|本期目录/Table of Contents|

[1]王思远,李俊乾*,卢双舫,等.渝东南地区海相页岩有机质孔隙发育特征[J].地球科学与环境学报,2019,41(06):721-733.
 WANG Si-yuan,LI Jun-qian*,LU Shuang-fang,et al.Development Characteristics of Organic Matter Pores of Marine Shale in the Southeastern Chongqing, China[J].Journal of Earth Sciences and Environment,2019,41(06):721-733.
点击复制

渝东南地区海相页岩有机质孔隙发育特征(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第41卷
期数:
2019年第06期
页码:
721-733
栏目:
基础地质与矿产地质
出版日期:
2019-11-15

文章信息/Info

Title:
Development Characteristics of Organic Matter Pores of Marine Shale in the Southeastern Chongqing, China
文章编号:
1672-6561(2019)06-0721-13
作者:
王思远1李俊乾1*卢双舫1张鹏飞1张婕2李文镖1
(1. 中国石油大学(华东)地球科学与技术学院,山东 青岛 266580; 2. 深圳海油工程水下技术有限公司,广东 深圳 518067)
Author(s):
WANG Si-yuan1 LI Jun-qian1* LU Shuang-fang1 ZHANG Peng-fei1 ZHANG Jie2 LI Wen-biao1
(1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China; 2. COOEC Subsea Technology Co., Ltd., Shenzhen 518067, Guangdong, China)
关键词:
有机质孔隙 孔隙类型 发育特征 扫描电镜 干酪根 沥青 页岩 四川盆地
Keywords:
organic matter pore pore type development characteristic SEM kerogen bitumen shale Sichuan Basin
分类号:
P618.13; TE122
DOI:
-
文献标志码:
A
摘要:
有机质孔隙是高—过成熟海相页岩主要的气体储集空间。基于四川盆地东南部(渝东南地区)五峰组—龙马溪组页岩研究,将有机质划分为干酪根和沥青两种基本类型,其中,干酪根可进一步划分为无结构型干酪根和结构型干酪根两种类型,沥青可划分为固体沥青和复合有机质; 根据有机质孔隙的分布和发育特征,将其划分为干酪根内孔隙、海绵状孔隙和气泡状孔隙3种类型。通过扫描电镜实验和ImageJ软件提取有机质孔隙,结合圆度、凸性、伸长率、分形维数等孔隙形态参数分析不同类型有机质孔隙发育特征。结果表明:①随总有机碳的增加,有机质面孔率逐渐增加; ②当总有机碳低于2%时,随总有机碳的增加,平均孔径、分形维数逐渐减小,有机质孔隙趋于均一; 当总有机碳高于2%,随总有机碳的增加,平均孔径、分形维数逐渐增大,有机质孔隙趋于复杂; ③无结构型干酪根有机质孔隙以微孔(孔径小于25 nm)和小孔(孔径为25~100 nm)为主,发育少量中孔(孔径为100~1 000 nm); 结构型干酪根有机质孔隙以微孔为主,小孔其次,中孔发育较少; 沥青有机质孔隙以小孔为主,发育部分中孔和大孔(孔径大于1 000 nm); ④与沥青有机质孔隙相比,干酪根有机质孔隙圆度、凸性较大,伸长率较低; 但由于干酪根有机质孔隙的平均孔径较小,小孔含量高,分形维数相较于沥青偏高。
Abstract:
Organic matter pores are the main contributors to the gas storage space in high-over mature marine shales. Based on the research of the shale from Wufeng-Longmaxi Formations in the southeastern Sichuan Basin(the southeastern Chongqing), the organic matter is divided into two types of kerogen and bitumen. Kerogen is further sub-divided into two types of unstructured kerogen and structural kerogen, bitumen is sub-divided into solid bitumen and composite organic matter. Organic matter pores are divided into three types according to the distribution and development characteristics, including kerogen-inner pore, sponge-shaped pore and bubble-shaped pore. The organic matter pores were extracted using scanning electron microscopy(SEM)and image processing software ImageJ, and the development characteristics of different types of organic matter pores were analyzed by pore morphology parameters, such as roundness, convexity, elongation and fractal dimension. The results show that ①the surface porosity of organic matter is positively related to total organic carbon(TOC); ②when the TOC is lower than 2%, the average pore size and fractal dimension decrease with the increase of TOC, indicating that organic matter pores tend to be uniform with the increase of TOC; when the TOC is higher than 2%, on the contrary, the organic matter pores tend to be complicated with the increase of TOC; ③unstructured kerogen mainly develops micropores(<25 nm)and small pores(25-1 000 nm), and few mesopores(100-1 000 nm); structural kerogen mainly develops micropores, followed by small pores, and less mesopores; bitumen mainly develops small pores and a few of mesopores and large pores(>1 000 nm); ④compared with organic matter pores in bitumen, the pores in kerogen have larger roundness and convexity, and lower elongation; however, due to the small average pore size and high contents of small pore in kerogen, the fractal dimension is higher in kerogen than that in bitumen.

参考文献/References:

[1] 邹才能,杨 智,张国生,等.非常规油气地质学建立及实践[J].地质学报,2019,93(1):12-23.
ZOU Cai-neng,YANG Zhi,ZHANG Guo-sheng,et al.Establishment and Practice of Unconventional Oil and Gas Geology[J].Acta Geologica Sinica,2019,93(1):12-23.
[2] 邹才能,杨 智,朱如凯,等.中国非常规油气勘探开发与理论技术进展[J].地质学报,2015,89(6):979-1007.
ZOU Cai-neng,YANG Zhi,ZHU Ru-kai,et al.Progress in China's Unconventional Oil & Gas Exploration and Development and Theoretical Technologies[J].Acta Geologica Sinica,2015,89(6):979-1007.
[3] 邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(一)[J].石油勘探与开发,2015,42(6):689-701.
ZOU Cai-neng,DONG Da-zhong,WANG Yu-man,et al.Shale Gas in China:Characteristics,Challenges and Prospects(Ⅰ)[J].Petroleum Exploration and Development,2015,42(6):689-701.
[4] LOUCKS R G,REED R M,RUPPEL S C,et al.Morphology,Genesis,and Distribution of Nanometer-scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
[5] CHALMERS G R,BUSTIN R M,POWER L M.Characterization of Gas Shale Pore Systems by Porosimetry,Pycnometry,Surface Area,and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig Units[J].AAPG Bulletin,2012,96(6):1099-1119.
[6] JARVIE D M,HILL R J,RUBLE T E,et al.Unconventional Shale-gas System:The Mississippian Barnett Shale of North-central Texas as One Model for Thermogenic Shale-gas Assessment[J].AAPG Bulletin,2007,91(4):475-499.
[7] 马 明,陈国俊,徐 勇,等.陆相页岩热演化过程中孔隙分形特征[J].煤田地质与勘探,2017,45(5):41-47.
MA Ming,CHEN Guo-jun,XU Yong,et al.Fractal Characteristics of Pore Structure of Continental Shale in the Process of Thermal Evolution[J].Coal Geology and Exploration,2017,45(5):41-47.
[8] TISSOT B P,WELTE D H.Petroleum Formation and Occurrence:A New Approach to Oil and Gas Exploration[M].2nd ed.Berlin:Springer-Verlag,1984.
[9] HUNT J M.Petroleum Geochemistry and Geology[M].2nd ed.New York:W.H.Freeman and Company,1995.
[10] CURIALE J A.Origin of Solid Bitumens,with Emphasis on Biological Marker Results[J].Organic Geochemistry,1986,10(1/2/3):559-580.
[11] BERNARD S,HORSFIELD B,SCHULZ H M,et al.Geochemical Evolution of Organic-rich Shales with Increasing Maturity:A STXM and TEM Study of the Posidonia Shale(Lower Toarcian,Northern Germany)[J].Marine and Petroleum Geology,2012,31(1):70-89.
[12] LOUCKS R G,REED R M.Scanning-electron-microscope Petrographic Evidence for Distinguishing Organic-matter Pores Associated with Depositional Organic Matter Versus Migrated Organic Matter in Mudrocks[J].Gulf Coast Association of Geological Societies Journal,2014,3:51-60.
[13] LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-related Mudrock Pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[14] JACOB H.Nomenclature,Classification,Characterization,and Genesis of Natural Solid Bitumen(Migrabitumen)[M]∥PARNELL J,KUCHA H,LANDAIS P.Bitumens in Ore Deposits.Berlin:Springer-Verlag,1993:11-27.
[15] 赵建华,金之钧,金振奎,等.岩石学方法区分页岩中有机质类型[J].石油实验地质,2016,38(4):514-520,527.
ZHAO Jian-hua,JIN Zhi-jun,JIN Zhen-kui,et al.Pe-trographic Methods to Distinguish Organic Matter Type in Shale[J].Petroleum Geology and Experiment,2016,38(4):514-520,527.
[16] 张 慧,焦淑静,庞起发,等.中国南方早古生代页岩有机质的扫描电镜研究[J].石油与天然气地质,2015,36(4):675-680.
ZHANG Hui,JIAO Shu-jing,PANG Qi-fa,et al.SEM Observation of Organic Matters in the Eopaleozoic Shale in South China[J].Oil and Gas Geology,2015,36(4):675-680.
[17] 张 慧,晋香兰,吴 静,等.四川盆地龙马溪组页岩有机质的纳米孔隙[J].煤田地质与勘探,2018,46(3):47-53.
ZHANG Hui,JIN Xiang-lan,WU Jing,et al.Nano-pores of Organic Matter in Longmaxi Formation Shale in Sichuan Basin[J].Coal Geology and Exploration,2018,46(3):47-53.
[18] 白名岗,夏响华,张 聪,等.场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J].岩矿测试,2018,37(3):225-234.
BAI Ming-gang,XIA Xiang-hua,ZHANG Cong,et al.Study on Shale Organic Porosity in the Longmaxi Formation,Anye1 Well Using Field Emission-scanning Electron Microscopy and PerGeos System[J].Rock and Mineral Analysis,2018,37(3):225-234.
[19] 闫建萍,贾祥娟,邵德勇,等.四川盆地龙马溪组页岩有机孔隙SEM表征及成因分析[J].天然气地球科学,2015,26(8):1540-1546.
YAN Jian-ping,JIA Xiang-juan,SHAO De-yong,et al.Characterization of Organic Matter-hosted Pores by SEM Method and Their Formation Mechanisms for Shales of Longmaxi Formation,Sichuan Basin[J].Natural Gas Geoscience,2015,26(8):1540-1546.
[20] 蔡 潇,王 亮,靳雅夕,等.渝东南地区页岩有机孔隙类型及特征[J].天然气地球科学,2016,27(3):513-519.
CAI Xiao,WANG Liang,JIN Ya-xi,et al.Types and Characteristics of Organic Pore in Shale Gas Reservoir of Southeastern Chongqing Area[J].Natural Gas Geoscience,2016,27(3):513-519.
[21] 昝博文,刘树根,白志强,等.川西南威远地区龙马溪组页岩储层孔隙发育特征及控制因素分析[J].地质科技情报,2017,36(2):65-74.
ZAN Bo-wen.LIU Shu-gen,BAI Zhi-qiang,et al.Pore Characteristics of Shale Gas Reservoir of Longmaxi Formation in Weiyuan Area,Southwest of Sichuan Basin[J].Geological Science and Technology Information,2017,36(2):65-74.
[22] CURTIS M E,CATDOTT B J,SONDERGELD C H,et al.Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity[J].International Journal of Coal Geology,2012,103:26-31.
[23] MILLIKEN K L,RUDNICKI M,AWWILLER D N,et al.Organic Matter-hosted Pore System,Marcellus Formation(Devonian),Pennsylvania[J].AAPG Bulletin,2013,97(2):177-200.
[24] MILLIKEN K L,KO L T,POMMER M,et al.SEM Petrography of Eastern Mediterranean Sapropels:Analogue Data for Assessing Organic Matter in Oil and Gas Shales[J].Journal of Sedimentary Research,2014,84(11):961-974.
[25] 王道富,王玉满,董大忠,等.川南下寒武统筇竹寺组页岩储集空间定量表征[J].天然气工业,2013,33(7):1-10.
WANG Dao-fu,WANG Yu-man,DONG Da-zhong,et al.Quantitative Characterization of Reservoir Space in the Lower Cambrian Qiongzhusi Shale,Southern Sichuan Basin[J].Natural Gas Industry,2013,33(7):1-10.
[26] FISHMAN N S,HACKLEY P C,LOWERS H A,et al.The Nature Porosity in Organic-rich Mudstones of the Upper Jurassic Kimmeridge Clay Formation,North Sea,Offshore United Kingdom[J].International Journal of Coal Geology,2012,103:32-50.
[27] 曹涛涛,刘光祥,曹清古,等.有机显微组成对泥页岩有机孔发育的影响:以川东地区海陆过渡相龙潭组泥页岩为例[J].石油与天然气地质,2018,39(1):40-53.
CAO Tao-tao,LIU Guang-xiang,CAO Qing-gu,et al.Influence of Maceral Composition on Organic Pore Development in Shale:A Case Study of Transitional Longtan Formation Shale in Eastern Sichuan Basin[J].Oil and Gas Geology,2018,39(1):40-53.
[28] CHALMERS G R L,BUSTIN R M.The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia,Canada[J].International Journal of Coal Geology,2007,70(1/2/3):223-239.
[29] 曹涛涛,宋之光,王思波,等.不同页岩及干酪根比表面积和孔隙结构的比较研究[J].中国科学:地球科学,2015,45(2):139-151.
CAO Tao-tao,SONG Zhi-guang,WANG Si-bo,et al.A Comparative Study of the Specific Surface Area and Pore of Different Shales and Their Kerogens[J].Science China:Earth Sciences,2015,45(2):139-151.
[30] NIE H K,JIN Z J,ZHANG J C.Characteristics of Three Organic Matter Pore Types in the Wufeng-Longmaxi Shale of the Sichuan Basin,Southwest China[J].Scientific Reports,2018,DOI:10.1038/s41598-018-25104-5.
[31] 郑宇龙,牟传龙,王秀平.四川盆地南缘五峰组—龙马溪组沉积地球化学及有机质富集模式:以叙永地区田林剖面为例[J].地球科学与环境学报,2019,41(5):541-560.
ZHENG Yu-long,MOU Chuan-long,WANG Xiu-ping.Sedimentary Geochemistry and Patterns of Organic Matter Enrichment of Wufeng-Longmaxi Formations in the Southern Margin of Sichuan Basin,China:A Case Study of Tianlin Profile in Xuyong Area[J].Journal of Earth Sciences and Environment,2019,41(5):541-560.
[32] 刘文平,张成林,高贵冬,等.四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J].石油学报,2017,38(2):175-184.
LIU Wen-ping,ZHANG Cheng-lin,GAO Gui-dong,et al.Controlling Factors and Evolution Laws of Shale Porosity in Longmaxi Formation,Sichuan Basin[J].Acta Petrolei Sinica,2017,38(2):175-184.
[33] 韩 超,吴明昊,吝 文,等.川南地区五峰组—龙马溪组黑色页岩储层特征[J].中国石油大学学报(自然科学版),2017,41(3):14-22.
HAN Chao,WU Ming-hao,LIN Wen,et al.Characteristics of Black Shale Reservoir of Wufeng-Longmaxi Formation in the Southern Sichuan Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2017,41(3):14-22.
[34] 赵迪斐,郭英海,白万备,等.渝东南五峰组—龙马溪组页岩纳米级孔隙的发育特征与影响因素[J].河南理工大学学报(自然科学版),2016,35(4):497-506.
ZHAO Di-fei,GUO Ying-hai,BAI Wan-bei,et al.The Characteristics and Influencing Factors of Nanopores in Shale Gas Reservoir of Wufeng and Longmaxi Formation in Southeast Chongqing[J].Journal of Henan Polytechnic University(Natural Science),2016,35(4):497-506.
[35] 黎 琼,欧光习,汪生秀,等.渝东南地区五峰组—龙马溪组页岩气储层流体地球化学特征:以酉参2井为例[J].地球科学与环境学报,2019,41(5):529-540.
LI Qiong,OU Guang-xi,WANG Sheng-xiu,et al.Geo-chemical Characteristics of Fluid from Shale Gas Re-servoir of Wufeng-Longmaxi Formations in the Southeastern Chongqing,China:A Case Study of Well YC2[J].Journal of Earth Sciences and Environment,2019,41(5):529-540.
[36] 李文镖,卢双舫,李俊乾,等.南方海相页岩物质组成与孔隙微观结构耦合关系[J].天然气地球科学,2019,30(1):27-38.
LI Wen-biao,LU Shuang-fang,LI Jun-qian,et al.The Coupling Relationship Between Material Composition and Pore Microstructure of Southern China Marine Shale[J].Natural Gas Geoscience,2019,30(1):27-38.
[37] 张鹏飞,卢双舫,李俊乾,等.基于扫描电镜的页岩微观孔隙结构定量表征[J].中国石油大学学报(自然科学版),2018,42(2):19-28.
ZHANG Peng-fei,LU Shuang-fang,LI Jun-qian,et al.Quantitative Characterization of Microscopic Pore Structure for Shales Using Scanning Electron Micro-scopy[J].Journal of China University of Petroleum(Edition of Natural Science),2018,42(2):19-28.
[38] 冯建辉,牟泽辉.涪陵焦石坝五峰组—龙马溪组页岩气富集主控因素分析[J].中国石油勘探,2017,22(3):32-39.
FENG Jian-hui,MOU Ze-hui.Main Factors Controlling the Enrichment of Shale Gas in Wufeng Formation-Longmaxi Formation in Jiaoshiba Area,Fuling Shale Gas Field[J].China Petroleum Exploration,2017,22(3):32-39.
[39] 卢双舫,李俊乾,张鹏飞,等.页岩油储集层微观孔喉分类与分级评价[J].石油勘探与开发,2018,45(3):436-444.
LU Shuang-fang,LI Jun-qian,ZHANG Peng-fei,et al.Classification of Microscopic Pore-throats and the Grading Evaluation on Shale Oil Reservoirs[J].Petroleum Exploration and Development,2018,45(3):436-444.
[40] 李俊乾,卢双舫,张 婕,等.页岩油吸附与游离定量评价模型及微观赋存机制[J].石油与天然气地质,2019,40(3):583-592.
LI Jun-qian,LU Shuang-fang,ZHANG Jie,et al.Quan-titative Evaluation Models of Adsorbed and Free Shale Oil and Its Microscopic Occurrence Mechanism[J].Oil and Gas Geology,2019,40(3):583-592.
[41] HU Y,DEVEGOWDA D,STRIOLO A,et al.Microscopic Dynamics of Water and Hydrocarbon in Shale-kerogen Pores of Potentially Mixed Wettability[J].SPE Journal,2014,20(1):112-124.
[42] 吴克柳,陈掌星.页岩气纳米孔气体传输综述[J].石油科学通报,2016,1(1):91-127.
WU Ke-liu,CHEN Zhang-xing.Review of Gas Transport in Nanopores in Shale Gas Reservoirs[J].Petroleum Science Bulletin,2016,1(1):91-127.
[43] ZHU X Y,LIAO Q,XIN M D.Gas Flow in Micro-channel of Arbitrary Shape in Slip Flow Regime[J].Microscale Thermophysical Engineering,2006,10(1):41-54.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-04-18; 修回日期:2019-08-09投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(41602131,41672130); 国家科技重大专项项目(2016ZX05061); 中国石化科技项目(P17027-3)
作者简介:王思远(1995-),女,河北霸州人,工学硕士研究生,E-mail:530018540@qq.com。
*通讯作者:李俊乾(1987-),男,河南商丘人,副教授,工学博士,E-mail:lijunqian@upc.edu.cn。
更新日期/Last Update: 2019-11-19