必须声明标量变量 "@Script_ID"。 泛北极多年冻土及重大线性工程稳定性状况-《地球科学与环境学报》
|本期目录/Table of Contents|

[1]牛富俊,程国栋,石亚亚,等.泛北极多年冻土及重大线性工程稳定性状况[J].地球科学与环境学报,2021,43(03):587-603.[doi:10.19814/j.jese.2021.01034]
 NIU Fu-jun,CHENG Guo-dong,SHI Ya-ya,et al.Permafrost and Stability of the Major Linear Engineering in the Pan-Arctic Region[J].Journal of Earth Sciences and Environment,2021,43(03):587-603.[doi:10.19814/j.jese.2021.01034]
点击复制

泛北极多年冻土及重大线性工程稳定性状况(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第43卷
期数:
2021年第03期
页码:
587-603
栏目:
工程地质
出版日期:
2021-05-15

文章信息/Info

Title:
Permafrost and Stability of the Major Linear Engineering in the Pan-Arctic Region
文章编号:
1672-6561(2021)03-0587-17
作者:
牛富俊1程国栋1石亚亚2尹国安1罗 京1
(1.中国科学院西北生态环境资源研究院 冻土工程国家重点实验室, 甘肃 兰州 730000; 2.天水师范学院 资源与环境工程学院,甘肃 天水 741001)
Author(s):
NIU Fu-jun1 CHENG Guo-dong1 SHI Ya-ya2 YIN Guo-an1 LUO Jing1
(1. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Gansu 730000, Lanzhou, China; 2. College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui 741001, Gansu, China)
关键词:
多年冻土 稳定性 热融灾害 线性工程 铁路 公路 管道 泛北极
Keywords:
permafrost stability thermokarst hazard linear engineering railway highway pipeline pan-Arctic region
分类号:
P642.14; TU752
DOI:
10.19814/j.jese.2021.01034
文献标志码:
A
摘要:
泛北极是中国“一带一路”倡议的主要合作示范区域,已有的重大线性工程及新的基础设施建设均面临着与多年冻土相关的冻融灾害及工程病害问题。在全球气候变暖及人类活动增强的背景下,泛北极多年冻土主要呈现地温升高、活动层厚度增加趋势,且低温多年冻土地温升高更加明显,20世纪70年代以来年平均地温(MAGT)升温最高可达3 ℃; 自北向南多年冻土活动层厚度增加,且增厚趋势趋于明显,在俄蒙边境地区活动层厚度增速为3~5 cm·年-1。多年冻土退化诱发系列与热喀斯特过程相关的地质灾害,主要包括热喀斯特滑坡与热喀斯特湖,且灾害数量急剧增加,如加拿大Banks Island地区1984~2015年热喀斯特滑坡数量增加了约60倍。在多年冻土退化、热稳定性降低的背景下,泛北极铁路、公路和管道等重大线性工程出现了沉陷、裂缝等不同类型、不同程度的病害,整体上多年冻土区道路工程病害率大于30%。热融灾害及工程病害的发育均与气候及岩土、冻土条件相关,但工程病害还与工程运营期限、工程结构形式密切关联。对比泛北极道路、管道等线性工程状况及其与工程结构的关系,以及病害特征和防治措施效果,表明基于保护冻土的“主动冷却”设计原则依然是多年冻土区工程设计的主导思想。
Abstract:
The pan-Arctic region is one of the cooperative demonstration areas of the “Belt and Road” initiative. The local linear engineering faces serious challenges of permafrost-thawing hazards and corresponding engineering problems. Under the background of the climate warming and human activity increasing, permafrost in the pan-Arctic region has been undergoing continuous degradation, showing as increasing of the mean annual ground temperature(MAGT), thickening of the active layer and general decreasing of the thermal stability. The low-temperature permafrost has been developing more obvious increase in ground temperature, since the 1970s, the MAGT has increased up to 3 ℃, and the active layer thickness of the permafrost has increased from north to south, and the trend of thickening is obvious. The series of geological hazards induced by the permafrost degradation is related to thermokarst processes, mainly including thermokarst landslides and thermokarst lakes. The number of the landslide hazard increases seriously, shown by a 60-fold increase in numbers between 1984 and 2015, as more than 4 000 thermokarst landslides are initiated in Banks Island, Canada. Under the background of permafrost degradation and decrease of thermal stability, the major linear engineering projects, such as railways, highways and pipelines in the pan-Arctic region, appear various types and degrees of problems such as settlement and cracks. With the decrease of the thermal stability of permafrost and the increase of susceptibility of the thawing-induced hazards, the engineering problems would continue to develop. Compared with the thawing-induced hazards, the development of engineering problems is not only related to the climate, geotechnical and frozen soil conditions, but also closely related to the engineering operation period and engineering structures. On the whole, the disease rate of road engineering in the permafrost regions is more than 30%. After assessing the current status, along with the configure structures of the main linear engineering projects, including roadway, pipeline, etc., in the pan-Arctic region, it is confirmed that the “active cooling” design principle based on the protection of frozen soil is still the dominant method of engineering design in the permafrost regions.

参考文献/References:

[1] FRENCH H M.The Periglaical Environment[M].4th ed.Hoboken:John Wiley and Sons,2018.
[2] GRUBER S.Derivation and Analysis of a High-resolution Estimate of Global Permafrost Zonation[J].The Cryosphere,2012,6(1):221-233.
[3] OBU J,WESTERMANN S,BARTSCH A,et al.Northern Hemisphere Permafrost Map Based on TTOP Modelling for 2000-2016 at 1 km2 Scale[J].Earth-science Reviews,2019,193:299-316.
[4] ZHANG T J,BARRY R G,KNOWLES K,et al.Statistics and Characteristics of Permafrost and Ground-ice Fistribution in the Northern Hemisphere[J].Polar Geography,2008,31(1/2):47-68.
[5] 冉有华,李 新,程国栋,等.2005~2015年青藏高原多年冻土稳定性制图[J].中国科学:地球科学,2021,51(2):183-200.
RAN You-hua,LI Xin,CHENG Guo-dong,et al.Mapping the Permafrost Stability on the Tibetan Plateau for 2005-2015[J].Science China:Earth Sciences,2021,51(2):183-200.
[6] 王 康,张廷军,牟翠翠,等.从第三极到北极:气候与冰冻圈变化及其影响[J].冰川冻土,2020,42(1):104-123.
WANG Kang,ZHANG Ting-jun,MOU Cui-cui,et al.From the Third Pole to the Arctic:Changes and Impacts of the Climate and Cryosphere[J].Journal of Glaciology and Geocryology,2020,42(1):104-123.
[7] 丁 煌,张 冲.泛北极共同体的设想与中国身份的塑造:一种建构主义的解读[J].江苏行政学院学报,2016(4):76-83.
DING Huang,ZHANG Chong.The Vision of Pan-Arctic Community and the Molding of Chinese Identity:An Interpretation of Constructivism[J].Journal of Jiangsu Administration Institute,2016(4):76-83.
[8] 许小青.“泛北极圈”国家治理现状及其对我国北极利益选择的影响[J].南阳师范学院学报,2015,14(8):6-10,45.
XU Xiao-qing.“Pan-Arctic” National Governance and Its Impact on the Status of China's Arctic Interests[J].Journal of Nanyang Normal University,2015,14(8):6-10,45.
[9] 程国栋,何 平.多年冻土地区线性工程建设[J].冰川冻土,2001,23(3):213-217.
CHENG Guo-dong,HE Ping.Linearity Engineering in Permafrost Areas[J].Journal of Glaciology and Geocryology,2001,23(3):213-217.
[10] WANG S J,NIU F J,CHEN J B,et al.Permafrost Research in China Related to Express Highway Construction[J].Permafrost and Periglacial Processes,2020,31(3):406-416.
[11] 张廷军.全球多年冻土与气候变化研究进展[J].第四纪研究,2012,32(1):27-38.
ZHANG Ting-jun.Progress in Global Permafrost and Climate Changes Study[J].Quaternary Sciences,2012,32(1):27-38.
[12] 秦大河,周波涛,效存德.冰冻圈变化及其对中国气候的影响[J].气象学报,2014,72(5):869-879.
QIN Da-he,ZHOU Bo-tao,XIAO Cun-de.Progress in Studies of Cryospheric Changes and Their Impacts on Climate of China[J].Acta Meteorologica Sinica,2014,72(5):869-879.
[13] IPCC.Climate Change 2013:The Physical Science Basis[M].Cambridge:Cambridge University Press,2014.
[14] SVENDSEN L,KEENLYSIDE N,BETHKE I,et al.Pacific Contribution to the Early Twentieth-century Warming in the Arctic[J].Nature Climate Change,2018,8(9):793-797.
[15] PEPIN N,BRADLEY R S,DIAZ H F,et al.Elevation-dependent Warming in Mountain Regions of the World[J].Nature Climate Change,2015,5(5):424-430.
[16] GUO D L,WANG H J.CMIP5 Permafrost Degradation Projection:A Comparison Among Different Rer-gions[J].Journal of Geophysical Research:Atmospheres,2016,121(9):4499-4517.
[17] GROSSE G,GOETZ S,MCGUIRE A D,et al.Chang-ing Permafrost in a Warming World and Feedbacks to the Earth System[J].Environmental Research Letters,2016,11(4):040201.
[18] CHRISTIANSEN H H,ETZELMULLER B,ISAKSEN K,et al.The Thermal State of Permafrost in the Nordic Area During the International Polar Year 2007-2009[J].Permafrost and Periglacial Processes,2010,21(2):106-116.
[19] ROMANOVSKY V E,DROZDOV D S,OBERMAN N G,et al.Thermal State of Permafrost in Russia[J].Permafrost and Periglacial Processes,2010,21(2):136-155.
[20] ROMANOVSKY V E,SMITH S L,CHRISTIANSEN H H.Permafrost Thermal State in the Polar Northern Hemisphere During the International Polar Year 2007-2009:A Synthesis[J].Permafrost and Periglacial Processes,2010,21(2):106-116.
[21] VIEIRA G,BOCKHEIM J,GUGLIELMIN M,et al.Thermal State of Permafrost and Active-layer Monitoring in the Antarctic:Advances During the International Polar Year 2007-2009[J].Permafrost and Pe-riglacial Processes,2010,21(2):182-197.
[22] SMITH S L,ROMANOVSKY V E,LEWKOWICZ A G,et al.Thermal State of Permafrost in North America:A Contribution to the International Polar Year[J].Permafrost and Periglacial Processes,2010,21(2):117-135.
[23] ZHAO L,WU Q B,MARCHENKO S S,et al.Thermal State of Permafrost and Active Layer in Central Asia During the International Polar Year[J].Permafrost and Periglacial Processes,2010,21(2):198-207.
[24] CHADBURN S E,BURKE E J,COX P M,et al.An Observation-based Constraint on Permafrost Loss as a Function of Global Warming[J].Nature Climate Change,2017,7(5):340-344.
[25] WOO M,LEWKOWICZ A G,WAYNE R.Response of the Canada Permafrost Environment to Climatic Change[J].Physical Geography,1992,13(4):287-317.
[26] 金会军,王绍令,吕兰芝,等.兴安岭多年冻土退化特征[J].地理科学,2009,29(2):223-228.
JIN Hui-jun,WANG Shao-ling,LV Lan-zhi,et al.Features of Permafrost Degradation in Hinggan Mountains,Northeastern China[J].Scientia Geogra-phica Sinica,2009,29(2):223-228.
[27] DING Y J,ZHANG S Q,ZHAO L,et al.Global Warming Weakening the Inherent Stability of Glaciers and Permafrost[J].Science Bulletin,2019,64(4):245-253.
[28] LUO D L,WU Q B,JIN H J,et al.Recent Changes in the Active Layer Thickness Across the Northern Hemisphere[J].Environmental Earth Sciences,2016,75(7):555.
[29] BOWDEN W B.Climate Change in the Arctic-permafrost,Thermokarst,and Why They Matter to the Non-Arctic World[J].Geography Compass,2010,4(10):1553-1566.
[30] SCHAEFER K,LANTUIT H,ROMANOVSKY V E,et al.The Impact of the Permafrost Carbon Feedback on Global Climate[J].Environmental Research Letters,2014,9(8):085003.
[31] SCHUUR E A,MCGUIRE A D,SCHADEL C,et al.Climate Change and the Permafrost Carbon Feedback[J].Nature,2015,520:171-179.
[32] 牟翠翠.热喀斯特改变多年冻土区景观和地表过程[J].自然杂志,2020,42(5):386-392.
MOU Cui-cui.Thermokarst Terrains Change Landscape and Earth Surface Processes[J].Chiness Journal of Nature,2020,42(5):386-392.
[33] NIU F J,LUO J,LIN Z J,et al.Development and Thermal Regime of a Thaw Slump in the Qinghai-Tibet Plateau[J].Cold Regions Science and Technology,2012,83/84:131-138.
[34] LUO J,NIU F J,LIN Z J,et al.Recent Acceleration of Thaw Slumping in Permafrost Terrain of Qinghai-Tibet Plateau:An Example from the Beiluhe Region[J].Geomorphology,2019,341:79-85.
[35] DORE G,NIU F J,BROOKS H.Adaptation Methods for Transportation Infrastructure Built on Degrading Permafrost[J].Permafrost and Periglacial Processes,2016,27(4):352-364.
[36] AALTO J,KARJALAINEN O,HJORT J,et al.Statistical Forecasting of Current and Future Circum-Arctic Ground Temperatures and Active Layer Thickness[J].Geophysical Research Letters,2018,45(4):4889-4898.
[37] HALSEY L A,VITT D H,ZOLTAI S C.Disequili-brium Response of Permafrost in Boreal Continental Western Canada to Climate Change[J].Climatic Change,1995,30(1):57-73.
[38] MONITORING T A,PROGRAMME A.Snow,Water,Ice and Permafrost in the Arctic(SWIPA):Climate Change and the Cryosphere[R].Oslo:Arctic Monitoring and Assessment Programme,2011.
[39] ROMANOVSKY V E,SMITH S L,CHRISTIANSEN H H,et al.Terrestrial Permafrost[J].Bulletin of the American Meteorological Society,2014,98(8):147-149.
[40] SHOWSTACK R.Arctic Report Card[J].Eos,2009,90(44):399.
[41] HANSEN B B,ISAKSEN K,BENESTAD R E,et al.Warmer and wetter Winters:Characteristics and Implications of an Extreme Weather Event in the High Arctic[J].Environmental Research Letters,2014,9(11):114021.
[42] FARBROT H,ISAKSEN K,ETZELMÜLLER B,et al.Ground Thermal Regime and Permafrost Distribution Under a Changing Climate in Northern Norway[J].Permafrost and Periglacial Processes,2013,24(1):20-38.
[43] ISAKSEN K,DEGRD R S,ETZELMÜLLER B,et al.Degrading Mountain Permafrost in Southern Norway:Spatial and Temporal Variability of Mean Ground Temperatures,1999-2009[J].Permafrost and Periglacial Processes,2011,22(4):361-377.
[44] SHI Y Y,NIU F J,LIN Z J,et al.Freezing/Thawing Index Variations over the Circum-Arctic from 1901 to 2015 and the Permafrost Extent[J].Science of the Total Environment,2019,660:1294-1305.
[45] 程国栋.局地因素对多年冻土分布的影响及其对青藏铁路设计的启示[J].中国科学:D辑,地球科学,2003,33(6):602-607.
CHENG Guo-dong.Influences of Local Factors on Permafrost Occurrence and Their Implications for Qinghai-Xizang Railway Design[J].Science in China:Series D,Earth Sciences,2003,33(6):602-607.
[46] THROOP J,LEWKOWICZ A G,SMITH S L.Climate and Ground Temperature Relations at Sites Across the Continuous and Discontinuous Permafrost Zones,Northern Canada[J].Canadian Journal of Earth Sciences,2012,49:865-876.
[47] SCHUUR E A G,CRUMMER K G,VOGEL J G,et al.Plant Species Composition and Productivity Following Permafrost Thaw and Thermokarst in Alaskan Tundra[J].Ecosystems,2007,10(2):280-292.
[48] ISAKSEN K,SOLLID J L,HOLMLUND P,et al.Recent Warming of Mountain Permafrost in Svalbard and Scandinavia[J].Journal of Geophysical Research:Earth Surface,2007,112(F2):S04.
[49] SMITH S L,WOLFE S A,RISEBOROUGH D W,et al.Active-layer Characteristics and Summer Climatic Indices,Mackenzie Valley,Northwest Territories,Canada[J].Permafrost and Periglacial Processes,2009,20(2):201-220.
[50] ROMANOVSKY V E,SMITH S L,ISAKSEN K,et al.Terrestrial Permafrost,in “State of the Climate in 2015”[J].Bulletin of the American Meteorological Society,2016,97(8):20-22.
[51] FRAUENFELD O W,ZHANG T J,BARRY R G,et al.Interdecadal Changes in Seasonal Freeze and Thaw Depths in Russia[J].Journal of Geophysical Research:Atmospheres,2004,109:D05101.
[52] JOHANSSON M,AKERMAN J,KEUPER F,et al.Past and Present Permafrost Temperatures in the Abisko Area:Redrilling of Boreholes[J].Ambio,2011,40:558-565.
[53] CALLAGHAN T,JONASSON C,THIERFELDER T,et al.Ecosystem Change and Stability over Multiple Decades in the Swedish Subarctic:Complex Processes and Multiple Drivers[J].Philosophical Transactions of the Royal Society B:Biological Sciences,2013,368:20120488.
[54] AKERMAN J,JOHANSSON M.Thawing Permafrost and Thicker Active Layers in Sub-Arctic Sweden[J].Permafrost and Periglacial Processes,2008,19(3):279-292.
[55] LEIBMAN M O,KHOMUTOV A,GUBARKOV A,et al.The Research Station “Vaskiny Dachi”,Central Yamal,West Siberia,Russia:A Review of 25 Years of Permafrost Studies[J].Fennia,2015,193(1):3-30.
[56] LEWKOWICZ A G,ROBERT G,et al.Extremes of Summer Climate Trigger Thousands of Thermokarst Landslides in a High Arctic Environment[J].Nature Communications,2019,10(1):1329.
[57] MUHAMMAD I.Assessment and Monitoring of a New Retrogressive Thaw Slump,K1456 Alaska High-way[J].Frozen Ground,2020,44:17.
[58] SMITH L C,SHENG Y,MACDONALD G M,et al.Disappearing Arctic Lakes[J].Science,2005,308:1429.
[59] YOSHIKAWA K,HINZMAN L D.Shrinking Thermokarst Ponds and Groundwater Dynamics in Discontinuous Permafrost near Council,Alaska[J].Permafrost and Periglacial Processes,2003,14(2):151-160.
[60] PLUG L J,WALLS C,SCOTT B M.Tundra Lake Changes from 1978 to 2001 on the Tuktoyaktuk Pe-ninsula,Western Canadian Arctic[J].Geophysical Research Letters,2018,35(3):144-151.
[61] LUO J,NIU F J,LIN Z J,et al.Thermokarst Lake Changes Between 1969 and 2010 in the Beilu River Basin,Qinghai-Tibet Plateau,China[J].Science Bulletin,2015,60(5):556-564.
[62] HJORT J,KARJALAINEN O,AALTO J,et al.Degrading Permafrost Puts Arctic Infrastructure at Risk by Mid-century[J].Natural Communications,2018,9:5147.
[63] JAMES M,LEWKOWICZ A G,SMITH S L,et al.Multi-decadal Degradation and Persistence of Permafrost in the Alaska Highway Corridor,Northwest Canada[J].Environmental Research Letters,2013,8(4):045013.
[64] 程国栋,马 巍.青藏铁路建设中冻土工程问题[J].自然杂志,2006,28(6):315-320.
CHENG Guo-dong,MA Wei.Frozen Soil Engineering Problems in Construction of the Qinghai-Tibet Railway[J].Chiness Journal of Nature,2006,28(6):315-320.
[65] FERRIANS O J,KACHADOORIAN R.Permafrost and Related Engineering Problems in Alaska[R].Reston:USGS,1969.
[66] ROBERT F B.Some Problems in Engineering Geology Caused by Permafrost in the Arctic Coastal Plain,Northern Alaska[J].Arctic,1957,10(4):230-240.
[67] JIN H J,BREWER M C.Highway Roadway Stability Influenced by Warm Permafrost and Seasonal Frost Action:A Case Study from Glennallen,Alaska,USA[J].Sciences in Cold and Arid Regions,2008(1):26-41.
[68] 赵 军.俄罗斯冻土铁路考察见闻与体会[J].路基工程,2003(6):24-26.
ZHAO Jun.Experience of Russian Permafrost Railway[J].Subgrade Engineering,2003(6):24-26.
[69] 徐恒盛.俄罗斯第2条西伯利亚铁路建设概况及技术措施[J].铁道建筑技术,2001(6):55-58.
XU Heng-sheng.Overview and Technical Measures for the Construction of the Siberian Railway[J].Railway Construction Technology,2001(6):55-58.
[70] 刘铁良.俄罗斯加固多年冻土地区铁路路堤基底有效方法的现状与展望[J].中国铁路,2005(2):58-61.
LIU Tie-liang.Status and Expectation on Effective Methods for Strengthening the Railway Embankment Base in Permafrost Area in Russia[J].China Railway,2005(2):58-61.
[71] 郑启浦.东北多年冻土地区不良地质现象对铁路工程的危害及其防治[J].中国地质灾害与防治学报,1993,4(1):58-64.
ZHENG Qi-pu.Hazards of Railway Engineering Cau-sed by Unhealth Geological Phenomena at Permafrost Area in North China[J].The Chinese Journal of Geological Hazard and Control,1993,4(1):58-64.
[72] 孙志忠,李国玉,喻文兵,等.东北多年冻土区公路路基工程研究进展[J].路基工程,2018(3):6-10.
SUN Zhi-zhong,LI Guo-yu,YU Wen-bing,et al.Review of Highway Subgrade Engineering Research in Permafrost Regions of Northeast China[J].Subgrade Engineering,2018(3):6-10.
[73] LACHENBRUCH A H.Some Estimates of the Thermal Effects of a Heated Pipeline in Permafrost[R].Reston:USGS,1970.
[74] 金会军,喻文兵,高晓飞,等.冻土区输油管道工程基础稳定性研究[J].油气储运,2006,25(2):13-18.
JIN Hui-jun,YU Wen-bing,GAO Xiao-fei,et al.Stability of Engineering Foundations of Oil Pipelines in Permafrost Regions:A Review[J].Oil and Gas Storage and Transportation,2006,25(2):13-18.
[75] 金会军,喻文兵,陈友昌,等.多年冻土区输油管道工程中的(差异性)融沉和冻胀问题[J].冰川冻土,2005,27(3):454-464.
JIN Hui-jun,YU Wen-bing,CHEN You-chang,et al.(Differential)Frost Heave and Thaw Settlement in the Engineering Design and Construction of Oil Pipelines in Permafrost Regions:A Review[J].Journal of Glaciology and Geocryology,2005,27(3):454-464.
[76] 姚 森,蔡 亮,孟虎林,等.高寒冻土区管道地质灾害防护技术探讨[J].石油和化工设备,2020,23(5):90-92.
YAO Sen,CAI Liang,MENG Hu-lin,et al.Discussion on Protection Technology of Pipeline Geological Disaster in Permafrost Region[J].Petro and Chemical Equipment,2020,23(5):90-92.
[77] 胡 宗,吴 明,陈 杨,等.输油管道冻胀安全性研究现状与趋势[J].油气储运,2011,30(12):881-883.
HU Zong,WU Ming,CHEN Yang,et al.Progress in the Safety Study of Frost Heaving of Oil Pipeline[J].Oil and Gas Storage and Transportation,2011,30(12):881-883.
[78] 金会军,王绍令,吕兰芝,等.中俄管道(漠河—乌尔其段)多年冻土环境工程地质区划和评价[J].水文地质工程地质,2009,36(4):102-107.
JIN Hui-jun,WANG Shao-ling,LV Lan-zhi,et al.Zonation and Assessment of Engineering Geology for Frozen Ground Environments and Conditions Along the Proposed China-Russia Crude Oil Pipeline Route[J].Hydrogeology and Engineering Geology,2009,36(4):102-107.
[79] 王 杉.中俄二线管道工程多年冻土区冻害问题分析[J].油气田地面工程,2020,39(8):58-60.
WANG Shan.Analysis of Frost Damage in Permafrost Regions for Second Line Project of China-Russia Crude Oil Pipeline[J].Oil-gasfield Surface Engineering,2020,39(8):58-60.
[80] 周幼吾,郭东信,邱国庆,等.中国冻土[M].北京:科学出版社,2000.
ZHOU You-wu,GUO Dong-xin,QIU Guo-qing,et al.Geocryology in China[M].Beijing:Science Press,2000.
[81] 孟凡松,刘建平,刘永智.黑北公路冻土路基设计原则及病害特征[J].冰川冻土,2001,23(3):307-311.
MENG Fan-song,LIU Jian-ping,LIU Yong-zhi.Design Principles and Frost Damage Characteristics of Frozen Soil Roadbed Along the Heihe-Bei'an Highway[J].Journal of Glaciology and Geocryology,2001,23(3):307-311.
[82] 陈利红,袁 航,滕 镝.小兴安岭地区公路建设中对多年冻土的实践与思考[J].黑龙江交通科技,2003,26(1):36-38.
CHEN Li-hong,YUAN Hang,TENG Di.The Practice and Thought of the Permafrost in Highway Construction at the Xiaoxing'anling District[J].Communications Science and Technology in Heilongjiang,2003,26(1):36-38.
[83] 周子兵.北部多年冻土区冻土路基设计方法探讨[J].黑龙江交通科技,2011,34(9):28.
ZHOU Zi-bing.Discussion on Design Method of Permafrost Subgrade in the Northern Permafrost Region[J].Communications Science and Technology in Heilongjiang,2011,34(9):28.
[84] 陈 继,李 昆,盛 煜,等.季节冻土区埋地管道水温的变化规律及其影响因素分析[J].冰川冻土,2014,36(4):836-844.
CHEN Ji,LI Kun,SHENG Yu,et al.Variations and Influencing Factors of the Water Temperature Within the Pipe Buried in Seasonally Frozen Ground Area[J].Journal of Glaciology and Geocryology,2014,36(4):836-844.
[85] BURGESS M M,HARRY D G.Norman Wells Pipeline Permafrost and Terrain Monitoring:Geothermal[J].Canadian Geotechnical Journal,1990,27(2):233-244.
[86] 李国玉,马 巍,王学力,等.中俄原油管道漠大线运营后面临一些冻害问题及防治措施建议[J].岩土力学,2015,36(10):2963-2973.
LI Guo-yu,MA Wei,WANG Xue-li,et al.Frost Ha-zards and Mitigative Measures Following Operation of Mohe-Daqing line of China-Russia Crude Oil Pipeline[J].Rock and Soil Mechanics,2015,36(10):2963-2973.
[87] 王 伟,杜文友,唐艳刚,等.多年冻土区管道地基土冻融影响因素的敏感性[J].油气储运,2020,39(10):1155-1164.
WANG Wei,DU Wen-you,TANG Yan-gang,et al.Sensitivity of Freezing and Thawing Influencing Factors of Pipeline Foundation Soils in Permafrost Region[J].Oil and Gas Storage and Transportation,2020,39(10):1155-1164.
[88] 王 伟,张喜发,杨风学,等.中俄原油管道沿线冻害分布特征研究[J].油气田地面工程,2019,38(9):52-58.
WANG Wei,ZHANG Xi-fa,YANG Feng-xue,et al.Study on the Distribution Characteristics of Freeze Injury Along China-Russia Crude Oil Pipeline[J].Oil-gasfield Surface Engineering,2019,38(9):52-58.
[89] PENG S,CIAIS P,KRINNER G,et al.Simulated High-latitude Soil Thermal Dynamics During the Past 4 De-cades[J].The Cryosphere Discussions,2016,10(1):179-192.
[90] WARREN F J,LEMMEN.Canada in a Changing Climate:Sector Perspectives on Impacts and Adaptation[J].Semaine Des Hôpitaux Therapeutique,2014,41(10):286.
[91] FRAUENFELDER R,SOLHEIM A,ISAKSEN K,et al.Impacts of Extreme Weather Events on Trans-port Infrastructure in Norway[J].Natural Hazards and Earth System Sciences Discussions,2017,DOI:10.5194/nhess-2017-437.
[92] 马 巍,程国栋,吴青柏.多年冻土地区主动冷却地基方法研究[J].冰川冻土,2002,24(5):579-587.
MA Wei,CHENG Guo-dong,WU Qing-bai.Preliminary Study on Technology of Cooling Foundation in Permafrost Regions[J].Journal of Glaciology and Geocryology,2002,24(5):579-587.
[93] 程国栋,何 平.多年冻土地区线性工程建设[J].冰川冻土,2001,23(3):213-217.
CHENG Guo-dong,HE Ping.Linearity Engineering in Permafrost Areas[J].Journal of Glaciology and Geocryology,2001,23(3):213-217.

相似文献/References:

[1]邓通发,桂勇,罗嗣海,等.降雨条件下花岗岩残坡积土路堑边坡稳定性研究[J].地球科学与环境学报,2012,34(04):88.
 DENG Tong-fa,GUI Yong,LUO Si-hai,et al.Study on Slope Stability of Granite Residual Soil Cutting Excavation with Rainfall[J].Journal of Earth Sciences and Environment,2012,34(03):88.

备注/Memo

备注/Memo:
收稿日期:2021-01-29; 修回日期:2021-04-03
基金项目:中国科学院战略性先导科技专项(A类)项目(XDA19070504); 冻土工程国家重点实验室开放基金项目(SKLFSE202014)
作者简介:牛富俊(1970-),男,甘肃会宁人,研究员,博士研究生导师,工学博士,博士后,1988~1992年在西安地质学院(现长安大学)地质勘查专业攻读学士学位,1992~1995年在西安地质学院(现长安大学)构造地质学专业攻读硕士学位,1995~1998年在西安工程学院(现长安大学)水文地质工程地质专业攻读博士学位,E-mail:niufujun@lzb.ac.cn。
更新日期/Last Update: 2021-05-01