotope Evidence for Alkaline Lakes on Late Archean Continents[J].Earth and Planetary Science Letters,2015,411:1-10.
[71] METTAM C,ZERKLE A L.Nitrogen Isotopes in De-ep Time[M].Cambridge:Cambridge University Pre-ss,2021.
[72] STÜEKEN E E,BOOCOCK T,SZILAS K,et al.Reconstructing Nitrogen Sources to Earth's Earliest Biosphere at 3.7 Ga[J].Frontiers in Earth Science,2021,9:675726.
[73] STÜEKEN E E,ZALOUMIS J,MEIXNEROVÁ J,et al.Differential Metamorphic Effects on Nitrogen Isotopes in Kerogen Extracts and Bulk Rocks[J].Geochimica et Cosmochimica Acta,2017,217:80-94.
[74] STÜEKEN E E,SZILAS K,VAN HINSBERG V J.Evaluating the Biosignature Potential of Nitrogen Concentrations in Graphite and Associated K-silicates[J].Chemical Geology,2022,617:121274.
[75] LIU Y,STÜEKEN E E,WANG D,et al.A Potential Linkage Between Excess Silicate-bound Nitrogen and N2-rich Natural Gas in Sedimentary Reservoirs[J].Chemical Geology,2022,600:120864.
[76] STÜEKEN E E,GARDINER N J.The Geological Platform for the Origin of Life on Earth[M]∥NEUBECK A,MCMAHON S.Prebiotic Chemistry and the Origin of Life.Cham:Springer,2021:63-86.
[77] ISAJI Y,OGAWA N O,BOREHAM C J,et al.Eva-luation of δ13C and δ15N Uncertainties Associated with the Compound-specific Isotope Analysis of Geoporphyrins[J].Analytical Chemistry,2020,92(4):3152-3160.
[78] STÜEKEN E E,GREGORY D D,MUKHERJEE I,et al.Sedimentary Exhalative Venting of Bioavailable Nitrogen into the Early Ocean[J].Earth and Planetary Science Letters,2021,565:116963.
[79] YANG J,JUNIUM C K,GRASSINEAU N V,et al.Ammonium Availability in the Late Archaean Nitrogen Cycle[J].Nature Geoscience,2019,12(7):553-557.
[80] ZERKLE A L,POULTON S W,NEWTON R J,et al.Onset of the Aerobic Nitrogen Cycle During the Great Oxidation Event[J].Nature,2017,542:465-467.
[81] PROKOPENKO M G,HAMMOND D E,BERELSON W M,et al.Nitrogen Cycling in the Sediments of Santa Barbara Basin and Eastern Subtropical North Pacific:Nitrogen Isotopes,Diagenesis and Possible Chemosymbiosis Between Two Lithotrophs(Thioploca and Anammox)—“Riding on a Glider”[J].Earth and Planetary Science Letters,2006,242(1/2):186-204.
[82] LEHMANN M F,BERNASCONI S M,BARBIERI A,et al.Preservation of Organic Matter and Alteration of Its Carbon and Nitrogen Isotope Composition During Simulated and In-situ Early Sedimentary Diagenesis[J].Geochimica et Cosmochimica Acta,2002,66(20):3573-3584.
[83] PROKOPENKO M G,HAMMOND D E,SPIVACK A,et al.Impact of Longterm Diagenesis on δ15N of Organic Matter in Marine Sediments:Sites 1227 and 1230[C]∥Ocean Drilling Program.Proceedings of the Ocean Drilling Program:Scientific Results.Austin:Ocean Drilling Program,2006,201:117.
[84] QUAN T M,ADEBOYE O O.Interpretation of Nitrogen Isotope Profiles in Petroleum Systems:A Review[J].Frontiers in Earth Science,2021,9:705691.
[85] ADER M,CARTIGNY P,BOUDOU J P,et al.Nitrogen Isotopic Evolution of Carbonaceous Matter During Metamorphism:Methodology and Preliminary Results[J].Chemical Geology,2006,232(3/4):152-169.
[86] GHOSH S,VARMA A K,DAS S K,et al.Metamorphic Transformations of Nitrogen Functionalities:Stabilization of Organic Nitrogen in Anthracite and Its Effect on δ15N Parameter[J].Marine and Petroleum Geology,2020,112:104090.

相似文献/References:

[1]张继效,王伟铭,高峰.云南剑川地区象鼻洞遗址孢粉组合和古环境[J].地球科学与环境学报,2014,36(04):134.
 ZHANG Ji-xiao,WANG Wei-ming,GAO Feng.Palynological Assemblages and Palaeoenvironment of Xiangbidong Site in Jianchuan Area of Yunnan[J].Journal of Earth Sciences and Environment,2014,36(04):134.
[2]郭利成,吴佳斌,熊尚发,等.基于静水沉降法的沉积物颗粒分选流程[J].地球科学与环境学报,2016,38(05):694.
 GUO Li-cheng,WU Jia-bin,XIONG Shang-fa,et al.New Sedimentary Particle Sorting Process Based on Hydrostatic Sedimentation Method[J].Journal of Earth Sciences and Environment,2016,38(04):694.

备注/Memo

备注/Memo:
收稿日期:2022-11-11; 修回日期:2023-01-04投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(41872033,42172032)
作者简介:邢 腾(1998-),男,河北石家庄人,理学硕士研究生,E-mail:xingteng@cug.edu.cn。
*通讯作者:宋虎跃(1986-),男,山西晋城人,研究员,博士研究生导师,理学博士,E-mail:hysong@cug.edu.cn。
更新日期/Last Update: 2023-06-20