必须声明标量变量 "@Script_ID"。 大陆碰撞造山与成矿过程:扎格罗斯和喜马拉雅造山带对比-《地球科学与环境学报》
|本期目录/Table of Contents|

[1]张洪瑞*,侯增谦**.大陆碰撞造山与成矿过程:扎格罗斯和喜马拉雅造山带对比[J].地球科学与环境学报,2021,43(03):436-448.[doi:10.19814/j.jese.2020.11001]
 ZHANG Hong-rui*,HOU Zeng-qian**.Comparisons of the Collision Processes and Related Metallogenesis of Zagros and Himalaya Orogens[J].Journal of Earth Sciences and Environment,2021,43(03):436-448.[doi:10.19814/j.jese.2020.11001]
点击复制

大陆碰撞造山与成矿过程:扎格罗斯和喜马拉雅造山带对比(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第43卷
期数:
2021年第03期
页码:
436-448
栏目:
院士专稿
出版日期:
2021-05-15

文章信息/Info

Title:
Comparisons of the Collision Processes and Related Metallogenesis of Zagros and Himalaya Orogens
文章编号:
1672-6561(2021)03-0436-13
作者:
张洪瑞*侯增谦**
(中国地质科学院地质研究所,北京 100037)
Author(s):
ZHANG Hong-rui* HOU Zeng-qian**
(Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China)
关键词:
碰撞造山带 造山阶段 成矿作用 成矿构造 新生地壳 扎格罗斯 喜马拉雅 青藏高原
Keywords:
collisional orogen collision process metallogenesis ore-forming structure juvenile crust Zagros Himalaya Tibetan Plateau
分类号:
P56
DOI:
10.19814/j.jese.2020.11001
文献标志码:
A
摘要:
大陆碰撞造山过程对理解板块构造登陆具有重要启示意义,但相关研究还存在较多问题。例如,几乎每个造山带都存在初始碰撞时限的争议,碰撞造山阶段存在多种划分方案,碰撞成矿作用的地球动力学机制不清楚等。通过综合对比研究扎格罗斯和喜马拉雅造山带构造-岩浆-成矿作用,发现碰撞造成的强烈挤压变形明显滞后于大陆初始碰撞时间。同时,碰撞过程还会出现滞后型弧岩浆作用。将这些碰撞初期出现的滞后型构造岩浆事件单独划分成一个碰撞造山阶段,称之为软碰撞阶段。由此,碰撞造山过程由软碰撞、硬碰撞和后碰撞3个阶段组成。其中,软碰撞阶段主要发育与低速率应变有关的变形构造和与俯冲大洋板片有关的岩浆事件; 硬碰撞阶段主要为高速率应变的变形构造和大陆岩石圈俯冲诱发的岩浆事件; 后碰撞阶段则会出现大量伸展构造来调节挤压应变,同时发育与大陆岩石圈拆沉、断离和撕裂有关的岩浆作用。软碰撞和硬碰撞阶段的挤压作用会造成铅锌矿床就位在褶皱逆冲带内,硬碰撞和后碰撞阶段发育的大型走滑断层控制斑岩型铜矿床的产出,后碰撞阶段出现的伸展构造赋存有金锑多金属热液矿床。碰撞造山带内保存有早期俯冲和后期碰撞阶段的新生地壳,为碰撞造山带金属成矿提供了物质来源。
Abstract:
The study on continental collision process will shed light on plate tectonics within continent. However, there are some problems about the timing of the initial collision, such as the division about collisional phases and the dynamics of collisional metallogenesis. Comparing Zagros and Himalayan orogens in terms of their deformation, magmatism, and metallogenesis, it is noted that there is a time lag between intense collisional related shorting and initial collision. In the meanwhile, arc-like magmatic activity can also occur within collisional continental zone. It is suggested that the lag time between tectonic-magmatic activities and initiation of continental collision reflects the effects of a collision process involving the “soft” collision. Thus the collision processes can be divided into three phases, including soft collision, hard collision, and post collision. Among them, the soft collision phase is characterized by low-rate contractional deformation and magmatism related to subducted oceanic slab. In contrast, high-rate contractional deformation and magmatism related to subduction of continental lithosphere occur during the hard collision phase. There are lots of extensional structures during post collision phase, and magmatic activity of this phase is mainly induced by delamination, breakoff and tearing of the continental lithosphere. The hydrothermal Pb-Zn ore deposits occur in the fold and thrust belt during soft and hard collision phases. The porphyry Cu deposits are controlled by large strike-slip faults during hard and post collision phases, whereas the detachment-fault-related polymetallic deposits form related to crustal extension during post collision phase. The juvenile crust form during the early subduction phase and subsequent collisional phase, and supply metal for ore-forming system within continental collision zones.

参考文献/References:

[1] 张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化[J].陕西地质,1997,15(2):1-14.
ZHANG Guo-wei,DONG Yun-peng,YAO An-ping.The Crustal Compositions,Structures and Tectonic Evolution of the Qinling Orogenic Belt[J].Geology of Shaanxi,1997,15(2):1-14.
[2] COWARD M,DIETRICH D.Alpine Tectonics:An Overview[J].Geological Society,London,Special Publications,1989,45:1-29.
[3] MOLNAR P,ENGLAND P,MARTINOD J.Mantle Dynamics,Uplift of the Tibetan Plateau,and the Indian Monsoon[J].Reviews of Geophysics,1993,31(4):357-396.
[4] YIN A,HARRISON T M.Geologic Evolution of the Himalayan-Tibetan Orogen[J].Annual Review of Earth and Planetary Sciences,2000,28:211-280.
[5] HATZFELD D,MOLNAR P.Comparisons of the Kinematics and Deep Structures of the Zagros and Himalaya and of the Iranian and Tibetan Plateaus and Geodynamic Implications[J].Reviews of Geophysics,2010,48(2):RG2005.
[6] STREULE M J,STRACHAN R A,SEARLE M P,et al.Comparing Tibet-Himalayan and Caledonian Crustal Architecture,Evolution and Mountain Building Processes[J].Geological Society,London,Special Publications,2010,335:207-232.
[7] HOU Z Q,ZHANG H R.Geodynamics and Metallogeny of the Eastern Tethyan Metallogenic Domain[J].Ore Geology Reviews,2015,70:346-384.
[8] 张洪瑞,侯增谦.大陆碰撞造山样式与过程:来自特提斯碰撞造山带的实例[J].地质学报,2015,89(9):1539-1559.
ZHANG Hong-rui,HOU Zeng-qian.Pattern and Process of Continent-continent Collision Orogeny:A Case Study of the Tethys Collisional Orogen[J].Acta Geologica Sinica,2015,89(9):1539-1559.
[9] 张洪瑞,侯增谦.大陆碰撞带成矿作用:年轻碰撞造山带对比研究[J].中国科学:地球科学,2018,48(12):1629-1654.
ZHANG Hong-rui,HOU Zeng-qian.Metallogenesis Within Continental Collision Zones:Comparisons of Modern Collisional Orogens[J].Science China:Earth Sciences,2018,48(12):1629-1654.
[10] 郑永飞,陈伊翔,戴立群,等.发展板块构造理论:从洋壳俯冲带到碰撞造山带[J].中国科学:地球科学,2015,45(6):711-735.
ZHENG Yong-fei,CHEN Yi-xiang,DAI Li-qun,et al.Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens[J].Science China:Earth Sciences,2015,45(6):711-735.
[11] SPENCER C J,ROBERTS N M W,SANTOSH M.Growth,Destruction,and Preservation of Earth's Continental Crust[J].Earth-science Reviews,2017,172:87-106.
[12] CLARK M K,HOUSE M A,ROYDEN L H,et al.Late Cenozoic Uplift of Southeastern Tibet[J].Geology,2005,33(6):525-528.
[13] DING L,XU Q,YUE,Y,et al.The Andean-type Gangdese Mountains:Paleoelevation Record from the Paleocene-Eocene Linzhou Basin[J].Earth and Planetary Science Letters,2014,392:250-264.
[14] XIONG Z Y,DING L,SPICER A,et al.The Early Eocene Rise of the Gonjo Basin,SE Tibet:From Low Desert to High Forest[J].Earth and Planetary Science Letters,2020,543:116312.
[15] 王二七.关于印度与欧亚大陆初始碰撞时间的讨论[J].中国科学:地球科学,2017,47(3):284-292.
WANG Er-qi.A Discussion on the Timing of the Initial Collision Between the Indian and Asian Continents[J].Science China:Earth Sciences,2017,47(3):284-292.
[16] 朱弟成,王 青,赵志丹.岩浆岩定量限定陆-陆碰撞时间和过程的方法和实例[J].中国科学:地球科学,2017,47(6):657-673.
ZHU Di-cheng,WANG Qing,ZHAO Zhi-dan.Constraining Quantitatively the Timing and Process of Continent-continent Collision Using Magmatic Record:Method and Examples[J].Science China:Earth Sciences,2017,47(6):657-673.
[17] 肖文交,敖松坚,杨 磊,等.喜马拉雅汇聚带结构-属性解剖及印度—欧亚大陆最终拼贴格局[J].中国科学:地球科学,2017,47(6):631-656.
XIAO Wen-jiao,AO Song-jian,YANG Lei,et al.Anatomy of Composition and Nature of Plate Convergence:Insights for Alternative Thoughts for Terminal India-Eurasia Collision[J].Science China:Earth Sciences,2017,47(6):631-656.
[18] OKAY A I,ZATTIN M,CAVAZZA W.Apatite Fission-track Data for the Miocene Arabia-Eurasia Collision[J].Geology,2010,38(1):35-38.
[19] MCQUARRIE N,VAN HINSBERGEN D J J.Retrodeforming the Arabia-Eurasia Collision Zone:Age of Collision Versus Magnitude of Continental Subduction[J].Geology,2013,41(3):315-318.
[20] GHOLAMI Z P,ADABI M H,HISADA K I,et al.Revised Version of the Cenozoic Collision Along the Zagros Orogen,Insights from Cr-spinel and Sandstone Modal Analyses[J].Scientific Reports,2017,7:10828.
[21] 李继亮,孙 枢.碰撞造山带的碰撞事件时限的确定[J].岩石学报,1999,15(2):315-320.
LI Ji-liang,SUN Shu.Time Limit of Collision Event of Collision Orogens[J].Acta Petrologica Sinica,1999,15(2):315-320.
[22] 莫宣学,赵志丹,邓晋福,等.印度—亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10(3):135-148.
MO Xuan-xue,ZHAO Zhi-dan,DENG Jin-fu,et al.Response of Volcanism to the India-Asia Collision[J].Earth Science Frontiers,2003,10(3):135-148.
[23] 胡修棉,王建刚,安 慰,等.利用沉积记录精确约束印度—亚洲大陆碰撞时间与过程[J].中国科学:地球科学,2017,47(3):261-283.
HU Xiu-mian,WANG Jian-gang,AN Wei,et al.Constraining the Timing of the India-Asia Continental Collision by the Sedimentary Record[J].Science China:Earth Sciences,2017,47(3):261-283..
[24] 丁 林,MAKSATBEK S,蔡福龙,等.印度与欧亚大陆初始碰撞时限、封闭方式和过程[J].中国科学:地球科学,2017,47(3):293-309.
DING Lin,MAKSATBEK S,CAI Fu-long,et al.Processes of Initial Collision and Suturing Between India and Asia[J].Science China:Earth Sciences,2017,47(3):293-309.
[25] YUAN J,YANG Z Y,DENG C L,et al.Rapid Drift of the Tethyan Himalaya Terrane Before Two-stage India-Asia Collision[J].National Science Review,2020,DOI:10.1093/nsr/nwaa173.
[26] WILSON J T.A New Class of Faults and Their Bearing on Continental Drift[J].Nature,1965,207:343-347.
[27] VAN HUNEN J,MILLER M S.Collisional Processes and Links to Episodic Changes in Subduction Zones[J].Elements,2015,11(2):119-124.
[28] MO X X,NIU Y L,DONG G C,et al.Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet[J].Chemical Geology,2008,250(1/2/3/4):49-67.
[29] O'BRIEN P J.Subduction Followed by Collision:Alpine and Himalayan Examples[J].Physics of the Earth and Planetary Interiors,2001,127(1/2/3/4):277-291.
[30] REGARD V,FACCENNA C,MARTINOD J,et al.From Subduction to Collision:Control of Deep Pro-cesses on the Evolution of Convergent Plate Boundary[J].Journal of Geophysical Research:Solid Earth,2003,108(B4):2208.
[31] ZHANG H R,YANG T N,HOU Z Q,et al.Magmatic Expression of Tectonic Transition from Oceanic Subduction to Continental Collision:Insights from the Middle Triassic Rhyolites of the North Qiangtang Block[J].Gondwana Research,2020,87:67-82.
[32] WANG H Q,DING L,CAI F L,et al.Early Tertiary Deformation of the Zhongba-Gyangze Thrust in Central Southern Tibet[J].Gondwana Research,2017,41:235-248.
[33] COWGILL E,FORTE A M,NIEMI N,et al.Relict Basin Closure and Crustal Shortening Budgets During Continental Collision:An Example from Caucasus Sediment Provenance[J].Tectonics,2016,35:2918-2947.
[34] 郭玲莉,李三忠,赵淑娟,等.洋-陆转换带类型与成因机制[J].地学前缘,2017,24(4):320-328.
GUO Ling-li,LI San-zhong,ZHAO Shu-juan,et al.Formation Mechanism and Types of Ocean-continent Transition Zones[J].Earth Science Frontiers,2017,24(4):320-328.
[35] DONG Y,ZHANG G,NEUBAUER F,et al.Syn- and Post-collisional Granitoids in the Central Tianshan Orogen:Geochemistry,Geochronology and Implications for Tectonic Evolution[J].Gondwana Research,2011,20(2/3):568-581.
[36] 侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J].中国地质,2006,33(2):340-351.
HOU Zeng-qian,MO Xuan-xue,YANG Zhi-ming,et al.Metallogeneses in the Collisional Orogen of the Qinghai-Tibet Plateau:Tectonic Setting,Tempo-spatial Distribution and Ore Deposit Types[J].Geology in China,2006,33(2):340-351.
[37] 侯增谦.大陆碰撞成矿论[J].地质学报,2010,84(1):30-58.
HOU Zeng-qian.Metallogensis of Continental Collision[J].Acta Geologica Sinica,2010,84(1):30-58.
[38] NIU Y L,ZHAO Z D,ZHU D C,et al.Continental Collision Zones Are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis[J].Earth-science Reviews,2013,127:96-110.
[39] STONGE M R,RAYNER N,PALIN R M,et al.Integrated Pressure-temperature-time Constraints for the Tso Morari Dome(Northwest India):Implications for the Burial and Exhumation Path of UHP Units in the Western Himalaya[J].Journal of Metamorphic Geology,2013,31(5):469-504.
[40] WILKE F D H,O'BRIEN P J,ALTENBERGER U,et al.Multi-stage Reaction History in Different Eclogite Types from the Pakistan Himalaya and Implications for Exhumation Processes[J].Lithos,2010,114(1/2):70-85.
[41] ZHU D C,WANG Q,ZHAO Z D,et al.Magmatic Record of India-Asia Collision[J].Scientific Reports,2015,5:2045-2322.
[42] LANARI P,RIEL N,GUILLOT S,et al.Deciphering Highpressure Metamorphism in Collisional Context Using Microprobe Mapping Methods:Application to the Stak Eclogitic Massif(Northwest Himalaya)[J].Geology,2013,41(2):111-114.
[43] LEE T Y,LAWVER L A.Cenozoic Plate Reconstruction of Southeast Asia[J].Tectonophysics,1995,251(1/2/3/4):85-138.
[44] CANDE S C,STEGMAN D R.Indian and African Plate Motions Driven by the Push Force of the Réunion Plume Head[J].Nature,2011,475:47-52.
[45] WANG J H,YIN A,HARRISON T M,et al.A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone[J].Earth and Planetary Science Letters,2001,188(1/2):123-133.
[46] LU Y J,KERRICH R,KEMP A I S,et al.Intracontinental Eocene-Oligocene Porphyry Cu Mineral Systems of Yunnan,Western Yangtze Craton,China:Compositional Characteristics,Sources,and Implications for Continental Collision Metallogeny[J].Economic Geology,2013,108(7):1541-1576.
[47] SEARLE M P,ELLIOTT J,PHILLIPS R,et al.Crustal-lithospheric Structure and Continental Extrusion of Tibet[J].Journal of the Geological Society,2011,168(3):633-672.
[48] ZHANG B,YIN C Y,ZHANG J J,et al.Midcrustal Shearing and Doming in a Cenozoic Compressive Setting Along the Ailao Shan-Red River Shear Zone[J].Geochemistry,Geophysics,Geosystems,2017,18(1):400-433.
[49] HINTERSBERGER E,THIEDE R C,STRECKER M R,et al.East-west Extension in the NW Indian Himalaya[J].Geological Society of America Bulletin,2010,122(9/10):1499-1515.
[50] GUO Z,WILSON M.Late Oligocene-Early Miocene Transformation of Postcollisional Magmatism in Tibet[J].Geology,2019,47(8):776-780.
[51] ZHANG H R,YANG T N,HOU Z Q,et al.Paleocene Adakitic Porphyry in the Northern Qiangtang Area,North-central Tibet:Evidence for Early Uplift of the Tibetan Plateau[J].Lithos,2015,212/213/214/215:45-58.
[52] AGARD P,OMRANI J,JOLIVET L,et al.Convergence History Across Zagros(Iran):Constraints from Collisional and Earlier Deformation[J].International Journal of Earth Sciences,2005,94(3):401-419.
[53] SAURA E,VERGES J,HOMKE S,et al.Basin Architecture and Growth Folding of the NW Zagros Early Foreland Basin During the Late Cretaceous and Early Tertiary[J].Journal of the Geological Society,2011,168(1):235-250.
[54] BALLATO P,UBA C E,LANDGRAF A,et al.Arabia-Eurasia Continental Collision:Insights from Late Tertiary Foreland-basin Evolution in the Alborz Mountains,Northern Iran[J].Geological Society of America Bulletin,2011,123(1/2):106-131.
[55] AGHAZADEH M,CASTRO A,OMRAN N R,et al.The Gabbro(Shoshonitic)-monzonite-granodiorite As-sociation of Khankandi Pluton,Alborz Mountains,NW Iran[J].Journal of Asian Earth Sciences,2010,38(5):199-219.
[56] CHIU H Y,CHUNG S L,ZARRINKOUB M H,et al.Zircon U-Pb Age Constraints from Iran on the Magmatic Evolution Related to Neotethyan Subduction and Zagros Orogeny[J].Lithos,2013,162/163:70-87.
[57] RABIEE A,ROSSETTI F,ASAHARA Y,et al.Long-lived,Eocene-Miocene Stationary Magmatism in NW Iran Along a Transform Plate Boundary[J].Gondwana Research,2020,85:237-262.
[58] GAVILLOT Y,GARY J A,DANIEL F.S,et al.Timing of Thrust Activity in the High Zagros Fold Thrust Belt,Iran,from(U-Th)/He Thermochronometry[J].Tectonics,2010,29(4):TC4025.
[59] BALLATO P,CIFELLI F,HEIDARZADEH G,et al.Tectono-sedimentary Evolution of the Northern Iranian Plateau:Insights from Middle-Late Miocene Foreland-basin Deposits[J].Basin Research,2017,29(4):417-446.
[60] JAHANGIRI A.Post-collisional Miocene Adakitic Volcanism in NW Iran:Geochemical and Geodynamic Implications[J].Journal of Asian Earth Sciences,2007,30(3/4):433-447.
[61] LIN Y C,CHUNG S L,BINGOL A F,et al.Diachronous Initiation of Post-collisional Magmatism in the Arabia-Eurasia Collision Zone[J].Lithos,2020,356/357:105394.
[62] KHEIRKHAH M,NEILL I,ALLEN M,et al.Small-volume Melts of Lithospheric Mantle During Continental Collision:Late Cenozoic Lavas of Mahabad,NW Iran[J].Journal of Asian Earth Sciences,2013,74:37-49.
[63] MIRNEJAD H,HASSANZADEH J,COUSENS B L,et al.Geochemical Evidence for Deep Mantle Melting and Lithospheric Delamination as the Origin of the Inland Damavand Volcanic Rocks of Northern Iran[J].Journal of Volcanology and Geothermal Research,2010,198(3/4):288-296.
[64] SUGDEN P,SAVOV I P,WILSON M,et al.The Thickness of the Mantle Lithosphere and Collision-related Volcanism in the Lesser Caucasus[J].Journal of Petrology,2019,60(2):199-230.
[65] SAADAT S,STERN C R.Petrochemistry of a Xenolith-bearing Neogene Alkali Olivine Basalt from Northeastern Iran[J].Journal of Volcanology and Geothermal Research,2012,225/226:13-29.
[66] HOMKE S,VERGES J,GARCES M,et al.Magnetostratigraphy of Miocene-Pliocene Zagros Foreland Deposits in the Front of the Push-e Kush Arc(Lurestan Province,Iran)[J].Earth and Planetary Science Letters,2004,225(3/4):397-410.
[67] TALEBIAN M,JACKSON J.Offset on the Main Recent Fault of NW Iran and Implications for the Late Cenozoic Tectonics of the Arabia-Eurasia Collision Zone[J].Geophysical Journal International,2002,150(2):422-439.
[68] AUTHEMAYOU C,BELLIER O,CHARDON D,et al.Quaternary Slip-rates of the Kazerun and the Main Recent Faults:Active Strike-slip Partitioning in the Zagros Fold-and-thrust Belt[J].Geophysical Journal International,2009,178(1):524-540.
[69] AGARD P,OMRANI J,JOLIVET L,et al.Zagros Orogeny:A Subduction-dominated Process[J].Geological Magazine,2011,148(5/6):692-725.
[70] VERDEL C,WERNICKE B P,HASSANZADEH J,et al.A Paleogene Extensional Arc Flare-up in Iran[J].Tectonics,2011,30(3):TC3008.
[71] WANG Q,WYMAN D A,XU J F,et al.Eocene Melting of Subducting Continental Crust and Early Uplifting of Central Tibet:Evidence from Central-western Qiangtang High-K Calc-alkaline Andesites,Dacites and Rhyolites[J].Earth and Planetary Science Letters,2008,272(1/2):158-171.
[72] SHI D,KLEMPERER S L,SHI J,et al.Localized Foundering of Indian Lower Crust in the India-Tibet Collision Zone[J].PNAS,2020,DOI:10.1073/pnas.2000015117.
[73] REPLUMAZ A,NEGREDO A M,GUILLOT S,et al.Multiple Episodes of Continental Subduction During India/Asia Convergence:Insight from Seismic Tomography and Tectonic Reconstruction[J].Tectonophysics,2010,483(1/2):125-134.
[74] NADIMI A,KONON A.Gaw-Khuni Basin:An Active Stepover Structure in the Sanandaj-Sirjan Zone,Iran[J].Geological Society of America Bulletin,2012,124(3/4):484-498.
[75] ZHAO Z D,MO X X,DILEK Y,et al.Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-collisional Ultrapotassic Magmatism in SW Tibet:Petrogenesis and Implications for India Intra-continental Subduction Beneath Southern Tibet[J].Lithos,2009,113(1/2):190-212.
[76] STUDNICKI-GIZBERT C,BURCHFIEL B C,LI Z,et al.Early Tertiary Gonjo Basin,Eastern Tibet:Sedimentary and Structural Record of the Early History of India-Asia Collision[J].Geosphere,2008,4(4):713-735.
[77] LI Y L,WANG C S,DAI J G,et al.Propagation of the Deformation and Growth of the Tibetan-Himalayan Orogen:A Review[J].Earth-science Reviews,2015,143:36-61.
[78] XU Y G,LAN J B,YANG Q J,et al.Eocene Break-off of the Neo-Tethyan Slab as Inferred from Intraplate-type Mafic Dykes in the Gaoligong Orogenic Belt,Eastern Tibet[J].Chemical Geology,2008,255(3/4):439-453.
[79] JI W Q,WU F Y,CHUNG S L,et al.Eocene Neo-Tethyan Slab Breakoff Constrained by 45 Ma Oceanic Island Basalt-type Magmatism in Southern Tibet[J].Geology,2016,44(4):283-286.
[80] ZHAO J,QIN K,LI G,et al.Collision-related Genesis of the Sharang Porphyry Molybdenum Deposit,Tibet:Evidence from Zircon U-Pb Ages,Re-Os Ages and Lu-Hf Isotopes[J].Ore Geology Reviews,2014,56:312-326.
[81] ZHAO X Y,YANG Z S,HOU Z Q,et al.The Structural Deformation Characteristics and the Control of Gold Mineralization of the Upper Triassic Flysch(Langjiexue Group)in Tibetan Plateau[J].Geological Journal,2019,54(4):1331-1342.
[82] 张 雄,赵晓燕,杨竹森.念扎金矿床热历史:锆石U-Pb、(U-Th)/He及磷灰石裂变径迹年代学的制约[J].地球科学,2019,44(6):2039-2051.
ZHANG Xiong,ZHAO Xiao-yan,YANG Zhu-sen.Thermal History of Nianzha Gold Deposit:Constraints from Zircon U-Pb,(U-Th)/He and Apatite Fission Track Geochronology[J].Earth Science,2019,44(6):2039-2051.
[83] 胡茂德,张洪瑞,贾敬伍,等.云南兰坪李子坪铅锌矿床的控矿构造、碳和氧同位素及稀土元素地球化学特征[J].矿床地质,2015,34(5):1057-1071.
HU Mao-de,ZHANG Hong-rui,JIA Jing-wu,et al.Structural Control,Oxygen and Carbon Isotope,and REE Geochemistry of Liziping Pb-Zn Ore Deposit,Lanping Basin,Yunnan Province[J].Mineral Depo-sits,2015,34(5):1057-1071.
[84] ZHANG H R,YANG T N,HOU Z Q,et al.Structural Controls on Carbonate-hosted Pb-Zn Mineralization in the Dongmozhazhua Deposit,Central Tibet[J].Ore Geology Reviews,2017,90:863-876.
[85] 田世洪,杨竹森,侯增谦,等.青海玉树东莫扎抓和莫海拉亨铅锌矿床与逆冲推覆构造关系的确定:来自粗晶方解石Rb-Sr和Sm-Nd等时线年龄证据[J].岩石矿物学杂志,2011,30(3):475-489.
TIAN Shi-hong,YANG Zhu-sen,HOU Zeng-qian,et al.Confirmation of Connection Between Dongmozhazhua and Mohailaheng Pb-Zn Ore Deposits and Thrust Nappe System in Yushu Area,Southern Qinghai:Evidence from Rb-Sr and Sm-Nd Isochron Ages of Macrocrystalline Calcite[J].Acta Petrologica et Mineralogica,2011,30(3):475-489.
[86] WANG X H,HOU Z Q,SONG Y C,et al.Geologi-cal,Fluid Inclusion and Isotopic Studies of the Bai-yangping Pb-Zn-Cu-Ag Polymetallic Deposit,Lanping Basin,Yunnan Province,China[J].Journal of Asian Earth Sciences,2015,111:853-871.
[87] 张 路,白志明,徐 涛,等.哀牢山地区新生代岩浆活动与掀斜式抬升:来自短周期密集台阵观测的证据[J].中国科学:地球科学,2020,50(8):1069-1082.
ZHANG Lu,BAI Zhi-mimg,XU Tao,et al.Cenozoic Magmatic Activity and Oblique Uplifting of the Ailao Mountain:Evidence from a Short-period Dense Seismic Array[J].Science China:Earth Sciences,2020,50(8):1069-1082.
[88] HOU Z Q,ZENG P S,GAO Y F,et al.Himalayan Cu-Mo-Au Mineralization in the Eastern Indo-Asian Collision Zone:Constraints from Re-Os Dating of Molybdenite[J].Mineralium Deposita,2006,41(1):33-45.
[89] 周 凯,张洪瑞,柴 鹏,等.云南墨江金厂矿床金镍赋存状态及成因关系探讨[J].矿床地质,2020,39(1):97-110.
ZHOU Kai,ZHANG Hong-rui,CHAI Peng,et al.On the Occurrence and Genesis of Gold and Nickel in Jinchang Deposit,Mojiang County,Yunnan Province[J].Mineral Deposits,2020,39(1):97-110.
[90] 李光明,张林奎,焦彦杰,等.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义[J].矿床地质,2017,36(4):1003-1008.
LI Guang-ming,ZHANG Lin-kui,JIAO Yan-jie,et al.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himala-yan Metallogenic Belt,Southern Tibet[J].Mineral Deposits,2017,36(4):1003-1008.
[91] ZHENG Y C,FU Q,HOU Z Q,et al.Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Poly-metallic Belt in the Lhasa Terrane,Southern Tibet[J].Ore Geology Reviews,2015,70:510-532.
[92] YANG Z S,HOU Z Q,MENG X J,et al.Post-collisional Sb and Au Mineralization Related to the South Tibetan Detachment System,Himalayan Orogen[J].Ore Geology Reviews,2009,36(1/2/3):194-212.
[93] 王庆飞,邓 军,翁伟俊,等.青藏高原新生代造山型金成矿系统[J].岩石学报,2020,36(5):1315-1353.
WANG Qing-fei,DENG Jun,WENG Wei-jun,et al.Cenozoic Orogenic Gold System in Tibet[J].Acta Petrologica Sinica,2020,36(5):1315-1353.
[94] HOU Z Q,YANG Z S,QU X M,et al.The Miocene Gangdese Porphyry Copper Belt Generated During Post-collisional Extension in the Tibetan Orogen[J].Ore Geology Reviews,2009,36(1/2/3):25-51.
[95] SHABANIAN E,ACOCELLA V,GIONCADA A,et al.Structural Control on Volcanism in Intraplate Post Collisional Settings:Late Cenozoic to Quaternary Examples of Iran and Eastern Turkey[J].Tectonics,2012,31(3):TC3013.
[96] KOUHESTANI H,RASHIDNEJAD-OMRAN N,RASTAD E,et al.Orogenic Gold Mineralization at the Chah Bagh Deposit,Muteh Gold District,Iran[J].Journal of Asian Earth Sciences,2014,91:89-106.
[97] GILG H A,BONI M,BALASSONE G,et al.Marble-hosted Sulfide Ores in the Angouran Zn-(Pb-Ag)Deposit,NW Iran:Interaction of Sedimentary Brines with a Metamorphic Core Complex[J].Mineralium Deposita,2006,41(1):1-16.
[98] NIROOMAND S,GOLDFARB R J,MOORE F,et al.The Kharapeh Orogenic Gold Deposit:Geological,Structural,and Geochemical Controls on Epizonal Ore Formation in West Azerbaijan Province,Northwestern Iran[J].Mineralium Deposita,2011,46(4):409-428.
[99] BIERLEIN F P,GROVES D I,GOLDFARB R J,et al.Lithospheric Controls on the Formation of Pro-vinces Hosting Giant Orogenic Gold Deposits[J].Mineralium Deposita,2006,40(8):874-886.
[100] GROVES D I,BIERLEIN F P.Geodynamic Settings of Mineral Deposit Systems[J].Journal of the Geological Society,2007,164(1):19-30.
[101] KERRICH R,GOLDFARB R J, RICHARDS J P R.Metallogenic Provinces in an Evolving Geodynamic Framework[C]∥HEDENQUIST J W,THOMPSON J F H,GOLDFARB R J,et al.One Hundredth Anniversary Volume of Economic Geology.New York:Society of Economic Geologists,2005:1097-1136.
[102] HAWKESWORTH C J,CAWOOD P,DHUIME B,et al.Earth's Continental Lithosphere Through Time[J].Annual Review of Earth and Planetary Sciences,2017,45(1):169-198.
[103] ZHANG H R,YANG T N,HOU Z Q,et al.Permian Back-arc Basin Basalts in the Yushu Area:New Constrain on the Paleo-Tethyan Evolution of the North-central Tibet[J].Lithos,2017,286/287:216-226.
[104] ZHANG H R,YANG T N,HOU Z Q,et al.Devonian Nb-enriched Basalts and Andesites of North-central Tibet:Evidence for the Early Subduction of the Paleo-Tethyan Oceanic Crust Beneath the North Qiangtang Block[J].Tectonophysics,2016,682:96-107.
[105] HOU Z Q,DUAN L F,LU Y J,et al.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen[J].Economic Geology,2015,110(6):1541-1575.
[106] LEE H Y,CHUNG S L,LO C H,et al.Eocene Neo-tethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record[J].Tectonophysics,2009,477(1/2):20-35.
[107] CHUNG S L,CHU M F,ZHANG Y,et al.Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-collisional Magmatism[J].Earth-science Reviews,2005,68(3/4):173-196.
[108] LU Y J,CAMPBELL MCCUAIG T C,LI Z X,et al.Paleogene Post-collisional Lamprophyres in Western Yunnan,Western Yangtze Craton:Mantle Source and Tectonic Implications[J].Lithos,2015,233:139-161.
[109] YANG T N,CHEN J L,LIANG M J,et al.Two Plutonic Complexes of the Sanandaj-Sirjan Magmatic-metamorphic Belt Record Jurassic to Early Cretaceous Subduction of an Old Neotethys Beneath the Iran Microplate[J].Gondwana Research,2018,62:246-268.
[110] ZHANG H R,CHEN J L,YANG T N,et al.Jurassic Granitoids in the Northwestern Sanandaj-Sirjan Zone:Evolving Magmatism in Response to the Development of a Neo-Tethyan Slab Window[J].Gondwana Research,2018,62:269-286.

相似文献/References:

[1]姜为佳,刘贻灿.超高压变质带中的变质不均一性[J].地球科学与环境学报,2016,38(02):160.
 JIANG Wei-jia,LIU Yi-can.Metamorphic Heterogeneity Within a Single Ultrahigh-pressure Belt[J].Journal of Earth Sciences and Environment,2016,38(03):160.

备注/Memo

备注/Memo:
收稿日期:2020-11-02; 修回日期:2020-12-01
基金项目:国家自然科学基金项目(91962105,41772088,91855214,41922022); 中国地质调查局地质调查项目(DD20190001)
*通讯作者:张洪瑞(1982-),男,河北衡水人,研究员,博士研究生导师,理学博士,2000~2004年在长安大学资源勘查工程专业攻读学士学位,2004~2007年在长安大学构造地质学专业攻读硕士学位,E-mail:zhanghr@yeah.net。
**通讯作者:侯增谦(1961-),男,河北石家庄人,研究员,博士研究生导师,理学博士,中国科学院院士,E-mail:houzengqian@126.com。
更新日期/Last Update: 2021-05-01