必须声明标量变量 "@Script_ID"。 化学刺激技术在干热岩储层改造中的应用与最新进展-《地球科学与环境学报》
|本期目录/Table of Contents|

[1]冯波,许佳男,许天福*,等.化学刺激技术在干热岩储层改造中的应用与最新进展[J].地球科学与环境学报,2019,41(05):577-591.
 FENG Bo,XU Jia-nan,XU Tian-fu*,et al.Application and Recent Progresses of Chemical Stimulation on Hot Dry Rock Reservoir Modification[J].Journal of Earth Sciences and Environment,2019,41(05):577-591.
点击复制

化学刺激技术在干热岩储层改造中的应用与最新进展(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第41卷
期数:
2019年第05期
页码:
577-591
栏目:
水资源与环境
出版日期:
2019-09-15

文章信息/Info

Title:
Application and Recent Progresses of Chemical Stimulation on Hot Dry Rock Reservoir Modification
文章编号:
1672-6561(2019)05-0577-15
作者:
冯波1许佳男1许天福1*李胜涛12宋丹1陈明涛1
(1. 吉林大学 地下水资源与环境教育部重点实验室,吉林 长春 130021; 2. 中国地质调查局水文地质环境地质调查中心,河北 保定 071051)
Author(s):
FENG Bo1 XU Jia-nan1 XU Tian-fu1* LI Sheng-tao12 SONG Dan1 CHEN Ming-tao1
(1.Key Laboratory of Groundwater Resources and Environment of Ministry of Education, Jilin University, Changchun 130021, Jilin, China; 2. Center for Hydrogeology and Environmental Geology Survey, China Geological Survey, Baoding 071051, Hebei, China)
关键词:
干热岩 增强型地热系统 化学刺激 储层改造 酸性 碱性 螯合剂 渗透性
Keywords:
hot dry rock enhanced geothermal system chemical stimulation reservoir modification acid alkaline chelating agent permeability
分类号:
P314; TK521
DOI:
-
文献标志码:
A
摘要:
干热岩是一种没有水(或含有少量水而不流动)的高温(>180 ℃)岩体,多为变质岩或花岗岩,岩性致密,很少存在孔隙或裂隙,渗透性极差。增强型地热系统(Enhanced Geothermal System,EGS)是利用水力压裂、化学刺激等措施形成人工地热储层,通过注入载热流体从低渗透性干热岩中经济有效地开采出热能的人工地热开采系统,是开发干热岩型地热资源的有效方法。增强型地热系统成功的关键在于可控性良好的储层改造手段,化学刺激即为储层改造常用的方法之一。通过回顾国内外有关增强型地热系统储层改造中化学刺激技术研究的最新成果,总结了实际应用化学刺激技术的增强型地热系统工程经验。结果表明:增强型地热系统中采用的化学刺激剂多数为酸性化学刺激剂,其中螯合酸具有阻垢性、缓速性、催化性、二次沉淀少、腐蚀性弱等优点,能够实现深穿透、低伤害的储层激发; 单一的碱性化学刺激剂(NaOH和Na2CO3)的室内实验结果较为理想,但是场地应用效果并不令人满意,添加了NTA、EDTA等螯合剂的碱性化学刺激剂可减少次生沉淀的生成,从而取得良好的储层改造效果。最后,针对青海共和盆地正在开展的干热岩开发示范工程项目,提出热刺激和碱性化学刺激联合的储层刺激工艺,该工艺有可能在深部高温岩体中产生改造体积更大的地热储层,提高储层改造的效果。
Abstract:
Hot dry rock(HDR)is a kind of high temperature(>180 ℃)rock without water(or with little water and cannot flow), and with low porosity and permeability, which is mostly composed of metamorphic rock or granite. Enhanced geothermal system(EGS)is an effective method for exploiting HDR geothermal resources. Artificial geothermal reservoir has been created to extract economical amounts of heat from low permeability geothermal resources by hydraulic fracturing or chemical stimulation, which is important for the exploitation of geothermal energy. As a consequence, chemical stimulation, in addition to hydraulic and thermal fracturing, is proposed and employed as an important method for the reservoir modification. The latest researches on chemical stimulation technology in EGS reservoir modification were reviewed, and the EGS engineering experience using chemical stimulation technology of practical application was summarized. The results show that most of the chemical stimulation used in EGS are acid chemical stimulation, especially the chelating acid has the advantages of scale inhibition, slowness, catalytic performance, less secondary precipitation, and weak corrosiveness, which can achieve deep penetration and low damage to reservoir excitation; alkaline chemical stimulation(NaOH and Na2CO3)laboratory experimental results are good, but the effect of practical application is not good, and the addition of alkaline stimulants, such as NTA, EDTA and other chelating agents, can reduce the formation of secondary precipitation and obtain good reservoir modification effect. Finally, a reservoir modification process combined with thermal stimulation and alkaline chemical stimulation for HDR development demonstration project being carried out in Gonghe Basin of Qinghai was proposed, this process may produce geothermal reservoir with larger volume and improve the effect of reservoir reconstruction.

参考文献/References:

[1] 汪集旸,胡圣标,庞忠和,等.中国大陆干热岩地热资源潜力评估[J].科技导报,2012,30(32):25-31. WANG Ji-yang,HU Sheng-biao,PANG Zhong-he,et al.Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China[J].Science and Technology Review,2012,30(32):25-31.
[2] NB/T 10097—2018.地热能术语[S]. NB/T 10097—2018.Terminology of Geothermal Energy[S].
[3] 杨吉龙,胡 克.干热岩(HDR)资源研究与开发技术综述[J].世界地质,2001,20(1):43-51. YANG Ji-long,HU Ke.A Review of Hot Dry Rock(HDR)Research and Development in the World[J].World Geology,2001,20(1):43-51.
[4] 许天福,张延军,曾昭发,等.增强型地热系统(干热岩)开发技术进展[J].科技导报,2012,30(32):42-45. XU Tian-fu,ZHANG Yan-jun,ZENG Zhao-fa,et al.Technology Progress in an Enhanced Geothermal System(Hot Dry Rock)[J].Science and Technology Review,2012,30(32):42-45.
[5] 陆 川,王贵玲.干热岩研究现状与展望[J].科技导报,2015,33(19):13-21. LU Chuan,WANG Gui-ling.Current Status and Prospect of Hot Dry Rock Research[J].Science and Technology Review,2015,33(19):13-21.
[6] 王贵玲,蔺文静,马 峰.地热知识点,了解一下[N].中国矿业报,2018-04-21(3). WANG Gui-ling,LIN Wen-jing,MA Feng.Understanding Geothermal Knowledge[N].China Mine Newspaper,2018-04-21(3).
[7] 许天福,袁益龙,姜振蛟,等.干热岩资源和增强型地热工程:国际经验和我国展望[J].吉林大学学报(地球科学版),2016,46(4):1139-1152. XU Tian-fu,YUAN Yi-long,JIANG Zhen-jiao,et al.Hot Dry Rock and Enhanced Geothermal Engineering:International Experience and China Prospect[J].Journal of Jilin University(Earth Science Edition),2016,46(4):1139-1152.
[8] 那 金,许天福,魏铭聪,等.增强地热系统热储层-盐水-CO2相互作用[J].吉林大学学报(地球科学版),2015,45(5):1493-1501. NA Jin,XU Tian-fu,WEI Ming-cong,et al.Interaction of Rock-brine-supercritical CO2 in EGS Reservoir[J].Journal of Jilin University(Earth Science Edition),2015,45(5):1493-1501.
[9] 许天福,张 炜.增强型地热工程国际发展和我国前景展望[J].石油科学通报,2016,1(1):38-44. XU Tian-fu,ZHANG Wei.Enhanced Geothermal Systems:International Developments and China’s Prospects[J].Peotroleum Science Bulletin,2016,1(1):38-44.
[10] XIE X,WEISS W W,TONG Z,et al.Improved Oil Recovery from Carbonate Reservoirs by Chemical Stimulation[J].SPE Journal,2005,10(3):276-285.
[11] SIRATOVICH P A,VILLENEUVE M C,COLE J W,et al.Saturated Heating and Quenching of Three Crustal Rocks and Implications for Thermal Stimulation of Permeability in Geothermal Reservoirs[J].International Journal of Rock Mechanics and Mining Sciences,2015,80:265-280.
[12] PORTIER S,VUATAZ F D,NAMI P,et al.Chemical Stimulation Techniques for Geothermal Wells:Experiments on the Three-well EGS System at Soultz-sous-Forêts,France[J].Geothermics,2009,38(4):349-359.
[13] 郭亮亮.增强型地热系统水力压裂和储层损伤演化的试验及模型研究[D].长春:吉林大学,2016. GUO Liang-liang.Test and Model Research of Hydraulic Fracturing and Reservoir Damage Evolution in Enhanced Geothermal System[D].Changchun:Jilin University,2016.
[14] 冯子军,赵阳升,张 渊,等.热破裂花岗岩渗透率变化的临界温度[J].煤炭学报,2014,39(10):1987-1992. FENG Zi-jun,ZHAO Yang-sheng,ZHANG Yuan,et al.Critical Temperature of Permeability Change in Thermally Cracked Granite[J].Journal of China Coal Society,2014,39(10):1987-1992.
[15] LUO J,ZHU Y,GUO Q,et al.Chemical Stimulation on the Hydraulic Properties of Artificially Fractured Granite for Enhanced Geothermal System[J].Energy,2018,142:754-764.
[16] FOGLER H S,LUND K,MCCUNE C,et al.Kinetics of Dissolution of Sodium and Potassium Feldspar in HF-HCl Acid Mixtures[J].Chemical Engineering Science,1975,30(11):1325-1332.
[17] CUENOT N,FAUCHER J P,FRITSCH D,et al.The European EGS Project at Soultz-sous-Forêts:From Extensive Exploration to Power Production[C]∥IEEE.2008 IEEE Power and Energy Society General Meeting.Pittsburgh:IEEE,2008:1-8.
[18] 那 金,许天福,吴永东,等.增强型地热系统(EGS)土酸化学刺激剂对热储层的改造[J].中南大学学报(自然科学版),2017,48(1):247-254. NA Jin,XU Tian-fu,WU Yong-dong,et al.Effectiveness of Using Mud Acid as Stimulation Agent for Enhanced Geothermal Systems(EGS)Reservoir[J].Journal of Central South University(Science and Technology),2017,48(1):247-254.
[19] 庄亚芹,张灿海,朱明成,等.土酸化学刺激剂提高花岗岩渗透率的试验研究[J].安全与环境工程,2017,24(2):16-21,45. ZHUANG Ya-qin,ZHANG Can-hai,ZHU Ming-cheng,et al.Laboratory Study of Improving Granite Permeability by Using Mud Acid as the Chemical Stimulus[J].Safety and Environmental Engineering,2017,24(2):16-21,45.
[20] 庄亚芹.实施增强型地热系统(EGS)的化学刺激实验研究:以青海共和盆地干热岩为例[D].武汉:中国地质大学,2017. ZHUANG Ya-qin.Study on the Chemical Stimulation Techniques for Enhanced Geothermal Systems(EGS):Base on Gonghe Basin Hot Dry Rock,Qinghai[D].Wuhan:China University of Geosciences,2017.
[21] 余东合,范秋菊,修书志,等.新型低伤害络合酸体系评价实验[J].石油钻采工艺,2017,39(6):760-765. YU Dong-he,FAN Qiu-ju,XIU Shu-zhi,et al.Evaluation Experiment of Low-damage Complex Acid System[J].Oil Drilling and Production Technology,2017,39(6):760-765.
[22] 费旭博.刘峁塬区块长4+5储层螯合酸酸化机理及影响因素研究[D].西安:西安石油大学,2018. FEI Xu-bo.Study on Chelate Acidification Mechanism and Influence Factors of Chang-4+5 Reservoir in Liu-maoyuan Block[D].Xi’an:Xi’an Shiyou University,2018.
[23] 刘平礼,孙 庚,邢希金,等.砂岩储层酸化智能复合酸液体系研究及应用[J].西南石油大学学报(自然科学版),2015,37(6):138-143. LIU Ping-li,SUN Geng,XING Xi-jin,et al.Study and Application of Intelligent Integrated Acid System for Sandstone Stimulation[J].Journal of Southwest Petroleum University(Science and Technology Edition),2015,37(6):138-143.
[24] 张合文,丁云宏,赫安乐,等.双分支水平井酸化技术在碳酸盐岩储层中的应用[J].石油钻采工艺,2014,36(5):84-87. ZHANG He-wen,DING Yun-hong,HE An-le,et al.Application of Acidizing in Bilateral Borizontal Well in Carbonate Reservoir[J].Oil Drilling and Production Technology,2014,36(5):84-87.
[25] 范秋菊.注水井深部解堵新型酸液体系研究[D].成都:西南石油大学,2017. FAN Qiu-ju.Research on Deep Solution of a New Acidizing Fluid System on Water Injection Wells[D].Chengdu:Southwest Petroleum University,2017.
[26] 曲希玉,刘 立,马 瑞,等.CO2流体对岩屑长石砂岩改造作用的实验[J].吉林大学学报(地球科学版),2008,38(6):959-964. QU Xi-yu,LIU Li,MA Rui,et al.Experiment on Debris-arkosic Sandstone Reformation by CO2 Fluid[J].Journal of Jilin University(Earth Science Edition),2008,38(6):959-964.
[27] 侯兆云,许天福,何 斌,等.增强型地热系统中溶解二氧化碳对热储层溶蚀作用的实验研究[J].可再生能源,2016,34(1):118-124. HOU Zhao-yun,XU Tian-fu,HE Bin,et al.Labora-tory Experimental Study of Dissolution Using Supercritical CO2 as a Stimulation Agent for Enhanced Geothermal System(EGS)in Songliao Basin[J].Renewable Energy Resources,2016,34(1):118-124.
[28] 那 金,冯 波,兰乘宇,等.CO2化学刺激剂对增强地热系统热储层的改造作用[J].中南大学学报(自然科学版),2014,45(7):2447-2458. NA Jin,FENG Bo,LAN Cheng-yu,et al.Effectiveness of Using Supercritical CO2 as Stimulation Agent for Enhanced Geothermal Systems[J].Journal of Central South University(Science and Technology),2014,45(7):2447-2458.
[29] 张 炜,许天福,吕 鹏,等.二氧化碳增强型地热系统的研究进展[J].地质科技情报,2013,32(3):177-182. ZHANG Wei,XU Tian-fu,LU Peng,et al.A Review of Carbon Dioxide-based Enhanced Geothermal System[J].Geological Science and Technology Information,2013,32(3):177-182.
[30] WAKAHAMA H,MITO S,OHSUMI T,et al.A Concept of CO2 Georeactor Sequestration at the Ogachi HDR Site,NE Japan[J].Energy Procedia,2009,1(1):3683-3689.
[31] VANCE H,LOYD E,MCDANIEL B W.Overview of Stimulation Technology for Horizontal Completions without Cemented Casing in the Lateral[C]∥SPE.SPE Asia Pacific Oil & Gas Conference and Exhibition.Melbourne:SPE,2002:21-37.
[32] 陈颖祎,潘宝风,刘徐慧,等.川东北高温碳酸盐岩储层自转向酸研究与应用[J].广东化工,2014,41(17):55-56. CHEN Ying-yi,PAN Bao-feng,LIU Xu-hui,et al.High Temperature Carbonate Reservoirs in the Northeastern Sichuan from Turning Sour Research and Application[J].Guangdong Chemical Industry,2014,41(17):55-56.
[33] 何春明,陈红军,王文耀.碳酸盐岩储层转向酸化技术现状与最新进展[J].石油钻探技术,2009,37(5):121-126. HE Chun-ming,CHEN Hong-jun,WANG Wen-yao.Diversion Acidizing Used for Carbonate Reservoir:State-of-the-art and New Development[J].Petroleum Drilling Techniques,2009,37(5):121-126.
[34] 孙铁南.VES自转向酸对致密砂岩储层改造实验研究[D].成都:成都理工大学,2015. SUN Tie-nan.Experimental Study on Reconstruction of Tight Sandstone Reservior Using VES Self-steering Acid[D].Chengdu:Chengdu University of Technology,2015.
[35] HARRISON N W.Diverting Agents:History and Application[J].Journal of Petroleum Technology,1972,24(5):593.
[36] 关富佳,姚光庆,刘建民.泡沫酸性能影响因素及其应用[J].西南石油学院学报,2004,26(1):65-67. GUAN Fu-jia,YAO Guang-qing,LIU Jian-min.Performance Influence Factor and Practice of Foamed Acid[J].Journal of Southwest Petroleum Institute,2004,26(1):65-67.
[37] 黄颖辉,赵立强,陈冀嵋,等.泡沫分流酸化模型进展[J].西南石油学院学报,2004,26(1):58-60. HUANG Ying-hui,ZHAO Li-qiang,CHEN Ji-mei,et al.Development of Foam Diversion Acidizing Model[J].Journal of Southwest Petroleum Institute,2004,26(1):58-60.
[38] 吴信荣,孙建华,尚根华,等.FSH-01泡沫酸对高温高盐油层适应性动态评价[J].石油天然气学报,2005,27(1):83-85. WU Xin-rong,SUN Jian-hua,SHANG Gen-hua,et al.Dynamic Evaluation on the Adaptability of FSH-01 Foamed Acid in High Temperature and High Salt Reservoirs[J].Journal of Oil and Gas Technology,2005,27(1):83-85.
[39] MOHAMED Z.Product and Process for Acid Diversion in the Treatment of Subterranean Formations[J].Geothermics,1993,22(4):11.
[40] 冯乐蒙.川东北碳酸盐岩储层酸压改造复合暂堵技术研究[D].成都:成都理工大学,2015. FENG Le-meng.Study on Acid Fracturing Modification Compound Temporary Plugging Technology in Carbonate Reservoir of Northeast Sichuan[D].Chengdu:Chengdu University of Technology,2015.
[41] ANDERSON A J.Production Enhancement Through Aggressive Flowback Procedures in the Codell Formation[C]∥SPE.SPE Annual Technical Conference and Exhibition.Denver:SPE,1996:10-15.
[42] BAZIN B,CHARBONNEL P,ONAISI A.Strategy Optimization for Matrix Treatments of Horizontal Drains in Carbonate Reservoirs,Use of Self-gelling Acid Diverter[C]∥SPE.Proceedings of the 1999 European Formation Damage Conference.Hague:SPE,1999:31.
[43] TAYLOR K C,NASR-EI-DIN H A.Laboratory Evaluation of In-situ Gelled Acids for Carbonate Reservoirs[J].SPE Journal,2003,8(4):426-434.
[44] 李小刚,陈雨松,杨兆中,等.粘弹性表面活性剂在油气藏增产改造领域的研究进展[J].世界科技研究与发展,2017,39(3):264-269. LI Xiao-gang,CHEN Yu-song,YANG Zhao-zhong,et al.Research Progresses of Viscoelastic Surfactant in Reservoir Stimulation[J].World Sci-tech R&D,2017,39(3):264-269.
[45] 曲占庆,曲冠政,齐 宁,等.粘弹性表面活性剂自转向酸液体系研究进展[J].油气地质与采收率,2011,18(5):89-92. QU Zhan-qing,QU Guan-zheng,QI Ning,et al.Research Advances of Viscoelastic Surfactant Based Self-diverting Acid System[J].Petroleum Geology and Recovery Efficiency,2011,18(5):89-92.
[46] 郑云川,赵立强,刘平礼,等.粘弹性表面活性剂胶束酸在砂岩储层分流酸化中的应用[J].石油学报,2006,27(6):93-95. ZHENG Yun-chuan,ZHAO Li-qiang,LIU Ping-li,et al.Sandstone Diversion Acidization Technology of Viscoelastic Eurfactant Micelle Fluid[J].Acta Petrolei Sinica,2006,27(6):93-95.
[47] 曲冠政.甜菜碱类粘弹性表面活性剂自转向酸酸化技术研究[D].青岛:中国石油大学,2011. QU Guan-zheng.Study on Betaine Viscoelastic Surfactant Self-diverting Acid Technology[D].Qingdao:China University of Petroleum,2011.
[48] 詹宁宁.古潜山储层长井段自转向酸液的研究[D].大庆:东北石油大学,2014. ZHAN Ning-ning.Study on Self-diverting Acid of the Long-well Section in Buried Hill Reservoir[D].Daqing:Northeast Petroleum University,2014.
[49] MELLA M,KOVCA K,XU T,et al.Calcite Dissolution in Geothermal Reservoirs Using Chelants[C]∥GRC.Geothermal Resources:Securing Our Energy Future.San Diego:GRC,2006:29-40.
[50] 赵经贵,刘景茂,张 新,等.石英、三氧化二铝、高岭土与纯碱在高温下的反应机理[J].黑龙江大学自然科学学报,1995,12(3):87-91. ZHAO Jing-gui,LIU Jing-mao,ZHANG Xin,et al.Mechanism of High Temperature Reaction of Quartz,Alumina,Kaolin and Sodium Carbonate[J].Journal of Natural Science of Heilongjiang University,1995,12(3):87-91.
[51] 那 金.化学刺激技术对增强型地热系统(EGS)热储层改造作用研究:以松辽盆地营城组为例[D].长春:吉林大学,2016. NA Jin.A Study of Chemical Stimulation on Enhanced Geothermal Systems(EGS)in Yingcheng Formation of Songliao Basin,China[D].Changchun:Jilin University,2016.
[52] ROSE P,XU T F,KOVAC K,et al.Chemical Stimulation in Near-wellbore Geothermal Formations:Silica Dissolution in the Presence of Calcite at High Temperature and High pH[C]∥Stanford Geothermal Program.Proceedings of Thirty-second Workshop on Geothermal Reservoir Engineering.Stanford:Stanford University,2007:111-115.
[53] FRENIER W W,FREED C N,CHANG F.Hydroxyaminocarboxylic Acids Produce Superior Formulations for Matrix Stimulation of Carbonates at High Tempera-tures[C]∥SPE.SPE Annual Technical Conference and Exhibition.New Orleans:SPE,2001:1-16.
[54] XU T F,ROSE P,FAYER S,et al.On Modeling of Che-mical Stimulation of an Enhanced Geothermal System Using a High pH Solution with Chelating Agent[J].Geofluids,2009,9(2):167-177.
[55] EXLER V A,CISNEROS F T,QUEVEDO M A.Hybrid Matrix Acidizing Techniques Successfully Stimulate Geothermal Wells in Latin America,Schlumberger[C]∥SPE.SPE International Symposium and Exhibition on Formation Damage Control.Lafayette:SPE,2014:37-47.
[56] 王 玺.孔雀石、石英、白云石、石灰石及硅孔雀石在NH3-NH4Cl-H2O体系中的溶解度及组元行为(25 ℃)[D].长沙:中南大学,2012. WANG Xi.Solubilities and Components Evolution for Malachite,Quartz,Dolomites,Calcite and Chrysocolla in NH3-NH4Cl-H2O Systems at 25 ℃[D].Changsha:Central South University,2012.
[57] 刘明亮,庄亚芹,周 超,等.化学刺激技术在增强型地热系统中的应用:理论、实践与展望[J].地球科学与环境学报,2016,38(2):267-276. LIU Ming-liang,ZHUANG Ya-qin,ZHOU Chao,et al.Application of Chemical Stimulation Technology in Enhanced Geothermal System:Theory,Practice and Expectation[J].Journal of Earth Sciences and Environment,2016,38(2):267-276.
[58] SARDA J P.Chemical Leaching[C]∥Institute of Geo-physics ETH Zurich.The 2nd NATA-CCMS Information Meeting on Hot Dry Rock Geothermal Energy.Los Alamos:Institute of Geophysics ETH Zurich,1977:136-159.
[59] KOVAC K,MOORE J,MCCULLOCH J,et al.Geo-logy and Mineral Paragenesis Study Within the Coso-Egs Project[C]∥Stanford Geothermal Program.Proceedings of Twenty-ninth Workshop on Geothermal Reservoir Engineering.Stanford:Stanford University,2004:20-25.
[60] ROSE P,BARTON C,PETTY S,et al.Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation[C]∥GRC.Geothermal Energy:The Baseload Renewable Resource.Reno:GRC,2002:1-15.
[61] ANDRE L,PORTIER S.Review on Chemical Stimulation Techniques in Oil Industry and Applications to Geothermal Systems[J].Engine,2007,5:1-30.
[62] EVANOFF J,YEAGER V,SPIELMAN P.Stimulation and Damage Removal of Calcium Carbonate Scaling in Geothermal Wells:A Case Study[J].Energy Sources,1997,19(1):2481-2485.
[63] 王晓星,吴能友,苏 正,等.增强型地热系统的开发:以法国苏尔士地热田为例[J].热能动力工程,2012,27(6):631-636. WANG Xiao-xing,WU Neng-you,SU Zheng,et al.Development of Enhanced Geothermal Systems(EGS):With Soultz Geothermal Farm in France Serving as an Example[J].Journal of Engineering for Thermal Energy and Power,2012,27(6):631-636.
[64] PORTIER S,VUATAZ F D.Developing the Ability to Model Acid-rock Interactions and Mineral Dissolution During the RMA Stimulation Test Performed at the Soultz-sous-Forêts EGS Site,France[J].Comptes Rendus Geoscience,2010,342(7/8):668-675.
[65] GERARD A,GENTER A,KOHL T,et al.The Deep EGS(Enhanced Geothermal System)Project at Soultz-sous-Forêts(Alsace,France)[J].Geothermics,2006,35(5/6):473-483.
[66] GENTER A,EVANS K,CUENOT N,et al.Contribution of the Exploration of Deep Crystalline FracturedReservoir of Soultz to the Knowledge of Enhanced Geo-thermal Systems(EGS)[J].Comptes Rendus Geoscience,2010,342(7/8):502-516.
[67] PAUL B,EVA S,JEAN-BERNARD E,et al.Localization of Temperature Anomalies in the Upper Rhine Graben:Insights from Geophysics and Neotectonic Activity[J].International Geology Review,2013,55(14):1744-1762.
[68] DEZAYES C,GENTER A,VALLEY B.Structure of the Low Permeable Naturally Fractured Geothermal Reservoir at Soultz[J].Comptes Rendus Geoscience,2010,343(7/8):517-530.
[69] BAILLIEUX P,SCHILL E,ABDELFETTAH Y,et al.Possible Natural Fluid Pathways from Gravity Pseudo-tomography in the Geothermal Fields of Northern Alsace(Upper Rhine Graben)[J].Geothermal Energy,2014,2:16.
[70] COMET F H,BERARD T,BOUROUIS S.How Close to Failure is a Granite Rock Mass at a 5 km Depth[J].International Journal of Rock Mechanics and Mining Sciences,2007,44(1):47-66.
[71] MEYER G,BAUJARD C,HEHN R,et al.Analysis and Numerical Modelling of Pressure Drops Observed During Hydraulic Stimulation of GRT-1 Geothermal Well(Rittershoffen,France)[C]∥Stanford Geothermal Program.Proceedings of Forty-second Workshop on Geothermal Reservoir Engineering.Stanford:Stanford University,2017:791-804.
[72] MATTHES L,LUMMER N R.Next Generation Acids:New Retarded System for Geothermal Applications[J].Oil Gas:European Magazine,2014,40(1):37-38.
[73] BAUJARD C,GENTER A,DALMAIS E,et al.Hydrothermal Characterization of Wells GRT-1 and GRT-2 in Rittershoffen,France:Implications on the Understanding of Natural Flow Systems in the Rhine Graben[J].Geothermics,2017,65:255-268.
[74] XU T F.International Workshop on Hot Dry Rock Re-source Exploration and Enhanced Geothermal System Engineering[R].Changchun:Jilin University,2018.
[75] WALLROTH T,ELIASSON T,SUNDQUIST U.Hot Dry Rock Research Experiments at Fjallbacka,Sweden[J].Geothermics,1999,28(4/5):617-625.
[76] JUPE A,GREEN A,WALLROTH T.Induced Microseismicity and Reservoir Growth at the Fjallbacka Hot Dry Rocks Project,Sweden[J].International Journal of Rock Mechanics and Mining Sciences,1992,29(4):343-354.
[77] ELIASSON T,SCHBERG H.U-Pb Dating of the Post-kinematic Sveconorwegian(Grenvillian)Bohus Granite,SW Sweden:Evidence of Restitic Zircon[J].Precambrian Research,1991,51(1/2/3/4):337-350.
[78] 陈崇阳,高有峰,张晓东,等.火山地层中的沉积层特征及其地层对比意义:以松辽盆地营城组为例[J].地球科学,2018,43(3):812-826. CHEN Chong-yang,GAO You-feng,ZHANG Xiao-dong,et al.Sedimentary Interlayer in Volcano Strata:Characteristics and Significance of Stratigraphic Correlation:Taking Yingcheng Formation,Songliao Basin as an Example[J].Earth Science,2018,43(3):812-826.
[79] 云金表,殷进垠,金之钧.松辽盆地深部地质特征及其盆地动力学演化[J].地震地质,2003,25(4):595-608. YUN Jin-biao,YIN Jin-yin,JIN Zhi-jun.Deep Geolo-gical Feature and Dynamic Evolution of the Songliao Basin[J].Seismology and Geology,2003,25(4):595-608.
[80] 吴乾蕃.松辽盆地地热场[J].地震研究,1991,14(1):31-40. WU Qian-fan.The Geothermal Field in Songliao Basin[J].Journal of Seismological Research,1991,14(1):31-40.
[81] 薛建球,甘 斌,李百祥,等.青海共和—贵德盆地增强型地热系统(干热岩)地质-地球物理特征[J].物探与化探,2013,37(1):35-41. XUE Jian-qiu,GAN Bin,LI Bai-xiang,et al.Geolo-gical-geophysical Characteristics of Enhanced Geothermal Systems(Hot Dry Rocks)in Gonghe-Guide Basin[J].Geophysical and Geochemical Exploration,2013,37(1):35-41.
[82] 雷宏武,金光荣,李佳琦,等.松辽盆地增强型地热系统(EGS)地热能开发热-水动力耦合过程[J].吉林大学学报(地球科学版),2014,44(5):1633-1646. LEI Hong-wu,JIN Guang-rong,LI Jia-qi,et al.Coupled Thermal-hydrodynamic Processes for Geothermal Energy Exploitation in Enhanced Geothermal System at Songliao Basin,China[J].Journal of Jilin University(Earth Science Edition),2014,44(5):1633-1646.
[83] 孙知新,李百祥,王志林.青海共和盆地存在干热岩可能性探讨[J].水文地质工程地质,2011,38(2):119-124. SUN Zhi-xin,LI Bai-xiang,WANG Zhi-lin.Exploration of the Possibility of Hot Dry Rock Occurring in the Qinghai Gonghe Basin[J].Hydrogeology and Engineering Geology,2011,38(2):119-124.
[84] 严维德,王焰新,高学忠,等.共和盆地地热能分布特征与聚集机制分析[J].西北地质,2013,46(4):223-230. YAN Wei-de,WANG Yan-xin,GAO Xue-zhong,et al.Distribution and Aggregation Mechanism of Geothermal Energy in Gonghe Basin[J].Northwestern Geology,2013,46(4):223-230.
[85] 张盛生,张 磊,蔡敬寿,等.共和盆地恰卜恰地区干热岩资源量初步估算及评价[J].青海大学学报,2018,36(4):75-78,85. ZHANG Sheng-sheng,ZHANG Lei,CAI Jing-shou,et al.Preliminary Estimation and Evaluation of Hot Dry Rock Resources in Qiabuqia Area of Gonghe Basin[J].Journal of Qinghai University,2018,36(4):75-78,85.

相似文献/References:

[1]刘明亮,庄亚芹,周超,等.化学刺激技术在增强型地热系统中的应用:理论、实践与展望[J].地球科学与环境学报,2016,38(02):267.
 LIU Ming-liang,ZHUANG Ya-qin,ZHOU Chao,et al.Application of Chemical Stimulation Technology in Enhanced Geothermal System: Theory, Practice and Expectation[J].Journal of Earth Sciences and Environment,2016,38(05):267.

备注/Memo

备注/Memo:
收稿日期:2019-06-04; 修回日期:2019-07-14投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家重点研发计划项目(2018YFB1501802); 吉林省教育厅项目(JJKH20170807KJ); 中国地质调查局地质调查项目(DD20190127); 中国地质科学院基本科研业务费专项资金项目(YK201611)
作者简介:冯 波(1982-),男,黑龙江哈尔滨人,副教授,工学博士,E-mail:fengbo82@126.com。
*通讯作者:许天福(1962-),男,辽宁东港人,教授,博士研究生导师,工学博士,E-mail:tianfu_xu@jlu.edu.cn。
更新日期/Last Update: 2019-09-19