|本期目录/Table of Contents|

[1]李龙康,许冰*,崔慧琪.晚更新世以来长江流域河流阶地年龄数据库及其对成因分析的指示意义[J].地球科学与环境学报,2025,47(01):34-46.[doi:10.19814/j.jese.2024.02021]
 LI Long-kang,XU Bing*,CUI Hui-qi.River Terrace Age Database in Yangtze River Basin, China Since Late Pleistocene and Its Implications for Genetic Analysis[J].Journal of Earth Sciences and Environment,2025,47(01):34-46.[doi:10.19814/j.jese.2024.02021]
点击复制

晚更新世以来长江流域河流阶地年龄数据库及其对成因分析的指示意义(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第01期
页码:
34-46
栏目:
基础地质与矿床地质
出版日期:
2025-01-15

文章信息/Info

Title:
River Terrace Age Database in Yangtze River Basin, China Since Late Pleistocene and Its Implications for Genetic Analysis
文章编号:
1672-6561(2025)01-0034-13
作者:
李龙康12许冰12*崔慧琪12
(1. 中国科学院地质与地球物理研究所 岩石圈演化与环境演变重点实验室,北京 100029; 2. 中国科学院大学,北京 100049)
Author(s):
LI Long-kang12 XU Bing12* CUI Hui-qi12
(1. Key Laboratory of Lithospheric Evolution and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
年龄数据库 概率密度函数 河流阶地 气候因子 气候突变 构造抬升 河流失稳 长江流域
Keywords:
age database probability density function river terrace climate factor climate instability tectonic uplift fluvial instability Yangtze River Basin
分类号:
P532; P931.1
DOI:
10.19814/j.jese.2024.02021
文献标志码:
A
摘要:
研究长江流域河流阶地的形成规律,对深入理解河流阶地的主要驱动因素,预测长江流域演化趋势以及保障沿岸人民生存发展具有重要意义。系统收集并整理了长江流域河流阶地的660条年代学数据,建立了河流阶地年龄数据库及其年龄概率密度函数,并探讨了长江流域河流阶地的形成机制。结果表明:近200 ka以来,长江流域中游和上游地区河流阶地概率密度曲线在约11 ka、约23 ka、约40 ka、约44.8 ka、约56.25 ka等多个时期出现了明显的峰值,这些峰值与全球气候变暖、黄土高原古降水量和洞穴氧同位素值的剧烈波动时期高度吻合,长江流域上游地区的河流阶地在山地地区的发育频率较高; 长江流域中游和上游地区河流阶地年龄概率密度曲线的峰值主要出现在全球气候突变期,且河流阶地在构造抬升强烈的时期及地区发育更广泛; 长江流域河流阶地是在构造运动和气候变化共同作用下形成的,其中气候的剧烈变化作为触发因子通过破坏河道稳定性,促使河流下切并形成阶地,而区域构造抬升运动则为河流提供了下切的空间,使得河流阶地对气候变化的响应更加敏感,从而推动了河流阶地的形成,尤其在气候相对变暖的时期,河流阶地的形成频率明显更高。
Abstract:
The Yangtze River as the largest river in Asia, plays a crucial role in understanding the primary driving factors behind river terrace formation, predicting the evolutionary trends of Yangtze River Basin, and ensuring the survival and development of the surrounding populations. 660 chronological data of river terraces in Yangtze River Basin were systematically collected and organized, a river terrace age database was established, and an age probability density function was constructed, and the formation mechanisms of river terraces in the region were explored. The results show that over the past 200 ka, the probability density curve of river terrace ages in the upper and middle Yangtze River Basin exhibits clear peaks at ~11 ka, ~23 ka, ~40 ka, ~44.8 ka, and ~56.25 ka, which correlate strongly with periods of global warming, significant shifts in paleoprecipitation of Loess Plateau, and changes in cave oxygen isotope values, the frequency of river terrace development is higher in the mountainous areas of the upper Yangtze River Basin; the age peaks of the river terrace probability density curve in the middle and upper Yangtze River Basin primarily coincide with global climate abrupt events, the formation of river terraces is more widespread in regions and periods of intense tectonic uplift; river terraces in Yangtze River Basin are formed under the combined influence of tectonic activity and climate change; climate's abrupt changes act as short-term trigger mechanisms, destabilizing river channels and driving incision that leads to terrace formation, while regional tectonic uplift provides the necessary space for river incision, thereby enhancing the sensitivity of river terraces to climate fluctuations; this, in turn, facilitates the formation of river terraces, with a notably higher frequency of terrace formation during relatively warmer climatic periods.

参考文献/References:

[1] 陈新立.长江流域环境史研究述评[J].长江学研究,2020,4(1):36-72.
CHEN Xin-li.A Review of Environmental History Studies in the Yangtze River Basin[J].Yangtze River Studies,2020,4(1):36-72.
[2] 赵一飞.气候和人类活动变化下的长江水下三角洲源汇过程与地貌演化[D].南京:南京大学,2017.
ZHAO Yi-fei.Source-sink Process and Geomorphological Evolution of the Yangtze River Subaqueous Delta Under the Changes of Climate and Human Activities[D].Nanjing:Nanjing University,2017.
[3] 李伯谦.长江流域文明的进程[J].考古与文物,1997(4):12-18,84.
LI Bo-qian.The Process of Civilization in the Yangtze River Basin[J].Archaeology and Cultural Relics,1997(4):12-18,84.
[4] 张 芸.长江流域全新世以来环境考古研究[D].南京:南京大学,2002.
ZHANG Yun.Environmental Archaeology in the Yangtze River Basin Since the Holocene[D].Nanjing:Nanjing University,2002.
[5] 苏布达,姜 彤,任国玉,等.长江流域1960~2004年极端强降水时空变化趋势[J].气候变化研究进展,2006,2(1):9-14.
SU Bu-da,JIANG Tong,REN Guo-yu,et al.Obser-ved Trends of Precipitation Extremes in the Yangtze River Basin from 1960 to 2004[J].Advances in Climate Change Research,2006,2(1):9-14.
[6] 杨巨佳,覃 军,李骁锐,等.长江中上游流域过去千年极端洪涝事件重建与分析[J].长江流域资源与环境,2024,33(1):201-213.
YANG Ju-jia,QIN Jun,LI Xiao-rui,et al.Reconstruction and Analysis of Extreme Flooding Events of the Upper and Middle Yangtze River Basins over the Last Millennium[J].Resources and Environment in the Yangtze Basin,2024,33(1):201-213.
[7] 张 礼,杨 娜,张叶晖,等.长江流域极端降水事件时空变化特征及其与洪水响应关系[J].水文,2024,DOI:10.19797/j.cnki.1000-0852.20240072.
ZHANG Li,YANG Na,ZHANG Ye-hui,et al.Spatial-temporal Variation Characteristics of Extreme Precipitation Events in the Yangtze River Basin and Their Relation with Floods[J].Journal of China Hydrology,2024,DOI:10.19797/j.cnki.1000-0852.20240072.
[8] TAO Y L,XIONG J G,ZHANG H P,et al.Climate-driven Formation of Fluvial Terraces Across the Tibetan Plateau Since 200 ka:A Review[J].Quaternary Science Reviews,2020,237:106303.
[9] HE Z X,ZHANG X J,BAO S Y,et al.Multiple Climatic Cycles Imprinted on Regional Uplift-controlled Fluvial Terraces in the Lower Yalong River and Anning River,SE Tibetan Plateau[J].Geomorphology,2015,250:95-112.
[10] DARBY S E,SIMON A.Incised River Channels:Pro-cesses,Forms,Engineering,and Management[M].New York:John Wiley & Sons,1999.
[11] 徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学:D辑,地球科学,2003,33(增):151-162.
XU Xi-wei,WEN Xue-ze,ZHENG Rong-zhang,et al.Pattern of Latest Tectonic Motion and Its Dynamics for Active Blocks in Sichuan-Yunnan Region,China[J].Science in China:Series D,Earth Sciences,2003,33(S):151-162.
[12] KONG P,NA C G,FINK D,et al.Moraine Dam Related to Late Quaternary Glaciation in the Yulong Mountains,Southwest China,and Impacts on the Jinsha River[J].Quaternary Science Reviews,2009,28(27/28):3224-3235.
[13] ANSBERQUE C,GODARD V,BELLIER O,et al.Denudation Pattern Across the Longriba Fault System and Implications for the Geomorphological Evolution of the Eastern Tibetan Margin[J].Geomorphology,2015,246:542-557.
[14] LI J J,XIE S Y,KUANG M S.Geomorphic Evolution of the Yangtze Gorges and the Time of Their Formation[J].Geomorphology,2001,41(2):125-135.
[15] SU H,DONG M,HU Z B.Late Miocene Birth of the Middle Jinsha River Revealed by the Fluvial Incision Rate[J].Global and Planetary Change,2019,183:103002.
[16] 庞奖励,黄春长,周亚利,等.郧县盆地风成黄土-古土壤与汉江Ⅰ级阶地形成年龄研究[J].地理学报,2015,70(1):63-72.
PANG Jiang-li,HUANG Chun-chang,ZHOU Ya-li,et al.Eolian Loess-palaeosol Sequence and OSL Age of the First Terraces Within the Yunxian Basin Along the Upper Hanjiang River[J].Acta Geographica Sinica,2015,70(1):63-72.
[17] LIU Y,WANG S J,XU S,et al.New Evidence for the Incision History of the Liuchong River,Southwest China,from Cosmogenic 26Al/10Be Burial Ages in Cave Sediments[J].Journal of Asian Earth Sciences,2013,73:274-283.
[18] WANG A,JIANG Q,LYU G Y,et al.Fast Valley Landscape Response to Climate Change in the Lower Jinsha River,Southeastern Tibetan Plateau:Field Investigations and Numerical Modeling[J].Geomorphology,2022,403:108158.
[19] YANG G F,ZHANG X J,TIAN M Z,et al.Alluvial Terrace Systems in Zhangjiajie of Northwest Hunan,China:Implications for Climatic Change,Tectonic Uplift and Geomorphic Evolution[J].Quaternary International,2011,233(1):27-39.
[20] VAN BUUREN U,PRINS M A,WANG X Y,et al.Fluvial or Aeolian? Unravelling the Origin of the Silty Clayey Sediment Cover of Terraces in the Hanzhong Basin(Qinling Mountains,Central China)[J].Geomorphology,2020,367:107294.
[21] 许刘兵,周尚哲.川西硕曲河流阶地及其对山地抬升和气候变化的响应[J].冰川冻土,2007,29(4):603-612.
XU Liu-bing,ZHOU Shang-zhe.River Terraces in the Shuoqu River and Their Response to Mountain Uplift and Climate Changes in Western Sichuan Province[J].Journal of Glaciology and Geocryology,2007,29(4):603-612.
[22] VIVEEN W,SCHOORL J M,VELDKAMP A,et al.Modelling the Impact of Regional Uplift and Local Tectonics on Fluvial Terrace Preservation[J].Geomorphology,2014,210:119-135.
[23] 胡春生,周迎秋.河流对0.8 Ma B.P.环境突变事件的地貌响应研究[J].地理科学,2014,34(5):614-620.
HU Chun-sheng,ZHOU Ying-qiu.Geomorphic Response of the River to the Environmental Change Event at 0.8 Ma B.P.[J].Scientia Geographica Sinica,2014,34(5):614-620.
[24] 向 荣,杨作升,SAITO Y,等.济州岛西南泥质区近2 300 a来环境敏感粒度组分记录的东亚冬季风变化[J].中国科学:D辑,地球科学,2006,36(7):654-662.
XIANG Rong,YANG Zuo-sheng,SAITO Y,et al.Changes of East Asian Winter Monsoon Recorded by Environmentally Sensitive Grain Size Components in the Muddy Area of Southwest Jeju Island in the Past 2 300 a[J].Science in China:Series D,Earth Sciences,2006,36(7):654-662.
[25] VAN DER PLICHT J.Radiocarbon Dating:Variations in Atmospheric 14C[M]∥ELIAS S A.Encyclopedia of Quaternary Science.Amsterdam:Elsevier,2007:2923-2931.
[26] SCHALLER M,EHLERS T A,STOR T,et al.Timing of European Fluvial Terrace Formation and Incision Rates Constrained by Cosmogenic Nuclide Dating[J].Earth and Planetary Science Letters,2016,451:221-231.
[27] 吕延武,梁欧博.就地生成宇宙成因核素测年方法概述[J].地壳构造与地壳应力文集,2018,30(1):48-64.
LYU Yan-wu,LIANG Ou-bo.A Review of the In-situ Cosmogenic Nuclides Dating Method[J].Bulletin of the Institute of Crustal Dynamics,2018,30(1):48-64.
[28] LIU C R,YIN G M,HAN F.Effects of Grain Size on Quartz ESR Dating of Ti-Li Center in Fluvial and Lacustrine Sediments[J].Quaternary Geochronology,2015,30:513-518.
[29] MENG Y M,ZHANG J F,QIU W L,et al.Optical Dating of the Yellow River Terraces in the Mengjin Area(China):First Results[J].Quaternary Geochronology,2015,30:219-225.
[30] SANCHO C,CALLE M,PEÑA-MONNÉ J L,et al.Dating the Earliest Pleistocene Alluvial Terrace of the Alcanadre River(Ebro Basin,NE Spain):Insights into the Landscape Evolution and Involved Processes[J].Quaternary International,2016,407:86-95.
[31] NOLLER J S,SOWERS J M,LETTIS W R.Quaternary Geochronology:Methods and Applications[M].Washington DC:American Geophysical Union,2013.
[32] 谷永建,李玉梅,韩 龙,等.中国东部表土磁化率与现代气候因子的关系及其环境意义[J].中国科学院大学学报,2019,36(4):498-509.
GU Yong-jian,LI Yu-mei,HAN Long,et al.Relationships Between Surface Soil Magnetic Susceptibility and Modern Climatic Factors in Eastern China and Their Environmental Significance[J].Journal of University of Chinese Academy of Sciences,2019,36(4):498-509.
[33] THOMPSON L G,YAO T,DAVIS M E,et al.Tro-pical Climate Instability:The Last Glacial Cycle from a Qinghai-Tibetan Ice Core[J].Science,1997,276:1821-1825.
[34] BECK J W,ZHOU W J,LI C,et al.A 550 000-year Record of East Asian Monsoon Rainfall from 10Be in Loess[J].Science,2018,360:877-881.
[35] CHENG H,EDWARDS R L,SINHA A,et al.The Asian Monsoon over the Past 640 000 Years and Ice Age Terminations[J].Nature,2016,534:640-646.
[36] SUN Y B,CLEMENS S C,AN Z S,et al.Astronomical Timescale and Palaeoclimatic Implication of Sta-cked 3.6-Myr Monsoon Records from the Chinese Loess Plateau[J].Quaternary Science Reviews,2006,25(1/2):33-48.
[37] BERGER A,LOUTRE M F.Insolation Values for the Climate of the Last 10 Million Years[J].Quaternary Science Reviews,1991,10(4):297-317.
[38] MATOSHKO A V,GOZHIK P F,DANUKALOVA G.Key Late Cenozoic Fluvial Archives of Eastern Europe:The Dniester,Dnieper,Don and Volga[J].Proceedings of the Geologists' Association,2004,115(2):141-173.
[39] 潘保田,高红山,李炳元,等.青藏高原层状地貌与高原隆升[J].第四纪研究,2004,24(1):50-57.
PAN Bao-tian,GAO Hong-shan,LI Bing-yuan,et al.Step-like Landforms and Uplift of the Qinghai-Xizang Plateau[J].Quaternary Sciences,2004,24(1):50-57.
[40] 齐矗华,甘枝茂,惠振德.陕西东秦岭构造地貌基本特征[J].陕西师范大学学报(自然科学版),1982(1):180-193.
QI Zhi-hua,GAN Zhi-mao,HUI Zhen-de.Basic Cha-racteristics of Structural Geomorphology in East Qinling,Shaanxi[J].Journal of Shaanxi Normal Univer-sity(Natural Science Edition),1982(1):180-193.
[41] 王 非,胡玉台,李红春,等.晚第四纪中秦岭下切速率与构造抬升[J].科学通报,2002,47(13):1032-1036.
WANG Fei,HU Yu-tai,LI Hong-chun,et al.Late Quaternary Qinling Incised Rate and Tectonic Uplift[J].Chinese Science Bulletin,2002,47(13):1032-1036.
[42] WESTAWAY R,BRIDGLAND D,SINHA R,et al.Fluvial Sequences as Evidence for Landscape and Climatic Evolution in the Late Cenozoic:A Synthesis of Data from IGCP 518[J].Global and Planetary Change,2009,68(4):237-253.
[43] BRIDGLAND D,WESTAWAY R.Climatically Con-trolled River Terrace Staircases:A Worldwide Quaternary Phenomenon[J].Geomorphology,2008,98(3/4):285-315.
[44] WESTAWAY R,BRIDGLAN D,MISHRA S.Rheological Differences Between Archaean and Younger Crust Can Determine Rates of Quaternary Vertical Motions Revealed by Fluvial Geomorphology[J].Terra Nova,2003,15(5):287-298.
[45] GIBBARD P L,LEWIN J.River Incision and Terrace Formation in the Late Cenozoic of Europe[J].Tectonophysics,2009,474(1/2):41-55.
[46] VANDENBERGHE J.River Terraces as a Response to Climatic Forcing:Formation Processes,Sedimentary Characteristics and Sites for Human Occupation[J].Quaternary International,2015,370:3-11.
[47] YU Y,WANG X Y,YI S W,et al.Late Quaternary Aggradation and Incision in the Headwaters of the Yangtze River,Eastern Tibetan Plateau,China[J].GSA Bulletin,2022,134(1/2):371-388.
[48] ZHANG J J,XU B,GU Z Y,et al.Coupling of River Discharges and Alpine Glaciers in Arid Central Asia[J].Quaternary International,2023,667:19-28.
[49] BRIDGLAND D R,D'OLIER B,GIBBARD P L,et al.Correlation of Thames Terrace Deposits Between the Lower Thames,Eastern Essex and the Submerged Offshore Continuation of the Thames-Medway Valley[J].Proceedings of the Geologists' Association,1993,104(1):51-57.
[50] WANG B L,WANG X Y,YI S W,et al.Responses of Fluvial Terrace Formation to Monsoon Climate Changes in the North-eastern Tibetan Plateau:Evidence from Pollen and Sedimentary Records[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2021,564:110196.
[51] BRIDGLAND D,D'OLIER B.The Pleistocene Evolution of the Thames and Rhine Drainage Systems in the Southern North Sea Basin[J].Geological Society,London,Special Publications,1995,96:27-45.
[52] STARKEL L.Climatically Controlled Terraces in Uplifting Mountain Areas[J].Quaternary Science Reviews,2003,22(20):2189-2198.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2024-02-29; 修回日期:2024-09-25
基金项目:第三次新疆综合科学考察项目(2022xjkk0300)
*通信作者:许 冰(1969-),男,北京市人,中国科学院地质与地球物理研究所研究员,博士研究生导师,理学博士,E-mail:bingx@mail.iggcas.ac.cn。
更新日期/Last Update: 2025-01-20