必须声明标量变量 "@Script_ID"。 原油中硫代金刚烷的分析鉴定和地球化学应用-《地球科学与环境学报》
|本期目录/Table of Contents|

[1]陈中红,张平,柴智,等.原油中硫代金刚烷的分析鉴定和地球化学应用[J].地球科学与环境学报,2020,42(02):143-158.[doi:10.19814/j.jese.2019.10037]
 CHEN Zhong-hong,ZHANG Ping,CHAI Zhi,et al.Identification and Geochemical Application of Thiadiamondoids in Crude Oil[J].Journal of Earth Sciences and Environment,2020,42(02):143-158.[doi:10.19814/j.jese.2019.10037]
点击复制

原油中硫代金刚烷的分析鉴定和地球化学应用(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第42卷
期数:
2020年第02期
页码:
143-158
栏目:
基础地质与矿产地质
出版日期:
2020-03-15

文章信息/Info

Title:
Identification and Geochemical Application of Thiadiamondoids in Crude Oil
文章编号:
1672-6561(2020)02-0143-16
作者:
陈中红1张平1柴智1隋明阳2
(1. 中国石油大学(华东)地球科学与技术学院,山东 青岛 266580; 2. 中国石化胜利油田分公司河口采油厂,山东 东营 257200)
Author(s):
CHEN Zhong-hong1 ZHANG Ping1 CHAI Zhi1 SUI Ming-yang2
( 1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China; 2. Hekou Oil Production Plant, Shengli Oilfield Company, SINOPEC, Dongying 257200, Shandong, China)
关键词:
硫代金刚烷 δ34S值 分析鉴别 成因机制 热稳定性 热化学硫酸盐还原作用 原油族群划分
Keywords:
thiadiamondoid δ34S value identification formation mechanism thermal stability thermochemical sulfate reduction process division of crude oil group
分类号:
P618.13; TE122
DOI:
10.19814/j.jese.2019.10037
文献标志码:
A
摘要:
硫代金刚烷在原油中普遍存在,其独特的分子结构和形成过程使其在石油工业中具有广泛应用。对目前在硫代金刚烷分析鉴别、成因机制、热稳定性和在油气领域应用等方面的研究进展及存在问题进行了系统总结。结果表明:目前原油中硫代金刚烷主要包括烃源岩生烃演化和热化学硫酸盐还原(TSR)作用两种成因机制,其中烃源岩生烃演化可形成原油中初始含量的硫代金刚烷,TSR作用可进一步生成大量的硫代金刚烷; 硫代金刚烷的笼数越高热稳定性越高,在高成熟时可以发生热裂解作用; 硫代金刚烷随TSR作用增强而不断富集,是TSR作用可靠的分子标志物; 硫代金刚烷的δ34S值通过TSR作用来改变,能够反映TSR作用的成因类型; 在未遭受TSR作用的前提下,原油中硫代金刚烷的初始含量和δ34S值代表着原始烃源岩的特征,可以应用于原油族群的划分。从目前的研究现状来看,硫代金刚烷的具体成因机制和详细的热稳定性界限还不甚明确; 应用硫代金刚烷的含量来判识TSR作用时,要结合硫同位素和其他指标参数等结果才最为可靠; 硫代金刚烷目前主要应用于TSR作用判识研究,在油-油对比和油-源对比方面的研究尚待进一步加强。
Abstract:
Thiadiamondoids are commonly found in crude oil. Because of their unique molecular structure and formation process, the thiadiamondoids are widely used in petroleum industry. The research progress and existing problems in identification, formation mechanism, thermal stability and application in oil and gas fields were summarized systematically. The results show that there are mainly two formation mechanisms of thiadiamondoids at present in crude oil, including hydrocarbon evolution of source rocks and thermochemical sulfate reduction(TSR)process, the first one can generate the initial small amount thiadiamondoids in crude oil, and TSR process can further form large amount thiadiamondoids; the higher the number of cages are, the higher the thermal stability of thiadiamondoids is, and the thermal cracking can occur in the high thermal maturity; thiadiamondoids are enriched with the enhancement of TSR process, thus can be regarded as reliable molecular markers of TSR process; δ34S values of thiadiamondoids can be changed by TSR process, which can reflect the genetic type of TSR process; the initial content and δ34S value of thiadiamondoids in crude oil without TSR process represent the characteristics of original source rocks, and can be applied to the division of crude oil group. According to the current research status, the specific formation mechanism and detailed thermal stability limit of thiadiamondoids are not clear; when the contents of thiadiamondoids are used to identify TSR process, it is necessary to combine sulfur isotope and other parameters; the study on thiadiamondoids is mainly focused on identification of TSR process, but the application on oil-oil and oil-source correlations needs to be further strengthened.

参考文献/References:

[1] BIRCH S F,CULLUM T V,DEAN R A,et al.Thiaadamantane[J].Nature,1952,170:629-630.
[2] WEI Z B.Molecular Organic Geochemistry of Cage Com-pounds and Biomarkers in the Geosphere:A Novel App-roach to Understand Petroleum Evolution and Alteration[D].Stanford:Stanford University,2006.
[3] WEI Z B,MOLDOWAN J M,FAGO F,et al.Origins of Thiadiamondoids and Diamondoidthiols in Petroleum[J].Energy and Fuels,2007,21(6):3431-3436.
[4] 马安来,金之钧,朱翠山.塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J].石油学报,2018,39(1):42-53.
MA An-lai,JIN Zhi-jun,ZHU Cui-shan.Detection and Research Significance of Thiadiamondoids from Crude Oil in Well Shunnan 1,Tarim Basin[J].Acta Petrolei Sinica,2018,39(1):42-53.
[5] 马安来,朱翠山,顾 忆,等.塔中地区中深1C井寒武系原油低聚硫代金刚烷含量分析[J].天然气地球科学,2018,29(7):1009-1019.
MA An-lai,ZHU Cui-shan,GU Yi,et al.Concentrations Analysis of Lower Thiadiamondoids of Cambrian Oil from Well Zhongshen 1C of Tazhong Uplift,Tarim Basin,NW China[J].Natural Gas Geoscience,2018,29(7):1009-1019.
[6] 马安来,金之钧,朱翠山,等.塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义[J].中国科学:地球科学,2018,48(10):1312-1323.
MA An-lai,JIN Zhi-jun,ZHU Cui-shan,et al.Detection and Significance of Higher Thiadiamondoids and Diamondoidthiols in Oil from the Zhongshen 1C Well of the Tarim Basin,NW China[J].Science China:Earth Sciences,2018,48(10):1312-1323.
[7] 马安来,金之钧,朱翠山,等.塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用:来自分子标志物的证据[J].石油与天然气地质,2018,39(4):730-737,748.
MA An-lai,JIN Zhi-jun,ZHU Cui-shan,et al.Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi-2 from Maigaiti Slope,Tarim Basin:Evidences from Molecular Markers[J].Oil and Gas Geo-logy,2018,39(4):730-737,748.
[8] WEI Z B,MANKIEWICZ P,WALTERS C,et al.Natural Occurrence of Higher Thiadiamondoids and Diamondoidthiols in a Deep Petroleum Reservoir in the Mobile Bay Gas Field[J].Organic Geochemistry,2011,42(2):121-133.
[9] CAI C F,XIAO Q L,FANG C C,et al.The Effect of Thermochemical Sulfate Reduction on Formation and Isomerization of Thiadiamondoids and Diamondoids in the Lower Paleozoic Petroleum Pools of the Tarim Basin,NW China[J].Organic Geochemistry,2016,101:49-62.
[10] BIRCH S F,CULLUM T V,DEAN R A,et al.Sulfur Compounds in Kerosine Boiling Range of Middle East Crudes[J].Industrial and Engineering Chemistry,1955,47(2):240-249.
[11] STETTER H,HELD H.Synthesis of 2-thiaadamantane[J].Angewandte Chemie International Edition,1961,173:114.
[12] LACINA J L,GOOD W D,MCCULLOUGH J P.The Heats of Combustion and Formation of Thiaadamantane[J].The Journal of Physical Chemistry,1961,65(6):1026-1027.
[13] JANKU J,POPL M.The Gas Chromatographic Cha-racterization of 2-thiaadamantane Derivatives[J].Journal of Chromatography A,1974,89(2):319-324.
[14] MCCABE P H,NELSON C R,ROUTLEDGE W.2-thiaadamantanes.Interconversions,Degradations and Spe-ctroscopic Analysis[J].Tetrahedron,1977,33(14):1755-1757.
[15] SUGINOME H,YAMADA S.The Replacement of the Carbonyl Group of Adamantanone by an Oxygen or Sulfur Atom and the One-step Transformation of 2-methyladamantan-2-ol into 2-oxa-adamantane,an Effi-cient New Synthesis of 2-oxa- and 2-thiaadamantane[J].Synthesis,1986(9):741-743.
[16] BISHOP R,LEE G.Detection of Non-conjugative Interactions in Rigid Cyclic Molecules by Using Carbon-13 N.M.R.Shift Values[J].Australian Journal of Chemistry,1987,40(2):249-255.
[17] RUSSO V,ALLEN J,BALL Z T.Synthesis and Isotopic Labeling of a Naturally Occurring Alkyl-thiadiamondoid[J].Chemical Communications,2009,40(5):595-596.
[18] HANIN S,ADAM P,KOWALEWSKI I,et al.Bridgehead Alkylated 2-thiaadamantanes:Novel Markers for Sulfurisation Processes Occurring Under High Thermal Stress in Deep Petroleum Reservoirs[J].Chemical Communications,2002,33(16):1750-1751.
[19] HANIN S,ADAM P,KOWALEWSKI I,et al.Alkylated 2-thiaadamantanes:Molecular Markers for Thermochemical Sulfate Reduction[C]∥AGH University of Science and Technology.The 21st International Meeting on Organic Geochemistry(IMOG).Krakow:AGH University of Science and Technology,2003:85-86.
[20] DESSORT D,MONTEL F,CAILLET G,et al.Organic Geochemistry of Oils and Condensates Associated to Sour Gas in Gulf[C]∥AAPG.The 6th Middle East Geosciences Conference and Exhibition.Manama:AAPG,2004:255-260.
[21] GALIMBERTI R,ZECCHINELLO F,NALI M,et al.A Fast Method for the Detection of Thiadiamondoids as Molecular Markers of Thermochemical Sulfate Reduction[C]∥EAOG.The 22nd International Meeting on Organic Geochemistry(IMOG).Seville:EAOG,2005:229-230.
[22] CAI C F,AMRANI A,WORDEN R H,et al.Sulfur Isotopic Compositions of Individual Organosulfur Com-pounds and Their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin,NW China[J].Geochimica et Cosmochimica Acta,2016,182:88-108.
[23] ZHANG S C,HUANG H P,SU J,et al.Geochemistry of Paleozoic Marine Petroleum from the Tarim Basin,NW China:Part 5.Effect of Maturation,TSR and Mixing on the Occurrence and Distribution of Alkyldibenzothiophenes[J].Organic Geochemistry,2015,86:5-18.
[24] HUANG H P,ZHANG S C,SU J.Palaeozoic Oil-source Correlation in the Tarim Basin,NW China:A Review[J].Organic Geochemistry,2016,94:32-46.
[25] LIU Q Y,ZHU D Y,JIN Z J,et al.Coupled Alteration of Hydrothermal Fluids and Thermal Sulfate Reduction(TSR)in Ancient Dolomite Reservoirs:An Example from Sinian Dengying Formation in Sichuan Basin,Southern China[J].Precambrian Research,2016,285:39-57.
[26] HAO F,ZHANG X F,WANG C W,et al.The Fate of CO2 Derived from Thermochemical Sulfate Reduction(TSR)and Effect of TSR on Carbonate Porosity and Permeability,Sichuan Basin,China[J].Earth-science Reviews,2015,141:154-177.
[27] 姜乃煌,朱光有,张水昌,等.塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义[J].科学通报,2007,52(24):2871-2875.
JIANG Nai-huang,ZHU Guang-you,ZHANG Shui-chang,et al.Detection of 2-thiaadamantanes in the Oil from Well TZ-83 in Tarim Basin and Its Geological Implication[J].Chinese Science Bulletin,2007,52(24):2871-2875.
[28] WEI Z B,WALTERS C C,MOLDOWAN J M,et al.Thiadiamondoids as Proxies for the Extent of Thermochemical Sulfate Reduction[J].Organic Geoche-mistry,2012,44:53-70.
[29] GVIRTZMAN Z,SAID-AHMAD W,ELLIS G S,et al.Compound-specific Sulfur Isotope Analysis of Thiadiamondoids of Oils from the Smackover Formation,USA[J].Geochimica et Cosmochimica Acta,2015,167:144-161.
[30] ELLIS G S,SAID-AHMAD W,LILLIS P G,et al.Effects of Thermal Maturation and Thermochemical Sulfate Reduction on Compound-specific Sulfur Isotopic Compositions of Organosulfur Compounds in Phosphoria Oils from the Bighorn Basin,USA[J].Organic Geochemistry,2017,103:63-78.
[31] XIAO Q L,SUN Y G,HE S,et al.Thermal Stability of 2-thiadiamondoids Determined by Pyrolysis Experiments in a Closed System and Its Geochemical Implications[J].Organic Geochemistry,2019,130:14-21.
[32] ZHU G Y,WANG H T,WENG N.TSR-altered Oil with High-abundance Thiaadamantanes of a Deep-buried Cambrian Gas Condensate Reservoir in Tarim Basin[J].Marine and Petroleum Geology,2016,69:1-12.
[33] ZHU G Y,ZHANG Y,ZHANG Z Y,et al.High Abun-dance of Alkylated Diamondoids,Thiadiamondoids and Thioaromatics in Recently Discovered Sulfur-rich LS2 Condensate in the Tarim Basin[J].Organic Geochemi-stry,2018,123:136-143.
[34] ZHU G Y,ZHANG Y,ZHOU X X,et al.TSR,Deep Oil Cracking and Exploration Potential in the Hetianhe Gas Field,Tarim Basin,China[J].Fuel,2019,236:1078-1092.
[35] ZHU G Y,ZHANG S C,HUANG H P,et al.Gas Genetic Type and Origin of Hydrogen Sulfide in the Zhongba Gas Field of the Western Sichuan Basin,China[J].Applied Geochemistry,2011,26(7):1261-1273.
[36] OLSSON K.Polythiaadamantanes III:2,4,6,8-tetrathiaadamantane[J].Arkiv for Kemi,1966,26:435-451.
[37] OLSSON K.Polythiaadamantanes VI:The Reaction of Aliphatic B-dicarbonyl Compounds with Thioacetic Acid in the Presence of Zinc Chloride,a Route to Pentathiaadamantanes[J].Arkiv for Kemi,1967,28:53-73.
[38] OLSSON K,LINDBERG B,OLSON T,et al.Functiona-lization of Polythiaadamantanes via Their Bridgehead Alkali Metal Derivatives[J].Acta Chemica Scandinavica,1968,22:2390-2392.
[39] ROLLMANN L D,GREEN L A,BRADWAY R A,et al.Adamantanes from Petroleum with Zeolites[J].Catalysis Today,1996,31(1/2):163-169.
[40] CAI C F,WORDEN R H,BOTTRELL S H,et al.The-rmochemical Sulphate Reduction and the Generation of Hydrogen Sulphide and Thiols(Mercaptans)in Triassic Carbonate Reservoirs from the Sichuan Basin,China[J].Chemical Geology,2003,202(1/2):39-57.
[41] WALTERS C C,WANG F C,QIAN K N,et al.Petroleum Alteration by Thermochemical Sulfate Reduction:A Comprehensive Molecular Study of Aromatic Hydrocarbons and Polar Compounds[J].Geochimica et Cosmochimica Acta,2015,153:37-71.
[42] DAHL J E,MOLDOWAN J M,PETERS K E,et al.Diamondoid Hydrocarbons as Indicators of Natural Oil Cracking[J].Nature,1999,399:54-57.
[43] PETERS K E,WALTERS C C,MOLDOWAN J M.The Biomarker Guide[M].Cambridge:Cambridge University Press,2005.
[44] MANKIEWICZ P J,POTTORF R J,KOZAR M G,et al.Gas Geochemistry of the Mobile Bay Jurassic Norphlet Formation:Thermal Controls and Implications for Reservoir Connectivity[J].AAPG Bulletin,2009,93(10):1319-1346.
[45] ADAM P,PHILIPPE E,ALBRECHT P.Photoche-mical Sulfurization of Sedimentary Organic Matter:A Widespread Process Occurring at Early Diagenesis in Natural Environments?[J].Geochimica et Cosmochimica Acta,1998,62(2):265-271.
[46] AMRANI A,ZHANG T W,MA Q S,et al.The Role of Labile Sulfur Compounds in Thermochemical Sulfate Reduction[J].Geochimica et Cosmochimica Acta,2008,72(12):2960-2972.
[47] ZHANG T W,AMRANI A,ELLIS G S,et al.Experi-mental Investigation on Thermochemical Sulfate Reduction by H2S Initiation[J].Geochimica et Cosmochimica Acta,2008,72(14):3518-3530.
[48] IDIZ E F,TANNENBAUM E,KAPLAN I R.Pyrolysis of High-sulfur Monterey Kerogens:Stable Isotopes of Sulfur,Carbon,and Hydrogen[M]∥ORR W L,WHITE C M.Geochemistry of Sulfur in Fossil Fuels.Washington DC:American Chemical Society,1990:575-591.
[49] AMRANI A,LEWAN M D,AIZENSHTAT Z.Stable Sulfur Isotope Partitioning During Simulated Petroleum Formation as Determined by Hydrous Pyrolysis of Ghareb Limestone,Israel[J].Geochimica et Cosmochimica Acta,2005,69(22):5317-5331.
[50] AIZENSHTAT Z,AMRANI A.Significance of δ34S and Evaluation of Its Imprint on Sedimentary Sulfur Rich Organic Matter II:Thermal Changes of Kerogens Type II-S Catagenetic Stage Controlled Mechanisms,a Study and Conceptual Overview[J].The Geochemical Society Special Publications,2004,9:35-50.
[51] 蔡春芳.有机硫同位素组成应用于油气来源和演化研究进展[J].天然气地球科学,2018,29(2):159-167.
CAI Chun-fang.Application of Organic Sulfur Isotopic Composition to Petroleum Origin and Evolution:A Review[J].Natural Gas Geoscience,2018,29(2):159-167.
[52] CAI C F,LI K K,MA M L,et al.Distinguishing Cam-brian from Upper Ordovician Source Rocks:Evidence from Sulfur Isotopes and Biomarkers in the Tarim Basin[J].Organic Geochemistry,2009,40(7):755-768.
[53] AMRANI A.Organosulfur Compounds:Molecular and Isotopic Evolution from Biota to Oil and Gas[J].Annual Review of Earth and Planetary Sciences,2014,42:733-768.
[54] AMRANI A,ROSENBERG Y O,MESHOULAM A,et al.Sulfur Isotopic Composition of Gas-phase Organic Sulfur Compounds Provides Insights into the Thermal Maturation of Organic-rich Rocks[J].Geo-chimica et Cosmochimica Acta,2019,259:91-108.
[55] ORR W L.Kerogen/Asphaltene/Sulfur Relationships in Sulfur-rich Monterey Oils[J].Organic Geochemistry,1986,10(1/2/3):499-516.
[56] ROSENBERG Y O,MESHOULAM A,SAID-AHMAD W,et al.Study of Thermal Maturation Processes of Sulfur-rich Source Rock Using Compound Specific Sulfur Isotope Analysis[J].Organic Geochemistry,2017,112:59-74.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-10-19; 修回日期:2019-12-13; 网络首发日期:2020-02-22投稿网址:http:∥jese.chd.edu.cn/
基金项目:中国科学院战略性先导科技专项(A类)项目(XDA14010305); 国家自然科学基金项目(U1762217)
作者简介:陈中红(1976-),男,安徽怀宁人,教授,博士研究生导师,工学博士,E-mail:hongczh@163.com。
更新日期/Last Update: 2020-03-24