|本期目录/Table of Contents|

[1]金章东.湖泊沉积物的矿物组成、成因、环境指示及研究进展[J].地球科学与环境学报,2011,33(01):34-44,77.
 JIN Zhang-dong.Composition, Origin and Environmental Interpretation of Minerals in Lake Sediments and Recent Progress[J].Journal of Earth Sciences and Environment,2011,33(01):34-44,77.
点击复制

湖泊沉积物的矿物组成、成因、环境指示及研究进展(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第33卷
期数:
2011年第01期
页码:
34-44,77
栏目:
基础地质与矿产地质
出版日期:
2011-03-15

文章信息/Info

Title:
Composition, Origin and Environmental Interpretation of Minerals in Lake Sediments and Recent Progress
文章编号:
1672-6561(2011)01-0034-11
作者:
金章东
中国科学院地球环境研究所 黄土与第四纪地质国家重点实验室,陕西 西安 710075
Author(s):
JIN Zhang-dong
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, Shaanxi, China
关键词:
碎屑矿物黏土矿物自生/生物矿物环境载体湖泊沉积物陆地环境
Keywords:
detrital mineral clay mineral authigenic/biogenic minerals environmental carrier lake sediment terrestrial environment
分类号:
P571;P577
DOI:
-
文献标志码:
A
摘要:
湖泊沉积物是不同地质、气候、水文条件下各类碎屑、黏土、自生/生物成因矿物以及有机物质等的综合体。沉积矿物蕴含着丰富区域和全球环境演变信息,如湖水的化学组成、流域构造、气候、水文以及人类活动的相互作用等。相关信息可以赋存在矿物外部微形貌、内部微结构、化学组成、物理和化学性质、同位素组成、谱学特征、成因以及共生组合等方面。因此,湖泊科学的许多关键课题都离不开矿物学,特别是在利用湖泊沉积物进行区域及过去全球变化研究中,深入的机理研究归根到底都要涉及矿物学,如流域化学风化作用、粒度组成、生物壳体化学组成、测年材料的选择等。然而,由于湖泊沉积物中矿物的多源性、复杂性,如何有效提取和解译其中的环境信息,是一项长期困扰研究者的课题,湖泊沉积矿物学的研究往往被许多研究者所忽视,中国的相关研究也较为薄弱。笔者综述了湖泊沉积物中碎屑、黏土、自生/生物矿物的矿物组合、特征、成因在(古)环境反演中的作用及最新研究进展,提出除了继续加强对湖泊沉积物中矿物来源、成因和古环境示踪的深入研究以外,矿物相间的转变及其对湖水和孔隙水组成的响应、一些非晶质或隐晶质及低丰度矿物相在湖泊化学和动力学中的作用也是很有潜力的研究领域,最后提出了研究中存在的一些问题、面对的挑战以及对研究前景的展望。
Abstract:
Lake sediment is an integrated content of detrital, clay, authigenic/biogenic minerals and organic matter under various geologic, climatic and hydrologic conditions. The minerals bear abundant information on regional and global environmental changes, such as lake water chemistry, basin tectonics, climate, hydrology, and human activity interaction, etc. The information hosts in external appearance, internal microstructures, chemical compositions, physical and chemical properties, isotopic compositions, spectroscopy, origin, and assemblage of minerals, etc. Therefore, many key topics of lake sciences are depended upon mineralogy, in particular during the reconstruction of past regional/global changes using lake sediments. The understanding on mechanism should involve in mineralogy, including catchment weathering processes, grain size variation, shell chemistry, and dating material. However, owing to various sources and complexity of minerals in lake sediments, how to withdraw and interpret mineral-bearing environmental information is a longstanding troubling, resulting in that mineralogy of lake sediments is overlooked often by some researchers, also in China. In this paper, the assemblage, characters and origins of detrital, clay, authigenic/biogenic minerals in lake sediments and their role in paleoenvironmental reconstruction were reviewed, then some potential research topics were suggested, such as the transformation among minerals and its response to chemistry of lake and pore waters, the roles in lake chemistry and dynamics of some amorphous, cryptocrystalline and low abundance minerals in lake sediments, in addition to the continued researches on lake mineral source, origin and paleoenvironmental tracing, and finally some problems and challenges were put further forward to.

参考文献/References:

[1] Smol J.Pollution of Lakes and Rivers:a Paleoenvironmental Perspective[M].London:Hodder Arnold,2002.
[2] Last W M,Smol J P.Tracking Environmental Change Using Lake Sediments[M].Dordrecht:Kluwer Academic Publishers,2001.
[3] Lerman A.Lake:Chemistry,Geology,Physics[M].Berlin:Springer,1978.
[4] Hakanson L,Jansson M.Principles of Lake Sedimentology[M].Berlin:Springer,1983.
[5] Jin Z D,Wu Y H,Zhang X H,et al.Role of Late Glacial to Mid-Holocene Climate in Catchment Weathering in the Central Tibetan Plateau[J].Quaternary Research,2005,63(2):161-170.
[6] Jin Z D,Wang S M,Shen J,et al.Chemical Weathering Since the Little Ice Age Recorded in Lake Sediments:a High-resolution Proxy of Past Climate[J].Earth Surface Processes and Landforms,2001,26(7):775-782.
[7] 吴艳宏,李世杰,夏威岚.可可西里苟仁错湖泊沉积物元素地球化学特征及其环境意义[J].地球科学与环境学报,2004,26(3):64-68.
[8] Leng M J,Jones M D,Frogley M R,et al.Detrital Carbonate Influences on Bulk Oxygen and Carbon Isotope Composition of Lacustrine Sediments from the Mediterranean[J].Global and Planetary Change,2010,71(3/4):175-182.
[9] 王恩德,王丹丽,王 毅.铁矿物形成过程中的细菌作用研究[J].岩石矿物学杂志,2001,20(4):414-418.
[10] 曾荣树,雷加锦.环境科学新的生长点:环境矿物学[C]∥孙 枢.地质环境系统研究.北京:海洋出版社,1998:39-46.
[11] 贾建业,汤艳杰.环境演变的矿物标识研究新进展[J].岩石矿物学杂志,2001,20(4):419-427.
[12] Xiao J L,Inouchi Y,Kumai H,et al.Eolian Quartz Flux to Lake Biwa,Central Japan,over the Past 145 000 Years[J].Quaternary Research,1997,48(1):48-57.
[13] Coakley J P,Rust B R.Sedimentation in an Arctic Lake[J].Journal of Sedimentary Research,1968,38(4):1290-1300.
[14] Kennedy S K,Smith N D.The Relationship Between Carbo-nate Mineralogy and Grain Size in Two Alpine Lakes[J].Journal of Sedimentary Research,1977,47(1):411-418.
[15] Kemp A L W,Dell C I.A Preliminary Comparison of the Composition of Bluffs and Sediments from Lakes Ontario and Erie[J].Canadian Journal of Earth Sciences,1976,13(8):1070-1081.
[16] Bradbury J P,Megard R O.Stratigraphic Record of Pollution in Shagawa Lake,Northeastern Minnesota[J].GSA Bulletin,1972,83(9):2639-2648.
[17] 毛绪美,洪业汤,朱咏煊,等.金川泥炭沉积中火山喷出物的发现及其意义[J].矿物学报,2002,22(1):9-14.
[18] Chamley H.Geodynamic Control on Messinian Clay Sedimentation in the Central Mediterranean Sea[J].Geo-marine Letters,1989,9(3):179-184.
[19] Gibbs R J.The Geochemistry of the Amazon River System:Part I:the Factors That Control the Salinity and the Composition and Concentration of the Suspended Solids[J].GSA Bulletin,1967,78(10):1203-1232.
[20] Fagel N,Boёs X.Clay-mineral Record in Lake Baikal Sediments:the Holocene and Late Glacial Transition[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2008,259(2/3):230-243.
[21] Srodon J,Eberl D D. Illite[J]. Reviews in Mineralogy and Geochemistry,1984,13(1):495-544.
[22] 杨献忠.伊利石的结晶度及其地质意义综述[J].沉积学报,1993,11(4):92-98.
[23] Ji J F,Browne P R L,Liu Y J,et al.Kinetic Model for the Smectite to Illite Transformation in Active Geothermal System[J].Chinese Science Bulletin,1998,43(12):1042-1044.
[24] Eberl D D,Velde B.Beyond the Kübler Index[J].Clay Mine-rals,1989,24(4):571-577.
[25] Clauer N,Chaudhuri S.Clays in Crustal Environments:Isotope Dating and Tracing[M].Heidelberg:Springer,1995.
[26] 郑洪汉,鲍 勒.澳大利亚弗罗姆湖沉积物的黏土矿物及其古气候意义[J].矿物学报,1986,6(3):266-272.
[27] Singer A.The Paleoclimatic Interpretation of Clay Minerals in Sediments:a Review[J].Earth Science Reviews,1984,21(4):251-293.
[28] Kango R A,Dubey K P,Zutshi D P.Sediment Chemistry of Kashmir Himalayan Lakes I:Clay Mineralogy[J].Chemical Geology,1987,64(1/2):121-126.
[29] 徐 昶,林乐枝,杨 波.青海湖沉积物中的黏土矿物[J].地质科学,1989,24(4):348-354.
[30] 张乃娴,万国江,马玉光.威宁草海沉积物中的黏土矿物及其环境记录[J].地质科学,2000,35(2):206-211.
[31] Mees F,Segers S,VanRanst E.Palaeoenvironmental Significance of the Clay Mineral Composition of Olduvai Basin Deposits,Northern Tanzania[J].Journal of African Earth Sciences,2007,47(1):39-48.
[32] Solotchina E P,Prokopenko A A,Kuzmin M I,et al.Climate Signals in Sediment Mineralogy of Lake Baikal and Lake Hovsgol During the LGM-Holocene Transition and the 1-Ma Carbonate Record from the HDP-04 Drill Core[J].Quaternary International,2009,205:38-52.
[33] Blaise B.Clay-mineral Assemblages from Late Quaternary Deposits on Vancouver Island,Southwestern British Columbia,Canada[J].Quaternary Research,1989,31(1):41-56.
[34] Brooks R A,Ferrell R E.The Lateral Distribution of Clay Minerals in Lakes Pontchartrain and Maurepas,Louisiana[J].Journal of Sedimentary Research,1970,40(3):855-863.
[35] 徐 昶.中国盐湖的黏土矿物研究[M].北京:科学出版社,1993.
[36] Battarbee R W,Jones V J,Flower R J,et al.Diatoms[C]∥Smol J P,Birks H J B,Last W M.Tracking Environmental Change Using Lake Sediments Vol.3:Terrestrial,Algal,and Siliceous Indicators.Dordrecht:Kluwer Academic Publishers,2002:155-202.
[37] Kilham P,Kilham S S,Hecky R E.Hypothesized Resource Relationships Among African Planktonic Diatoms[J].Limnology Oceanography,1986,31(6):1169-1181.
[38] Jin Z D,You C F,Wang Y,et al.Hydrological and Solute Budgets of Lake Qinghai,the Largest Lake on the Tibetan Plateau[J].Quaternary International,2010,218(1/2):151-156.
[39] Baioumy H,Kayanne H,Tada R.Record of Holocene Aridification(6 000-7 000 BP)in Egypt(NE Africa):Authigenic Carbonate Minerals from Laminated Sediments in Lake Qarun[J].Quaternary International,2010.DOI:10.1016/j.quaint.2010.05.021.
[40] Schelske C L,Hodell D A.Recent Changes in Productivity and Climate of Lake Ontario Detected by Isotopic Analysis of Sediments[J].Limnology Oceanography,1991,36(5):961-975.
[41] Ramisch F,Dittrich M,Mattenberger C,et al.Calcite Dissolution in Two Deep Eutrophic Lakes[J].Geochimica et Cosmochimica Acta,1999,63(19/20):3349-3356.
[42] Robbins L L,Blackwelder P L.Biochemical and Ultrastructural Evidence for the Origin of Whitings:a Biologically Induced Calcium Carbonate Precipitation Mechanism[J].Geology,1992,20(5):464-468.
[43] 顾兆炎,刘嘉麒,袁宝印,等.湖相自生沉积作用与环境[J].第四纪研究,1994,14(2):162-174.
[44] 刘兴起,沈 吉,王苏民,等.16 ka 以来青海湖湖相自生碳酸盐沉积记录的古气候[J].高校地质学报,2003,9(1):38-46.
[45] 金章东.青海湖的无机碳收支[J].第四纪研究,2010,30(6):1162-1168.
[46] 王云飞.青海湖、岱海的湖泊碳酸盐化学沉积与气候环境变化[J].海洋与湖沼,1993,24(1):31-36.
[47] VanLith Y,Vasconcelos C,Warthmann R,et al.Bacterial Sulfate Reduction and Salinity:Two Controls on Dolomite Precipitation in Lagoa Vermelha and Brejo do Espinho(Brazil)[J].Hydrobiologia,2002,485(1/3):35-49.
[48] Wacey D,Wright D T,Boyce A J.A Stable Isotope Study of Microbial Dolomite Formation in the Coorong Region,South Australia[J].Chemical Geology,2007,244(1/2):155-174.
[49] Li M H,Kang S C,Zhu L P,et al.On the Unusual Holocene Carbonate Sediment in Lake Nam Co,Central Tibet[J].Journal of Mountain Science,2009,6(4):346-353.
[50] Callender E,Bowser C J.Freshwater Ferromanganese Depo-sits[C]∥Wolf K H.Handbook of Stratabound and Strataform Ore Deposits.Amsterdam:Elsevier,1976:344-394.
[51] Verosub K L,Roberts A P.Environmental Magnetism:Past,Present,and Future[J].Journal of Geophysical Research,1995,100(B2):2175-2192.
[52] 符超峰,宋友桂,强小科,等.环境磁学在古气候环境研究中的回顾与展望[J].地球科学与环境学报,2009,31(3):312-322.
[53] Sagnotti L,Winkler A.Rock Magnetism and Palaeomagnetism of Greigite-bearing Mudstones in the Italian Peninsula[J].Earth and Planetary Science Letters,1999,165(1):67-80.
[54] 胡守云,Appel E,Hoffmann V,等.湖泊沉积物中胶黄铁矿的鉴出及其磁学意义[J].中国科学:D辑,2002,32(3):234-238.
[55] Snowball I,Thompson R.A Stable Chemical Remanence in Holocene Sediments[J].Journal of Geophysical Research,1990,95(B4):4471-4479.
[56] Babinszki E,Márton E,Márton P,et al.Widespread Occurrence of Greigite in the Sediments of Lake Pannon:Implications for Environment and Magnetostratigraphy[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,252(3/4):626-636.
[57] Jones B F,Eugster H P,Rettig S L.Hydrochemistry of the Lake Magadi Basin,Kenya[J].Geochimica et Cosmochimica Acta,1977,41(1):53-72.
[58] Jaisi D P,Blake R E,Kukkadapu R K.Fractionation of Oxygen Isotopes in Phosphate During Its Interactions with Iron Oxides[J].Geochimica et Cosmochimica Acta,2010,74(4):1309-1319.
[59] Nriagu J O,Dell C I.Diagenetic Formation of Iron Phosphates in Recent Lake Sediments[J].American Mineralogist,1974,59:934-946.
[60] Owen R A,Owen R B,Renaut R W,et al.Mineralogy and Origin of Rhizoliths on the Margins of Saline,Alkaline Lake Bogoria,Kenya Rift Valley[J].Sedimentary Geology,2008,203(1/2):143-163.
[61] 胡 广,金章东,张 飞.利用介形类壳体Sr、Mg重建古环境受自生碳酸盐矿物的限制及机理探讨[J].中国科学:D辑,2008,38(2):177-186.
[62] Jin Z D,Bickle M J,Chapman H J,et al.Early to Mid-Pleistocene Ostracod δ18O and δ13C in the Central Tibetan Plateau:Implication for Indian Monsoon Change[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2009,280(3/4):406-414.
[63] Jin Z D,Bickle M J,Chapman H J,et al.Ostracod Mg/Sr/Ca and 87Sr/86Sr Geochemistry from Tibetan Lake Sediments:Implications for Early to Mid-Pleistocene Indian Monsoon and Catchment Weathering[J].Boreas,2010.DOI:10.1111/j.1502-3885.2010.00184.x.
[64] Ito E,Forester R M.Changes in Continental Ostracode Shell Chemistry; Uncertainty of Cause[J].Hydrobiologia,2009,620(1):1-15.
[65] Campana S E.Chemistry and Composition of Fish Otoliths:Pathways,Mechanisms and Applications[J].Marine Ecology Progress Series,1999,188:263-297.

相似文献/References:

[1]杨新强,陈效民,李孝良,等.西南喀斯特地区不同石漠化阶段土壤黏土矿物组成及其含量变异研究[J].地球科学与环境学报,2011,33(04):416.
 YANG Xin-qiang,CHEN Xiao-min,LI Xiao-liang,et al.Study on Composition and Content Variation of Clay Mineral of Soil Under Different Stages of Rock Desertification in Karst Region, Southwest China[J].Journal of Earth Sciences and Environment,2011,33(01):416.
[2]李超,罗晓容.泥岩化学压实作用研究进展[J].地球科学与环境学报,2017,39(06):761.
 LI Chao,LUO Xiao-rong.Review on Mudstone Chemical Compaction[J].Journal of Earth Sciences and Environment,2017,39(01):761.

备注/Memo

备注/Memo:
收稿日期:2010-10-11
基金项目: 国家自然科学基金项目(40873082); 国家重点基础研究发展计划项目(2010CB833404)
作者简介: 金章东(1971-),男,浙江永康人,研究员,博士研究生导师,从事表生地球化学和全球变化研究。E-mail:zhdjin@ieecas.cn

更新日期/Last Update: 2011-03-20