必须声明标量变量 "@Script_ID"。 控制砂岩型铀矿床中铀迁移转化的主要水文地球化学作用实验-《地球科学与环境学报》
|本期目录/Table of Contents|

[1]鄢雨萌,苏东,苏小四*,等.控制砂岩型铀矿床中铀迁移转化的主要水文地球化学作用实验[J].地球科学与环境学报,2020,42(02):256-266.[doi:10.19814/j.jese.2019.11002]
 YAN Yu-meng,SU Dong,SU Xiao-si*,et al.Experiment on Hydrogeochemical Effects Affecting Uranium Migration and Transformation in Sandstone-type Uranium Deposit[J].Journal of Earth Sciences and Environment,2020,42(02):256-266.[doi:10.19814/j.jese.2019.11002]
点击复制

控制砂岩型铀矿床中铀迁移转化的主要水文地球化学作用实验(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第42卷
期数:
2020年第02期
页码:
256-266
栏目:
水资源与环境
出版日期:
2020-03-15

文章信息/Info

Title:
Experiment on Hydrogeochemical Effects Affecting Uranium Migration and Transformation in Sandstone-type Uranium Deposit
文章编号:
1672-6561(2020)02-0256-11
作者:
鄢雨萌12苏东3苏小四24*吕航12王威5
(1. 吉林大学 新能源与环境学院,吉林 长春 130021; 2. 吉林大学 水资源与环境研究所,吉林 长春 130021; 3. 江苏省地质调查研究院,江苏 南京 210018; 4. 吉林大学 建设工程学院,吉林 长春 130021; 5. 中国地质调查局天津地质调查中心,天津 300170)
Author(s):
YAN Yu-meng12 SU Dong3 SU Xiao-si24* LYU Hang12 WANG Wei5
(1. New Energy and Environment College, Jilin University, Changchun 130021, Jilin, China; 2. Institute of Water Resources and Environment, Jilin University, Changchun 130021, Jilin, China; 3. Geological Survey of Jiangsu Province, Nanjing 210018, Jiangsu, China; 4. Construction Engineering College, Jilin University, Changchun 130021, Jilin, China; 5. Tianjin Center, China Geological Survey, Tianjin 300170, China)
关键词:
水文地球化学 砂岩型铀矿床 迁移转化 土柱实验 氧化作用 解吸作用 溶解作用 地浸采铀
Keywords:
hydrogeochemistry sandstone-type uranium deposit migration and transformation soil column experiment oxidation desorption dissolution in-situ leaching of uranium
分类号:
P641.3; TD983
DOI:
10.19814/j.jese.2019.11002
文献标志码:
A
摘要:
采集中国北方某砂岩型铀矿床中的含铀矿石样品,共进行7组土柱模拟实验,分别探究氧化-还原条件、HCO-3浓度、有机质和微生物对铀迁移转化的影响。结果表明:氧化-还原条件改变对铀迁移转化会产生重要影响,含氧入渗水带来的氧化环境使含水介质中沉淀态铀大量氧化溶解; HCO-3的促解吸作用及铀酰络合物的强迁移能力对地下水中铀迁移转化影响较大; 有机质会参与含水介质中矿物吸附点位竞争,从而造成铀的解吸; 微生物作为氧化-还原反应的催化剂,在氧化剂氧化沉淀态铀的反应中起重要作用; 氧化作用、解吸作用和溶解作用对地下水中铀迁移转化的贡献比例分别为65.28%、23.91%和10.81%。
Abstract:
Seven sets of indoor soil column simulation experiments of uranium-containing ore samples from sandstone-type uranium deposit in the northern China were carried out, and the effects of redox conditions, HCO-3 concentration, organic matter and microorganisms on uranium migration and transformation were investigated. The results show that the changes of redox conditions have an important impact on uranium migration and transformation, the oxidizing environment brought by the infiltration of oxygenated water can cause a large amount of sedimentary uranium oxidation and dissolution in aqueous medium; the promoting desorption of HCO-3 and the strong migration ability of uranyl complexes have a great impact on uranium migration and transformation in groundwater; the organic matter can participate in the competition of mineral adsorption sites in aqueous medium, which causes the desorption of uranium; the microbes as catalysts for redox reactions play an important role in the oxidation of sedimentary uranium; the contribution ratios of the oxidation, desorption and dissolution to uranium migration and transformation in groundwater are 65.28%, 23.91% and 10.81%, respectively.

参考文献/References:

[1] 蔡煜琦,张金带,李子颖,等.中国铀矿资源特征及成矿规律概要[J].地质学报,2015,89(6):1051-1069.
CAI Yu-qi,ZHANG Jin-dai,LI Zi-ying,et al.Outline of Uranium Resources Characteristics and Metallogenetic Regularity in China[J].Acta Geologica Sinica,2015,89(6):1051-1069.
[2] 刘 芳.岩坝地区铀矿找矿方向研究[D].成都:成都理工大学,2009.
LIU Fang.The Research of the Prospective Direction of Uranium in Yanba[D].Chengdu:Chengdu University of Technology,2009.
[3] 王永和,焦养泉,吴立群.从铀成矿条件分析西北地区砂岩型铀矿找矿[J].西北地质,2007,40(1):72-82.
WANG Yong-he,JIAO Yang-quan,WU Li-qun.Analysis of Uranium Metallogenic Conditions and Prospecting of Sandstone-type Uranium Deposits in Northwest China[J].Northwestern Geology,2007,40(1):72-82.
[4] 袁 新,周义朋.地浸采铀水岩作用数值模拟研究进展[J].有色金属(冶炼部分),2019(1):53-58.
YUAN Xin,ZHOU Yi-peng.Progress of Numerical Simulation for Water-rock Interaction of In-situ Uranium Leaching[J].Nonferrous Metals(Extractive Metallurgy),2019(1):53-58.
[5] 马汉峰.内蒙古新巴尔虎右旗克鲁伦断陷地浸砂岩型铀矿成矿地球化学作用研究[D].北京:核工业北京地质研究院,2004.
MA Han-feng.Research on Geochemical Process of Sand-stone Type Uranium Metallogency in Kelulun Downfauted Basin,Xinba'erhuyouqi,Inner Mongolia[D].Beijing:Beijing Research Institute of Uranium Geology,2004.
[6] 王正邦.国外地浸砂岩型铀矿地质发展现状与展望[J].铀矿地质,2002,18(1):9-20.
WANG Zheng-bang.Current Status and Prospects of Uranium Geology Developments of Foreign In-situ Leachable Sandstone-type Uranium Deposits[J].Uranium Geology,2002,18(1):9-20.
[7] 张金带,徐高中,陈安平,等.我国可地浸砂岩型铀矿成矿模式初步探讨[J].铀矿地质,2005,21(3):139-145.
ZHANG Jin-dai,XU Gao-zhong,CHEN An-ping,et al.Preliminary Discussion on Uranium Metallogenic Models of China's in-situ Leachable Sandstone-type Uranium Deposits[J].Uranium Geology,2005,21(3):139-145.
[8] 张金带.我国砂岩型铀矿成矿理论的创新和发展[J].铀矿地质,2016,32(6):321-332.
ZHANG Jin-dai.Innovation and Development of Metall-ogenic Theory for Sandstone Type Uranium Deposit in China[J].Uranium Geology,2016,32(6):321-332.
[9] 马 强,冯志刚,孙 静,等.新疆某地浸砂岩型铀矿中铀赋存形态的研究[J].岩矿测试,2012,31(3):501-506.
MA Qiang,FENG Zhi-gang,SUN Jing,et al.Study on Chemical Speciation of Uranium in Samples from In-situ Leaching Sandstone-type Uranium Deposit in Xinjiang[J].Rock and Mineral Analysis,2012,31(3):501-506.
[10] 赵 凯,黎广荣,周义朋,等.砂岩型铀矿浸出研究进展[J].有色金属(冶炼部分),2019(6):40-48.
ZHAO Kai,LI Guang-rong,ZHOU Yi-peng,et al.Research Progress of Leaching of Sandstone-type Uranium Ore[J].Nonferrous Metals(Extractive Metallurgy),2019(6):40-48.
[11] 吉宏斌,孙占学,周义朋,等.不同地浸采铀工艺主要元素迁移强度与饱和状态研究[J].原子能科学技术,2019,53(8):1386-1393.
JI Hong-bin,SUN Zhan-xue,ZHOU Yi-peng,et al.Research on Migration Intensity and Saturation State of Main Element in Different In-situ Leaching of Uranium Processes[J].Atomic Energy Science and Technology,2019,53(8):1386-1393.
[12] 成建军,郭丽超,李书海.伊犁盆地南缘铀水文地球化学特征及地下水铀成矿作用[J].现代矿业,2017,33(3):73-76.
CHENG Jian-jun,GUO Li-chao,LI Shu-hai.Uranium Hy-drogeochemical Characteristics and Groundwater Uranium Mineralizaiton of the South Margin of Yili Basin[J].Modern Mining,2017,33(3):73-76.
[13] 高小伟.塔然高勒井田煤铀协调开采条件下水文地球化学特征研究[J].煤炭技术,2018,37(2):209-211.
GAO Xiao-wei.Study on Hydrogeochemical Characteristics of Tarangaole Mine Area for Coordinated Mining Between Coal and Uranium[J].Coal Technology,2018,37(2):209-211.
[14] 康 丽,周书葵,刘迎九,等.铀尾矿库中核素U(Ⅵ)的扩散迁移试验[J].安全与环境学报,2017,17(3):1160-1164.
KANG Li,ZHOU Shu-kui,LIU Ying-jiu,et al.Experimental Simulated Research on the Diffusion Migration of Nuclide at the Uranium Mill-tailing[J].Journal of Safety and Environment,2017,17(3):1160-1164.
[15] 范镇荻.磷酸盐作用下土壤对放射性核素U和Th的吸附与迁移转化的研究[D].南昌:东华理工大学,2018.
FAN Zhen-di.Study on Adsorption,Migration and Transformation of Radionuclides U and Th in Soil by Phosphate[D].Nanchang:East China University of Technology,2018.
[16] 丁小燕.某尾矿库下游地下水中铀的吸附与迁移规律实验研究[D].南昌:东华理工大学,2018.
DING Xiao-yan.Study on Adsorption and Migration of Uranium in Downstream Groundwater at Tailings Ponds[D].Nanchang:East China University of Techno-logy,2018.
[17] ALAM M S,CHENG T.Uranium Release from Sediment to Groundwater:Influence of Water Chemistry and Insights into Release Mechanisms[J].Journal of Contaminant Hydrology,2014,164:72-87.
[18] EVANS N,WARWICK P,LEWIS T,等.腐植酸对高岭土吸附四价铀的影响[J].腐植酸,2011(1):41-46.
EVANS N,WARWICK P,LEWIS T,et al.Influence of Humic Acid on the Sorption of Uranium(Ⅳ)to Kaolin[J].Humic Acid,2011(1):41-46.
[19] CAMPBELL K M,VEERAMANI H,ULRICH K U,et al.Correction to Oxidative Dissolution of Biogenic Uraninite in Groundwater at Old Rifle,CO[J].Environmental Science and Technology,2012,46(16):8748-8754.
[20] 史维浚.铀水文地球化学原理[M].北京:原子能出版社,1990.
SHI Wei-jun.Principle of Uranium Hydrogeochemi-stry[M].Beijing:Atomic Energy Press,1990.
[21] DUFF M C,HUNTER D B,BERTSCH P M,et al.Factors Influencing Uranium Reduction and Solubility in Evaporation Pond Sediments[J].Biogeochemistry,1999,45(1):95-114.
[22] LANGMUIR D.Uranium Solution-mineral Equilibria at Low Temperatures with Applications to Sedimentary Ore Deposits[J].Geochimica et Cosmochimica Acta,1978,42(6):547-569.
[23] 陈戏三,康厚军,张 东,等.铀在地下水中的化学形态模拟研究[J].化学研究与应用,2007,19(10):1118-1122.
CHEN Xi-san,KANG Hou-jun,ZHANG Dong,et al.Simulated Calculation on Chemical Species of Uranium in the Groundwater[J].Chemical Research and Application,2007,19(10):1118-1122.
[24] WU Y,WANG Y X,XIE X J.Occurrence,Behavior and Distribution of High Levels of Uranium in Shallow Groundwater at Datong Basin,Northern China[J].Science of the Total Environment,2014,472:809-817.
[25] KOHLER M,CURTIS G P,MEECE D E,et al.Methods for Estimating Adsorbed Uranium(Ⅵ)and Distribution Coefficients of Contaminated Sediments[J].Environmental Science and Technology,2004,38(1):240-247.
[26] REGENSPURG S,SCHILD D,SCHAFER T,et al.Removal of Uranium(Ⅵ)from the Aqueous Phase by Iron(Ⅱ)Minerals in Presence of Bicarbonate[J].Applied Geochemistry,2009,24(9):1617-1625.
[27] LIU C X,SHI Z Q,ZACHARA J M.Kinetics of Uranium(Ⅵ)Desorption from Contaminated Sediments:Effect of Geochemical Conditions and Model Evaluation[J].Environmental Science and Technology,2009,43(17):6560-6566.
[28] 张亚萍,谢水波,杨金辉,等.腐殖酸吸附水中铀的特性与机理[J].安全与环境学报,2012,12(4):66-71.
ZHANG Ya-ping,XIE Shui-bo,YANG Jin-hui,et al.On the Nature and Mechanism of Adsorption of U(Ⅵ)by Humic Acid in the Sewage[J].Journal of Safety and Environment,2012,12(4):66-71.
[29] 李 兵,朱海军,廖家莉,等.腐殖质与铀和超铀元素相互作用的研究进展[J].化学研究与应用,2007,19(12):1289-1295.
LI Bing,ZHU Hai-jun,LIAO Jia-li,et al.Progress on the Interaction of Humic Substances with Uranium and TRU Elements[J].Chemical Research and Application,2007,19(12):1289-1295.
[30] 耿安朝.腐殖酸与三价稀土元素的沉淀作用机制研究[J].浙江大学学报(理学版),2005,32(1):69-74.
GENG An-chao.Study on Mechanism of Precipitation of Humic Acid and Trivalent Rare Earth Elements[J].Journal of Zhejiang University(Science Edition),2005,32(1):69-74.
[31] WALL J D,KRUMHOLZ L R.Uranium Reduction[J].Annual Review of Microbiology,2006,60(1):149-166.
[32] KIM G N,KIM S S,PARK H M,et al.Remediation of Soil/Concrete Contaminated with Uranium and Radium by Biological Method[J].Journal of Radioanalytical and Nuclear Chemistry,2013,297(1):71-78.

相似文献/References:

[1]郭华明,郭琦,贾永锋,等.中国不同区域高砷地下水化学特征及形成过程[J].地球科学与环境学报,2013,35(03):83.
 GUO Hua-ming,GUO Qi,JIA Yong-feng,et al.Chemical Characteristics and Geochemical Processes of High Arsenic Groundwater in Different Regions of China[J].Journal of Earth Sciences and Environment,2013,35(02):83.
[2]何丹,马致远,王疆霞,等.关中盆地深部地下热水残存沉积水的同位素证据[J].地球科学与环境学报,2014,36(04):117.
 HE Dan,MA Zhi-yuan,WANG Jiang-xia,et al.Isotopic Evidence of Remaining Sedimentary Water in the Deep Geothermal Water of Guanzhong Basin[J].Journal of Earth Sciences and Environment,2014,36(02):117.
[3]赵敏,曾成,杨睿,等.贵州普定灯盏河岩溶泉的硫同位素季节变化特征[J].地球科学与环境学报,2012,34(03):83.
 ZHAO Min,ZENG Cheng,YANG Rui,et al.Seasonal Variation of Sulfur Isotope in Dengzhanhe Karst Spring of Puding, Guizhou[J].Journal of Earth Sciences and Environment,2012,34(02):83.
[4]胡伟伟,马致远,曹海东,等.同位素与水文地球化学方法在矿井突水水源判别中的应用[J].地球科学与环境学报,2010,32(03):268.
 HU Wei-wei,MA Zhi-yuan,CAO Hai-dong,et al.Application of Isotope and Hydrogeochemical Methods in Distinguishing Mine Bursting Water Source[J].Journal of Earth Sciences and Environment,2010,32(02):268.
[5]钱 会,李 健,窦 妍,等.布隆湖水化学成分的形成机制[J].地球科学与环境学报,2009,31(01):70.
 QIAN Hui,LI Jian,DOU Yan,et al.Formation Mechanisms of Water Composition of Bulong Lake[J].Journal of Earth Sciences and Environment,2009,31(02):70.
[6]关中盆地南部含水层间相互关系的 环境同位素水文地球化学证据.关中盆地南部含水层间相互关系的 环境同位素水文地球化学证据[J].地球科学与环境学报,2006,28(02):69.
 MA Zhi-yuan,QIAN Hui,HUANG Jian-xun,et al.Isotope and Geochemistry Constraints on Hydraulic Relationship of Groundwater Among Different Aquifers in Southern Area of Guanzhong Basin,Shaanxi Province[J].Journal of Earth Sciences and Environment,2006,28(02):69.

备注/Memo

备注/Memo:
收稿日期:2019-11-03; 修回日期:2020-01-13; 网络首发日期:2020-03-10投稿网址:http:∥jese.chd.edu.cn/
作者简介:鄢雨萌(1994-),男,吉林长春人,工学硕士研究生,E-mail:yumeng_8888@126.com。
*通讯作者:苏小四(1971-),男,安徽巢湖人,教授,博士研究生导师,工学博士,博士后,E-mail:suxiaosi@jlu.edu.cn。
更新日期/Last Update: 2020-03-24