必须声明标量变量 "@Script_ID"。 基于NMR和SEM技术研究陆相页岩孔隙结构与分形维数特征——以松辽盆地长岭断陷沙河子组页岩为例-《地球科学与环境学报》
|本期目录/Table of Contents|

[1]梁志凯,李卓*,姜振学,等.基于NMR和SEM技术研究陆相页岩孔隙结构与分形维数特征——以松辽盆地长岭断陷沙河子组页岩为例[J].地球科学与环境学报,2020,42(03):313-328.[doi:10.19814/j.jese.2019.10003]
 LIANG Zhi-kai,LI Zhuo*,JIANG Zhen-xue,et al.Characteristics of Pore Structure and Fractal Dimension in Continental Shale Based on NMR Experiments and SEM Image Analyses —A Case Study of Shahezi Formation Shale in Changling Fault Depression of Songliao Basin, China[J].Journal of Earth Sciences and Environment,2020,42(03):313-328.[doi:10.19814/j.jese.2019.10003]
点击复制

基于NMR和SEM技术研究陆相页岩孔隙结构与分形维数特征——以松辽盆地长岭断陷沙河子组页岩为例(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第42卷
期数:
2020年第03期
页码:
313-328
栏目:
基础地质与矿产地质
出版日期:
2020-05-15

文章信息/Info

Title:
Characteristics of Pore Structure and Fractal Dimension in Continental Shale Based on NMR Experiments and SEM Image Analyses —A Case Study of Shahezi Formation Shale in Changling Fault Depression of Songliao Basin, China
文章编号:
1672-6561(2020)03-0313-16
作者:
梁志凯12李卓12*姜振学12高凤琳12张瀛涵12 肖磊12杨有东12侯煜菲12王立伟12
(1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249; 2. 中国石油大学(北京)非常规油气科学技术研究院,北京 102249)
Author(s):
LIANG Zhi-kai12 LI Zhuo12* JIANG Zhen-xue12 GAO Feng-lin12 ZHANG Ying-han12 XIAO Lei12 YANG You-dong12 HOU Yu-fei12 WANG Li-wei12
(1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China; 2. Research Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum, Beijing 102249, China)
关键词:
分形维数 孔隙结构 核磁共振 扫描电镜 图像提取 沙河子组 陆相页岩 松辽盆地
Keywords:
fractal dimension pore structure nuclear magnetic resonance scanning electron microscope image extraction Shahezi Formation continental shale Songliao Basin
分类号:
P618.13
DOI:
10.19814/j.jese.2019.10003
文献标志码:
A
摘要:
为了表征陆相页岩的孔隙结构和分形特征,选取松辽盆地长岭断陷沙河子组陆相页岩作为研究对象,通过X射线衍射(XRD)分析、扫描电镜(SEM)图像分析、核磁共振(NMR)实验,运用分形维数理论,讨论NMR分形维数与矿物组成、地球化学参数、物性参数之间的相互关系,并且通过SEM图像提取技术定量化研究页岩储层孔隙特征。结果表明:沙河子组陆相页岩具有多种孔隙类型、孔径分布复杂、非均质性较强的特点。基于弛豫时间截止值,可将NMR分形维数划分为束缚流体孔隙分形维数(0.060 9~1.420 4)和可动流体孔隙分形维数(2.964 0~2.986 9)。矿物组成与分形维数的关系显示石英含量与束缚流体孔隙分形维数成负相关关系,黏土矿物含量与束缚流体孔隙分形维数成正相关关系; NMR分形维数与有机质含量呈线性相关,与成熟度不存在明显相关性; 这说明矿物组成和有机质含量对NMR分形维数起明显的控制作用。储层物性方面,NMR分形维数与孔隙率成线性负相关关系,而与渗透率成正相关关系,说明NMR分形维数能够作为衡量物性的重要指标。总体来说,SEM图像分形维数可以用来反映孔隙形态的多样性和页岩孔隙的发育程度; NMR分形维数与储层物性之间的关系可用于评价页岩储层质量。
Abstract:
In order to characterize pore structure and fractal characteristics of the continental shale, the Shahezi Formation continental shales in Changling fault depression of Songliao Basin were selected as research object. Based on the fractal dimension theory, X-ray diffraction(XRD)analysis, scanning electron microscope(SEM)image analysis, nuclear magnetic resonance(NMR)experiment were applied to discuss the correlation relationship between NMR fractal dimension and mineral compositions, geochemical parameters, physical parameters. In addition, the pore characteristics of shale reservoir were studied quantitatively with SEM image extraction technology. The results show that Shahezi Formation continental shale is characterized by diverse pore types, complex pore size distribution and strong heterogeneity. Based on the cutoff value of relaxation time, NMR fractal dimension has two segments, which represent the fractal characteristics of bound fluid pore(0.060 9-1.420 4)and seepage pore(2.964 0-2.986 9), respectively. The relationships between mineral compositions and fractal dimensions show that the quartz content is negatively correlated with the fractal dimension of bound fluid pore, while the clay mineral content is positive correlation with it; NMR fractal dimensions show a linear correlation with organic matter content, but no obvious correlation with maturity, which indicates that mineral composition and organic matter content play a significant role in controlling NMR fractal dimensions. In terms of reservoir physical properties, NMR fractal dimensions have a linear negative correlation with porosity, while a positive correlation with permeability, indicating that NMR fractal dimension can be used as an important index to measure physical properties. In all, SEM image fractal dimension can be used to reflect the diversity of pore morphology and the development of various pores in shale; and the relationship between NMR fractal dimension and reservoir physical properties can be used to evaluate the quality of shale reservoirs.

参考文献/References:

[1] 邹才能,赵 群,董大忠,等.页岩气基本特征、主要挑战与未来前景[J].天然气地球科学,2017,28(12):1781-1796.
ZOU Cai-neng,ZHAO Qun,DONG Da-zhong,et al.Geological Charactersitics,Main Challenges and Future Prospect of Shale Gas[J].Natural Gas Geoscience,2017,28(12):1781-1796.
[2] 康玉柱.中国非常规油气勘探重大进展和资源潜力[J].石油科技论坛,2018,37(4):1-7.
KANG Yu-zhu.Significant Exploration Progress and Resource Potential of Unconventional Oil and Gas in China[J].Oil Forum,2018,37(4):1-7.
[3] 陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.
CHEN Shang-bin,ZHU Yan-ming,WANG Hong-yan,et al.Structure Characteristics and Accumulation Significance of Nanopores in Longmaxi Shale Gas Reservoir in the Southern Sichuan Basin[J].Journal of China Coal Society,2012,37(3):438-444.
[4] 张金川,汪宗余,聂海宽,等.页岩气及其勘探研究意义[J].现代地质,2008,22(4):640-646.
ZHANG Jin-chuan,WANG Zong-yu,NIE Hai-kuan,et al.Shale Gas and Its Significance for Exploration[J].Geoscience,2008,22(4):640-646.
[5] 朱如凯,吴松涛,苏 玲,等.中国致密储层孔隙结构表征需注意的问题及未来发展方向[J].石油学报,2016,37(11):1323-1336.
ZHU Ru-kai,WU Song-tao,SU Ling,et al.Problems and Future Works of Porous Texture Characterization of Tight Reservoirs in China[J].Acta Petrolei Sinica,2016,37(11):1323-1336.
[6] ROSS D J K,BUSTIN R M.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs[J].Marine and Petroleum Geology,2009,26(6):916-927.
[7] 邹才能,杨 智,何东博,等.常规-非常规天然气理论、技术及前景[J].石油勘探与开发,2018,45(4):575-587.
ZOU Cai-neng,YANG Zhi,HE Dong-bo,et al.Theory,Technology and Prospects of Conventional and Unconventional Natural Gas[J].Petroleum Exploration and Development,2018,45(4):575-587.
[8] LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-related Mudrock Pores[J].AAPG Bulletin,2012,96(6):1071-1098.
[9] CHALMERS G R,BUSTIN R M,POWER I M.Characterization of Gas Shale Pore Systems by Porosimetry,Pycnometry,Surface Area,and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig Units[J].AAPG Bulletin,2012,96(6):1099-1119.
[10] 徐 勇,胡士骏,陈国俊,等.鄂尔多斯盆地东南部延长组长7段页岩孔隙特征与吸附能力[J].岩性油气藏,2016,28(6):30-35.
XU Yong,HU Shi-jun,CHEN Guo-jun,et al.Pore Characteristics and Adsorption Capacity of Chang-7 Shale of Yanchang Formation in the Southeastern Ordos Basin[J].Lithologic Reservoirs,2016,28(6):30-35.
[11] FAVVAS E P,SAPALIDIS A A,STEFANOPOULOS K L,et al.Characterization of Carbonate Rocks by Combination of Scattering,Porosimetry and Perme-ability Techniques[J].Microporous and Mesoporous Materials,2009,120(1/2):109-114.
[12] 李志清,孙 洋,胡瑞林,等.基于核磁共振法的页岩纳米孔隙结构特征研究[J].工程地质学报,2018,26(3):758-766.
LI Zhi-qing,SUN Yang,HU Rui-lin,et al.Quantitative Analysis for Nanopore Structure Characteristics of Shales Using NMR and NMR Cryoporometry[J].Journal of Engineering Geology,2018,26(3):758-766.
[13] 郭雪晶,何顺利,陈 胜,等.基于纳米CT及数字岩芯的页岩孔隙微观结构及分布特征研究[J].中国煤炭地质,2016,28(2):28-34.
GUO Xue-jing,HE Shun-li,CHEN Sheng,et al.Research on Microstructure of Shale Pores and Distribution Features Based on Nano-CT Scanning and Digital Core Analysis[J].Coal Geology of China,2016,28(2):28-34.
[14] 王超勇,鲍 园,琚宜文.利用FE-SEM、HIP、N2吸附实验表征生物气化煤系有机岩储层微观孔隙结构演化[J].地球科学,2020,45(1):251-262.
WANG Chao-yong,BAO Yuan,JU Yi-wen,et al.Micropore Structure Evolution of Organic Matters in Coal Measures Due to Bioconversion Using FE-SEM,HIP and N2 Adsorption Experiments[J].Earth Science,2020,45(1):251-262.
[15] 杨 峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.
YANG Feng,NING Zheng-fu,HU Chang-peng,et al.Characterization of Microscopic Pore Structures in Shale Reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.
[16] 田 华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427.
TIAN Hua,ZHANG Shui-chang,LIU Shao-bo,et al.Determination of Organic-rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods[J].Acta Petrolei Sinica,2012,33(3):419-427.
[17] 杨 峰,宁正福,孔德涛,等.高压压汞法和氮气吸附法分析页岩孔隙结构[J].天然气地球科学,2013,24(3):450-455.
YANG Feng,NING Zheng-fu,KONG De-tao,et al.Pore Structure of Shales from High Pressure Mercury Injection and Nitrogen Adsorption Method[J].Natural Gas Geoscience,2013,24(3):450-455.
[18] 肖立志,刘堂宴,傅容珊.利用核磁共振测井评价储层的捕集能力[J].石油学报,2004,25(4):38-41.
XIAO Li-zhi,LIU Tang-yan,FU Rong-shan.Application of Nuclear Magnetic Resonance Log to Trapping Capablilty Evaluation[J].Acta Petrolei Sinica,2004,25(4):38-41.
[19] 姚艳斌,刘大锰,蔡益栋,等.基于NMR和X-CT的煤的孔裂隙精细定量表征[J].中国科学:地球科学,2010,40(11):1598-1607.
YAO Yan-bin,LIU Da-meng,CAI Yi-dong,et al.Advanced Characterization of Pores and Fractures in Coals by Nuclear Magnetic Resonance and X-ray Computed Tomography[J].Science China:Earth Sciences,2010,40(11):1598-1607.
[20] 刘 标,姚素平,胡文瑄,等.核磁共振冻融法表征非常规油气储层孔隙的适用性[J].石油学报,2017,38(12):1401-1410.
LIU Biao,YAO Su-ping,HU Wen-xuan,et al.Application of Nuclear Magnetic Resonance Cryoporometry in Unconventional Reservoir Rocks[J].Acta Petrolei Sinica,2017,38(12):1401-1410.
[21] YAO Y B,LIU D M,CHE Y,et al.Petrophysical Cha-racterization of Coals by Low-field Nuclear Magnetic Resonance(NMR)[J].Fuel,2010,89(7):1371-1380.
[22] 郭英海,赵迪斐.微观尺度海相页岩储层微观非均质性研究[J].中国矿业大学学报,2015,44(2):300-307.
GUO Ying-hai,ZHAO Di-fei.Analysis of Micro-scale Heterogeneity Characteristics in Marine Shale Gas Reservoir[J].Journal of China University of Mining and Technology,2015,44(2):300-307.
[23] 陈尚斌,秦 勇,王 阳,等.中上扬子区海相页岩气储层孔隙结构非均质性特征[J].天然气地球科学,2015,26(8):1455-1463.
CHEN Shang-bin,QIN Yong,WANG Yang,et al.Pore Structure and Heterogeneity of Marine Shales in the Middle-upper Yangtze[J].Natural Gas Geoscience,2015,26(8):1455-1463.
[24] 郭旭升,李宇平,刘若冰,等.四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J].天然气工业,2014,34(6):9-16.
GUO Xu-sheng,LI Yu-ping,LIU Ruo-bing,et al.Cha-racteristics and Controlling Factors of Micro-pore Structures of Longmaxi Shale Play in the Jiaoshiba Area,Sichuan Basin[J].Natural Gas Industry,2014,34(6):9-16.
[25] 赵迪斐,郭英海,朱炎铭,等.海相页岩储层微观孔隙非均质性及其量化表征[J].中国矿业大学学报,2018,47(2):87-98.
ZHAO Di-fei,GUO Ying-hai,ZHU Yan-ming,et al.Analysis of Micro-scale Heterogeneity Characteristics in Marine Shale Gas Reservoir:Pore Heterogeneity and Its Quantitative Characterization[J].Journal of China University of Mining and Technology,2018,47(2):87-98.
[26] 孙 超,姚素平.页岩油储层孔隙发育特征及表征方法[J].油气地质与采收率,2019,26(1):153-164.
SUN Chao,YAO Su-ping.Pore Structure and Characterization Methods of Shale Oil Reservoir[J].Petroleum Geology and Recovery Efficiency,2019,26(1):153-164.
[27] 于炳松.页岩气储层孔隙分类与表征[J].地学前缘,2013,20(4):211-220.
YU Bing-song.Classification and Characterization of Gas Shale Pore System[J].Earth Science Frontiers,2013,20(4):211-220.
[28] 陈燕燕,邹才能,MASTALERZ M,等.页岩微观孔隙演化及分形特征研究[J].天然气地球科学,2015,26(9):1646-1656.
CHEN Yan-yan,ZOU Cai-neng,MASTALERZ M,et al.Porosity and Fractal Characteristics of Shale Across a Maturation Gradient[J].Natural Gas Geoscience,2015,26(9):1646-1656.
[29] JI W M,SONG Y,JIANG Z X,et al.Fractal Characteristics of Nano-pores in the Lower Silurian Longmaxi Shales from the Upper Yangtze Platform,South China[J].Marine and Petroleum Geology,2016,78:88-98.
[30] PFEIFER P,AVNIR D.Chemistry in Noninteger Dimensions Between Two and Three:I.Fractal Theory of Heterogeneous Surfaces[J].The Journal of Chemical Physics,1983,79(7):3558-3565.
[31] AVNIR D,JARONIEC M.An Isotherm Equation for Adsorption on Fractal Surfaces of Heterogeneous Porous Materials[J].Langmuir,1989,5(6):1431-1433.
[32] DATHE A,EINS S,NIEMEYER J,et al.The Surface Fractal Dimension of the Soil-pore Interface as Mea-sured by Image Analysis[J].Geoderma,2001,103(1/2):203-229.
[33] WANG P F,JIANG Z X,JI W M,et al.Heterogeneity of Intergranular,Intraparticle and Organic Pores in Longmaxi Shale in Sichuan Basin,South China:Evidence from SEM Digital Images and Fractal and Multifractal Geometries[J].Marine and Petroleum Geology,2016,72:122-138.
[34] 赵迪斐,郭英海,解徳录,等.基于低温氮吸附实验的页岩储层孔隙分形特征[J].东北石油大学学报,2014,38(6):100-108.
ZHAO Di-fei,GUO Ying-hai,XIE De-lu,et al.Fractal Characteristics of Shale Reservoir Pores Based on Nitrogen Adsorption[J].Journal of Northeast Petroleum University,2014,38(6):100-108.
[35] SONG Z Z,LIU G D,YANG W W,et al.Multi-fractal Distribution Analysis for Pore Structure Characterization of Tight Sandstone:A Case Study of the Upper Paleozoic Tight Formations in the Longdong District,Ordos Basin[J].Marine and Petroleum Geology,2018,92:842-854.
[36] TANG L,SONG Y X,JIANG Z X,et al.Pore Structure and Fractal Characteristics of Distinct Thermally Mature Shales[J].Energy and Fuels,2019,33(6):5116-5128.
[37] 李易隆,贾爱林,何东博,等.松辽盆地长岭断陷早白垩世断坳转换期沉积体系特征与演化过程[J].天然气地球科学,2014,25(5):709-720.
LI Yi-long,JIA Ai-lin,HE Dong-bo,et al.Early Cretaceous Sedimentary Systems and Depositional Process During the Period of Transition from Faulted Depression to Sag,Changling Faulted Depression,Songliao Basin[J].Natural Gas Geoscience,2014,25(5):709-720.
[38] 梁志凯,李 卓,高凤琳,等.陆相断陷湖盆地层划分及沉积充填模式:以松辽盆地长岭断陷沙河子组为例[J].能源与环保,2019,41(5):73-83.
LIANG Zhi-kai,LI Zhuo,GAO Feng-lin,et al.Stratigraphic Classification and Sedimentary Filling Model of Continental Faulted Lacustrine Basin:A Case Study of Shahezi Formation in Changling Fault Depression,Songliao Basin[J].China Energy and Environmental Protection,2019,41(5):73-83.
[39] 林景晔,姜 涛,宋立斌,等.哈尔金混合气藏成因及气体的垂向分布规律[J].石油学报,2010,31(6):927-932.
LIN Jing-ye,JIANG Tao,SONG Li-bin,et al.The Origin and Gas Vertical Distribution of the Harjin Mixed-gas Reservoir[J].Acta Petrolei Sinica,2010,31(6):927-932.
[40] GB/T 29172—2012,岩芯分析方法[S].
GB/T 29172—2012,Practices for Core Analysis[S].
[41] TAN M J,MAO K Y,SONG X D,et al.NMR Petrophysical Interpretation Method of Gas Shale Based on Core NMR Experiment[J].Journal of Petroleum Science and Engineering,2015,136:100-111.
[42] KENYOU W E.Nuclear Magnetic Resonance as a Petrophysical Measurement[J].Nuclear Geophysics,1992,6(2):153-171.
[43] KLENBERG R L.Utility of NMR T2 Distributions,Connection with Capillary Pressure,Clay Effect,and Determination of the Surface Relaxivity Parameter ρ</sub>2[J].Magnetic Resonance Imaging,1996,14(7/8):761-767.
[44] 宁传祥,姜振学,苏思远,等.泥页岩核磁共振T2谱换算孔隙半径方法[J].科学技术与工程,2016,16(27):14-19.
NING Chuan-xiang,JIANG Zhen-xue,SU Si-yuan,et al.Method for Calculating Pore Radius Distribution in Shale Reservoirs from NMR T2 Spectra[J].Science Technology and Engineering,2016,16(27):14-19.
[45] 李爱芬,任晓霞,王桂娟,等.核磁共振研究致密砂岩孔隙结构的方法及应用[J].中国石油大学学报(自然科学版),2015,39(6):92-98.
LI Ai-fen,REN Xiao-xia,WANG Gui-juan,et al.Characterization of Pore Structure of Low Permeability Re-servoirs Using a Nuclear Magnetic Resonance Method[J].Journal of China University of Petroleum(Edition of Natural Science),2015,39(6):92-98.
[46] LI J Q,WANG S Y,LU S F,et al.Microdistribution and Mobility of Water in Gas Shale:A Theoretical and Experimental Study[J].Marine and Petroleum Geology,2019,102:496-507.
[47] 王思远,李俊乾,卢双舫,等.渝东南地区海相页岩有机质孔隙发育特征[J].地球科学与环境学报,2019,41(6):721-733.
WANG Si-yuan,LI Jun-qian,LU Shuang-fang,et al.Development Characteristic of Organic Matter Pores of Marine Shale in the Southeastern Chongqing,China[J].Journal of Earth Sciences and Environment,2019,41(6):721-733.
[48] YAO Y B,LIU D M,TANG D Z,et al.Fractal Characterization of Adsorption-pores of Coals from North China:An Investigation on CH4 Adsorption Capacity of Coals[J].International Journal of Coal Geology,2008,73(1):27-42.
[49] ZHANG J Z,LI X Q,WEI Q,et al.Characterization of Full-sized Pore Structure and Fractal Characteristics of Marine-continental Transitional Longtan Formation Shale of Sichuan Basin,South China[J].Energy and Fuels,2017,31(10):10490-10504.
[50] ZHOU S D,LIU D M,CAI Y D,et al.Fractal Characterization of Pore-fracture in Low-rank Coals Using a Low-field NMR Relaxation Method[J].Fuel,2016,181:218-226.
[51] LI A,DING W L,JIU K L,et al.Investigation of the Pore Structures and Fractal Characteristics of Marine Shale Reservoirs Using NMR Experiments and Image Analyses:A Case Study of the Lower Cambrian Niutitang Formation in Northern Guizhou Province,South China[J].Marine and Petroleum Geology,2018,89:530-540.
[52] Al-MAHROOQI S H,GRATTONI C A,MOSS A K,et al.An Investigation of the Effect of Wettability on NMR Characteristics of Sandstone Rock and Fluid Systems[J].Journal of Petroleum Science and Engineering,2003,39(3/4):389-398.
[53] SHAO X H,PANG X Q,LI H,et al.Fractal Analysis of Pore Network in Tight Gas Sandstones Using NMR Method:A Case Study from the Ordos Basin,China[J].Energy and Fuels,2017,31(10):10358-10368.
[54] SUN W,ZOU Y J,WU Z H,et al.Fractal Analysis of Pores and the Pore Structure of the Lower Cambrian Niutitang Shale in Northern Guizhou Province:Investigations Using NMR,SEM and Image Analyses[J].Marine and Petroleum Geology,2019,99:416-428.
[55] JI L M,ZHANG T W,MILLIKEN K L,et al.Experimental Investigation of Main Controls to Methane Adsorption in Clay-rich Rocks[J].Applied Geoche-mistry,2012,27(12):2533-2545.
[56] ZHOU L,KANG Z H.Fractal Characterization of Pores in Shales Using NMR:A Case Study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform,Southwest China[J].Journal of Natural Gas Science and Engineering,2016,35:860-872.
[57] LI Z,LIANG Z K,JIANG Z X,et al.The Impacts of Matrix Compositions on Nanopore Structure and Fractal Characteristics of Lacustrine Shales from the Changling Fault Depression,Songliao Basin,China[J].Minerals,2019,9(2):127-136.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-10-09; 修回日期:2020-04-13; 网络首发日期:2020-05-26投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(41502123); 国家科技重大专项项目(201605034-001)
作者简介:梁志凯(1995-),男,甘肃兰州人,工学硕士研究生,E-mail:liangzhikai2020@163.com。
*通讯作者:李 卓(1983-),男,黑龙江绥化人,副研究员,工学博士,E-mail:zhuo.li@cup.edu.cn。
更新日期/Last Update: 2020-05-27