必须声明标量变量 "@Script_ID"。 基于水化学数据的矿山涌水水源识别:主成分分析与残差分析-《地球科学与环境学报》
|本期目录/Table of Contents|

[1]顾鸿宇,马凤山,王东辉,等.基于水化学数据的矿山涌水水源识别:主成分分析与残差分析[J].地球科学与环境学报,2020,42(01):132-142.[doi:10.19814/j.jese.2019.07014]
 GU Hong-yu,MA Feng-shan,WANG Dong-hui,et al.End-members Identification of Mine Water Inrush Based on Hydrochemical Data: Principal Component Analysis and Residual Analysis[J].Journal of Earth Sciences and Environment,2020,42(01):132-142.[doi:10.19814/j.jese.2019.07014]
点击复制

基于水化学数据的矿山涌水水源识别:主成分分析与残差分析(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第42卷
期数:
2020年第01期
页码:
132-142
栏目:
水资源与环境
出版日期:
2020-01-15

文章信息/Info

Title:
End-members Identification of Mine Water Inrush Based on Hydrochemical Data: Principal Component Analysis and Residual Analysis
文章编号:
1672-6561(2020)01-0132-11
作者:
顾鸿宇1马凤山2王东辉1李胜伟1*刘港3向元英4郭子奇1
(1. 中国地质调查局成都地质调查中心,四川 成都 610081; 2. 中国科学院地质与地球物理研究所 页岩气与地质工程重点实验室,北京 100029; 3. 中国地质调查局西安地质调查中心, 陕西 西安 710054; 4. 德阳市环境监测中心站,四川 德阳 618000)
Author(s):
GU Hong-yu1 MA Feng-shan2 WANG Dong-hui1 LI Sheng-wei1* LIU Gang3 XIANG Yuan-ying4 GUO Zi-qi1
(1. Chengdu Center, China Geological Survey, Chengdu 610081, Sichuan, China; 2. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 3. Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, Shaanxi, China; 4. Deyang Environmental Monitoring Center Station, Deyang 618000, Sichuan, China)
关键词:
矿山涌水 水化学 主成分分析 残差分析 水源数量 水源类型 离子浓度
Keywords:
mine water inrush hydrochemistry principal component analysis residual analysis number of water source type of water source ion concentration
分类号:
P641.4; TD741
DOI:
10.19814/j.jese.2019.07014
文献标志码:
A
摘要:
涌水是矿山安全生产的重要威胁之一,掌握涌水的水源是预防这类灾害的重要依据。基于多期次的水化学监测数据,提出了利用主成分分析(PCA)和残差分析来识别涌水的水源数量和水源类型。主成分分析能够充分提取高维数据的结构信息,消除变量冗余。残差分析利用主成分分析结果,提取不同的主成分个数重构离子浓度,得出重构离子浓度和原始离子浓度之间的残差,利用残差的结构性信息来判断可能的涌水水源数量和水源类型。结果表明:随保留主成分个数的增加,重构离子浓度的精度越高,离子残差的结构性得到消除且表现出随机性。在实例应用中,通过利用5个主成分重构离子浓度消除了所有主要离子残差结构性,保证了信息的最大程度提取,因此,确定研究矿山涌水水源数量为5个; 同时,利用每个主成分对残差结构性的影响程度及离子相关性分析,确定了这5个水源类型为海水、第四系孔隙水、富钙基岩水、富镁基岩水和淡水。
Abstract:
Water inrush is a threat to mine safety, and the knowledge of water sources(end-members)identification is the foundation of prediction for potential disasters. Based on the multiple-stage hydrochemical data, a method using principal component analysis(PCA)and residual analysis was developed to identify the numbers and types of water sources. PCA can eliminate the redundancy and extract the structural information of original variables. Residual analysis is based on the results of PCA by extracting different numbers of principal components to reconstruct the ion concentrations, calculating the residual between reconstructed and measured ion concentrations, then, using the structural degree to identify the numbers and types of water sources. The results show that the accuracy is improved, and the structure of residual is eliminated with the increasing number of principal components. Using the 5 principal components can eliminate most of the structural information of main ions, and extract all the useful information in the case; meanwhile, 5 types of water sources, including seawater, Quaternary pore water, Ca-rich water, Mg-rich water and freshwater, are identified based on the different effects of each principal component to the residual and the relationships among ion concentrations.

参考文献/References:

[1] 邓清海,曹家源,张丽萍,等.基于主成分分析的矿井突水水源Bayes判别模型[J].水文地质工程地质,2014,41(6):20-25. DENG Qing-hai,CAO Jia-yuan,ZHANG Li-ping,et al.The Bayesian Discrimination Model for Sources of Mine Water Inrush Based on Principal Components Analysis[J].Hydrogeology and Engineering Geology,2014,41(6):20-25.
[2] 徐 星,李垣志,张文勇,等.MPSO-BP模型在矿井突水水源判别中的应用[J].自然灾害学报,2017,26(5):140-148. XU Xing,LI Yuan-zhi,ZHANG Wen-yong,et al.Application of MPSO-BP Model in Discriminating Mine Water Inrush Source[J].Journal of Natural Disasters,2017,26(5):140-148.
[3] 琚棋定,胡友彪,张淑莹.基于主成分分析与贝叶斯判别法的矿井突水水源识别方法研究[J].煤炭工程,2018,50(12):90-94. JU Qi-ding,HU You-biao,ZHANG Shu-ying.Mine Water Inrush Source Identification Method Based on Principal Component Analysis and Bayesian Discriminant[J].Coal Engineering,2018,50(12):90-94.
[4] 罗明明,黄 荷,尹德超,等.基于水化学和氢氧同位素的峡口隧道涌水来源识别[J].水文地质工程地质,2015,42(1):7-13. LUO Ming-ming,HUANG He,YIN De-chao,et al.Source Identification of Water Inrush in the Xiakou Tunnel Based on Hydrochemistry and Hydrogen-oxygen Isotopes[J].Hydrogeology and Engineering Geo-logy,2015,42(1):7-13.
[5] 殷晓曦,陈陆望,谢文苹,等.采动影响下矿区地下水主要水-岩作用与水化学演化规律[J].水文地质工程地质,2017,44(5):33-39. YIN Xiao-xi,CHEN Lu-wang,XIE Wen-ping,et al.Main Water-rock Interactions and Hydrochemical Evolution in the Aquifers Under the Mining-induced Disturbance in a Mining District[J].Hydrogeology and Engineering Geology,2017,44(5):33-39.
[6] 陈陆望,桂和荣,殷晓曦,等.临涣矿区突水水源标型微量元素及其判别模型[J].水文地质工程地质,2010,37(3):17-22. CHEN Lu-wang,GUI He-rong,YIN Xiao-xi,et al.The Standard Type Trace Elements and the Discriminant Model of Water Bursting Source in the Linhuan Coal District[J].Hydrogeology and Engineering Geo-logy,2010,37(3):17-22.
[7] 杨 建,刘 基,靳德武,等.有机-无机联合矿井突水水源判别方法[J].煤炭学报,2018,43(10):2886-2894. YANG Jian,LIU Ji,JIN De-wu,et al.Method of Determining Mine Water Inrush Source Based on Combination of Organic-inorganic Water Chemistry[J].Journal of China Coal Society,2018,43(10):2886-2894.
[8] GUAN Z L,JIA Z F,ZHAO Z Q,et al.Identification of Inrush Water Recharge Sources Using Hydrochemistry and Stable Isotopes:A Case Study of Mindong No.1 Coal Mine in Northeast Inner Mongolia,China[J].Journal of Earth System Science,2019,DOI:10.1007/s12040-019-1232-4.
[9] 陈建平,潘光义,吴 丽,等.基于环境同位素和水化学特征识别矿井涌水来源[J].环境化学,2018,37(6):1410-1420. CHEN Jian-ping,PAN Guang-yi,WU Li,et al.Identifying the Source of the Groundwater Based on the Characteristics of Environmental Isotopes and Water Chemistry[J].Environmental Chemistry,2018,37(6):1410-1420.
[10] 王 亚,周孟然,闫鹏程,等.基于极限学习机的矿井突水水源快速识别模型[J].煤炭学报,2017,42(9):2427-2432. WANG Ya,ZHOU Meng-ran,YAN Peng-cheng,et al.A Rapid Identification Model of Mine Water Inrush Based on Extreme Learning Machine[J].Journal of China Coal Society,2017,42(9):2427-2432.
[11] 王心义,赵 伟,刘小满,等.基于熵权-模糊可变集理论的煤矿井突水水源识别[J].煤炭学报,2017,42(9):2433-2439. WANG Xin-yi,ZHAO Wei,LIU Xiao-man,et al.Iden-tification of Water Inrush Source from Coalfield Based on Entropy Weight-fuzzy Variable Set Theory[J].Journal of China Coal Society,2017,42(9):2433-2439.
[12] 邵良杉,李印超,徐 波.矿井突水水源识别的RS-LSSVM模型[J].安全与环境学报,2017,17(5):1730-1734. SHAO Liang-shan,LI Yin-chao,XU Bo.RS-LSSVM Model for Identifying and Determinating the Mining Water[J].Journal of Safety and Environment,2017,17(5):1730-1734.
[13] 闫志刚,杜培军,张海荣.矿井突水信息处理的SVM-RS模型[J].中国矿业大学学报,2008,37(3):295-299. YAN Zhi-gang,DU Pei-jun,ZHANG Hai-rong.Processing Predictors of Water Inrush in Coal Mines Using a SVM-RS Model[J].Journal of China University of Mining and Technology,2008,37(3):295-299.
[14] SHI L Q,QIU M,WANG Y,et al.Evaluation of Water Inrush from Underlying Aquifers by Using a Modi-fied Water-inrush Coefficient Model and Water-inrush Index Model:A Case Study in Feicheng Coalfield,China[J].Hydrogeology Journal,2019,27(6):2105-2119.
[15] VAZQUEZ S E,CARRERA J,TUBAU I,et al.An Approach to Identify Urban Groundwater Recharge[J].Hydrology and Earth System Sciences,2010,7(2):2085-2097.
[16] LONG A J,VALDER J F.Multivariate Analyses and End-member Mixing to Characterize Karst Ground water Flow Wind Cave and Associated Aquifers[J].Journal of Hydrology,2011,409(1/2):315-327.
[17] CARRERA J, VAZQUEZ S E,CASTILLO O,et al.A Methodology to Compute Mixing Ratios with Uncertain End-members[J].Water Resources Research,2004,40(12):3687-3696.
[18] LAAKSOHARJU M,SKARMAN C,SKARMAN E.Multivariate Mixing and Mass Balance(M3)Calculations:A New Tool for Decoding Hydrogeochemical Information[J].Applied Geochemistry,1999,14(7):861-871.
[19] HOOPER R P,CHRISTOPHERSEN N,PETERS N E.Modelling Streamwater Chemistry as a Mixture of Soilwater End-members:An Application to the Panola Mountain Catchment,Georgia,USA[J].Journal of Hydrology,1990,116(1/2/3/4):321-343.
[20] HOOPER R P.Diagnostic Tools for Mixing Models of Stream Water Chemistry[J].Water Resources Research,2003,39(3):249-256.
[21] 谭红军.三山岛金矿水文地质条件的研究[J].矿业研究与开发,1993(增2):71-84. TAN Hong-jun.A Study on Hydrogeology of Sanshan-dao Gold Mine[J].Mining Research and Development,1993(S2):71-84.
[22] 刘国伟,马凤山,郭 捷,等.多元统计分析在滨海矿区水源识别中的应用:以三山岛金矿为例[J].黄金科学技术,2019,27(2):207-215. LIU Guo-wei,MA Feng-shan,GUO Jie,et al.Application of Multivariate Statistical Analysis to Identify Water Source in Coast Mine Area:As Example of Sanshandao Gold Mine[J].Gold Science and Techno-logy,2019,27(2):207-215.
[23] 张寿全,黄 巍.三山岛金矿F3断裂带的水文地质工程地质特征及灾害防治[J].工程地质学报,1994,2(1):62-72. ZHANG Shou-quan,HUANG Wei.Hydrogeological and Engineering Features of F3 Fracture Zone in Sanshandao Island Gold Mine District and Prevention of Hazards[J].Journal of Engineering Geology,1994,2(1):62-72.
[24] GU H Y,MA F S,GUO J,et al.A Spatial Mixing Model to Assess Groundwater Dynamics Affected by Mining in a Coastal Fractured Aquifer,China[J].Mine Water and the Environment,2018,37(2):405-420.
[25] 段学良,马凤山,赵海军,等.滨海矿山矿坑涌水源识别与混合比研究[J].黄金科学技术,2019,27(3):406-416. DUAN Xue-liang,MA Feng-shan,ZHAO Hai-jun,et al.Study on Water Sources Identification and Mixing Ratios of Mine Water[J].Gold Science and Technology,2019,27(3):406-416.
[26] 秦建华,冉 敬,杜 谷.岷江流域河水主要离子地球化学特征及人类活动影响研究[J].沉积与特提斯地质,2007,27(2):14-19. QIN Jian-hua,RAN Jing,DU Gu.Major Ion Geochemistry and Anthropogenic Impacts on the Minjiang River,Sichuan[J].Sedimentary Geology and Tethyan Geology,2007,27(2):14-19.
[27] 胡伟伟,马致远,曹海东,等.同位素与水文地球化学方法在矿井突水水源判别中的应用[J].地球科学与环境学报,2010,32(3):268-271. HU Wei-wei,MA Zhi-yuan,CAO Hai-dong,et al.Application of Isotope and Hydrogeochemical Methods in Distinguishing Mine Bursting Water Source[J].Journal of Earth Sciences and Environment,2010,32(3):268-271.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-07-11; 修回日期:2019-08-23; 网络首发日期:2019-11-08投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(41831293,41907174); 中国地质调查局地质调查项目(DD20189210)
作者简介:顾鸿宇(1991-),男,四川成都人,工程师,工学博士,E-mail:xy0909040129@126.com。
*通讯作者:李胜伟(1975-),女,四川成都人,高级工程师,E-mail:401245116@qq.com。
更新日期/Last Update: 2020-01-07