|本期目录/Table of Contents|

[1]吴艳宏,罗朝逸,王治国,等.贡嘎山冰川退缩区土壤-植物-微生物功能多样性对磷循环的协同作用[J].地球科学与环境学报,2023,45(03):696-705.[doi:10.19814/j.jese.2022.12055]
 WU Yan-hong,LUO Chao-yi,WANG Zhi-guo,et al.Synergistic Effects of Soil-plant-microbe Functional Diversity on Phosphorus Cycling in the Glacier Retreat Area of Gongga Mountain, China[J].Journal of Earth Sciences and Environment,2023,45(03):696-705.[doi:10.19814/j.jese.2022.12055]
点击复制

贡嘎山冰川退缩区土壤-植物-微生物功能多样性对磷循环的协同作用(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第45卷
期数:
2023年第03期
页码:
696-705
栏目:
环境与可持续发展
出版日期:
2023-05-15

文章信息/Info

Title:
Synergistic Effects of Soil-plant-microbe Functional Diversity on Phosphorus Cycling in the Glacier Retreat Area of Gongga Mountain, China
文章编号:
1672-6561(2023)03-0696-10
作者:
吴艳宏1罗朝逸12王治国12祝 贺1周 俊1邴海健1
(1. 中国科学院、水利部成都山地灾害与环境研究所,四川 成都 610299; 2. 中国科学院大学,北京 100049)
Author(s):
WU Yan-hong1 LUO Chao-yi12 WANG Zhi-guo12 ZHU He1 ZHOU Jun1 BING Hai-jian1
(1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, Sichuan, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
生物地球化学 磷循环 植物-土壤反馈 养分重吸收 功能多样性 协同作用 贡嘎山
Keywords:
biogeochemistry phosphorus cycling plant-soil feedback nutrient resorption functional diversity synergism Gongga mountain
分类号:
P593
DOI:
10.19814/j.jese.2022.12055
文献标志码:
A
摘要:
对于植物和土壤微生物来说,磷是重要的生命元素。土壤磷的生物有效性随成土过程发生改变,同时植物和土壤微生物通过调整自身养分利用策略,对土壤磷循环产生影响。基于冰川退缩迹地土壤和植被原生演替序列,探讨了土壤-植物-微生物功能多样性的磷循环协同作用过程,分析了贡嘎山海螺沟冰川退缩区4次冰碛物出露时间(1980、1970、1958、1930年)退缩迹地上发育的土壤物理化学性质、磷形态和酶活性的演化规律。结果表明:①随着植被演替和土壤发育,海螺沟冰川退缩区土壤磷含量及其生物有效性发生明显改变; ②成土作用初期,微生物促进了原生矿物磷的转化,并为早期植被发育提供养分; 随着原生矿物磷释放量的减少,植物养分利用策略经历了由磷回收循环→简单获取→回收循环3个不同阶段; 另外,随着植被演替,微生物更多地参与有机磷活化,提升了植物养分重吸收效率; ③海螺沟冰川退缩区冰碛物磷的快速流失加剧了植物与微生物对磷的竞争。
Abstract:
Phosphorus is one of the important nutrient elements for plants and soil microbes. The bioavailability of soil phosphorus changes with the soil-forming process, and plants and soil microbes affect soil phosphorus cycling by adjusting their nutrient utilization strategies. The synergistic process of soil-plant-microbe functional diversity development and its impact on phosphorus cycling on the glacier retreat area were studied based on the vegetation primary succession and soil development sequence; plants, soil physicochemical properties, and enzyme activities in the glacier retreat area of Hailuogou, Gongga mountain at four moraine exposure times(1980, 1970, 1958, and 1930)were studied. The results show that ① soil phosphorus content and its bioavailability change obviously in the glacier retreat area of Hailuogou with vegetation succession and soil development. ② At the early stage of soil development, microbes promote the transformation of primary mineral phosphorus and provide nutrients for the early vegetation development; with the amount of phosphorus released from primary mineral decreasing, the plant nutrient use strategy changes at three stages from the phosphorus recycling cycle to simple acquisition, and then to recycling cycle again; with the succession of vegetation, microbes participate more in mineralizing the organic phosphorus and improve the plant reabsorption rate. ③ The rapid loss of moraine phosphorus in the glacier retreat area of Hailuogou intensifies the competition between plants and microbes for phosphorus. Rhizosphere soil phosphorus is significantly enriched at 58 years’ site, and plant phosphorus reabsorption rate reaches its peak at late-soil development.

参考文献/References:

[1] DE OLIVEIRA GARCIA W,AMANN T,HARTM-ANN J,et al.Impacts of Enhanced Weathering on Biomass Production for Negative Emission Technologies and Soil Hydrology[J].Biogeosciences,2020,17(7):2107-2133.
[2] OLDROYD G E D,LEYSER O.A Plant’s Diet,Surviving in a Variable Nutrient Environment[J].Science,2020,368:eaba0196.
[3] HU L F,ROBERT C A M,CADOT S,et al.Root Exudate Metabolites Drive Plant-soil Feedbacks on Grow-th and Defense by Shaping the Rhizosphere Microbiota[J].Nature Communications,2018,9:2738.
[4] PENG Z Y,WU Y T,GUO L L,et al.Foliar Nutrient Resorption Stoichiometry and Microbial Phosphatase Catalytic Efficiency Together Alleviate the Relative Phosphorus Limitation in Forest Ecosystems[J].New Phytologist,2023,238(3):1033-1044.
[5] SOKOL N W,SLESSAREV E,MARSCHMANN G L,et al.Life and Death in the Soil Microbiome:How Ecological Processes Influence Biogeochemistry[J].Nature Reviews Microbiology,2022,20(7):415-430.
[6] BEVER J D.Feeback Between Plants and Their Soil Communities in an Old Field Community[J].Ecology,1994,75(7):1965-1977.
[7] EHRENFELD J G,RAVIT B,ELGERSMA K.Feedback in the Plant-soil System[J].Annual Review of Environment and Resources,2005,30:75-115.
[8] BEVER J D.Soil Community Feedback and the Coexi-stence of Competitors:Conceptual Frameworks and Empirical Tests[J].New Phytologist,2003,157(3):465-473.
[9] BEVER J D,WESTOVER K M,ANTONOVICS J.Incorporating the Soil Community into Plant Population Dynamics:The Utility of the Feedback Approach[J].The Journal of Ecology,1997,85(5):561-573.
[10] FENG X H,QIN S Q,ZHANG D Y,et al.Nitrogen Input Enhances Microbial Carbon Use Efficiency by Altering Plant-microbe-mineral Interactions[J].Glo-bal Change Biology,2022,28(16):4845-4860.
[11] BERG G,SMALLA K.Plant Species and Soil Type Cooperatively Shape the Structure and Function of Microbial Communities in the Rhizosphere[J].FEMS Microbiology Ecology,2009,68(1):1-13.
[12] PHILIPPOT L,RAAIJMAKERS J M,LEMANCEAU P,et al.Going Back to the Roots:The Microbial Eco-logy of the Rhizosphere[J].Nature Reviews Microbio-logy,2013,11(11):789-799.
[13] ARNAULT G,MONY C,VANDENKOORNHUYSE P.Plant Microbiota Dysbiosis and the Anna Karenina Principle[J].Trends in Plant Science,2023,28(1):18-30.
[14] STRINGLIS I A,YU K,FEUSSNER K,et al.MYB72-dependent Coumarin Exudation Shapes Root Microbio-me Assembly to Promote Plant Health[J].PNAS,2018,115(22):E5213-E5222.
[15] WUBS E R J,BEZEMER T M.Effects of Spatial Plant-soil Feedback Heterogeneity on Plant Performance in Monocultures[J].Journal of Ecology,2016,104(2):364-376.
[16] PENDERGAST T H,BURKE D J,CARSON W P.Belowground Biotic Complexity Drives Aboveground Dynamics:A Test of the Soil Community Feedback Model[J].New Phytologist,2013,197(4):1300-1310.
[17] VERGUTZ L,MANZONI S,PORPORATO A,et al.Global Resorption Efficiencies and Concentrations of Carbon and Nutrients in Leaves of Terrestrial Plants[J].Ecological Monographs,2012,82(2):205-220.
[18] CHAPIN F S,KEDROWSKI R A.Seasonal Changes in Nitrogen and Phosphorus Fractions and Autumn Retranslocation in Evergreen and Deciduous Taiga Trees[J].Ecology,1983,64(2):376-391.
[19] BRANT A N,CHEN H Y H.Patterns and Mechanisms of Nutrient Resorption in Plants[J].Critical Reviews in Plant Sciences,2015,34(5):471-486.
[20] REVILLINI D,GEHRING C A,JOHNSON N C.The Role of Locally Adapted Mycorrhizas and Rhizobacteria in Plant-soil Feedback Systems[J].Functional Ecology,2016,30(7):1086-1098.
[21] ANGULO V,BERIOT N,GARCIA-HERNANDEZ E,et al.Plant-microbe Eco-evolutionary Dynamics in a Changing World[J].New Phytologist,2022,234(6):1919-1928.
[22] GUNDALE M J,KARDOL P.Multi-dimensionality as a Path Forward in Plant-soil Feedback Research[J].Journal of Ecology,2021,109(10):3446-3465.
[23] ZHOU L H,LIU S S,SHEN H H,et al.Soil Extracellular Enzyme Activity and Stoichiometry in China’s Forests[J].Functional Ecology,2020,34(7):1461-1471.
[24] WU Y H,ZHOU J,YU D,et al.Phosphorus Biogeochemical Cycle Research in Mountainous Ecosystems[J].Journal of Mountain Science,2013,10(1):43-53.
[25] ZHOU J,WU Y H,JORG P,et al.Changes of Soil Phosphorus Speciation Along a 120-year Soil Chronosequence in the Hailuogou Glacier Retreat Area(Gongga Mountain,SW China)[J].Geoderma,2013,195/196:251-259.
[26] WU J,HE Z L,WEI W X,et al.Quantifying Microbial Biomass Phosphorus in Acid Soils[J].Biology and Fertility of Soils,2000,32(6):500-507.
[27] SAIYA-CORK K R,SINSABAUGH R L,ZAK D R.The Effects of Long Term Nitrogen Deposition on Extracellular Enzyme Activity in an Acer Saccharum Forest Soil[J].Soil Biology and Biochemistry,2002,34(9):1309-1315.
[28] MOORHEAD D L,SINSABAUGH R L,HILL B H,et al.Vector Analysis of Ecoenzyme Activities Reveal Constraints on Coupled C,N and P Dynamics[J].Soil Biology and Biochemistry,2016,93:1-7.
[29] MOOSHAMMER M,WANEK W,ZECHMEISTER-BOLTENSTERN S,et al.Stoichiometric Imbalances Between Terrestrial Decomposer Communities and Their Resources:Mechanisms and Implications of Microbial Adaptations to Their Resources[J].Frontiers in Microbiology,2014,5:00022.
[30] DU E Z,TERRER C,PELLEGRINI A F A,et al.Global Patterns of Terrestrial Nitrogen and Phosphorus Limitation[J].Nature Geoscience,2020,13(3):221-226.
[31] MO Y X,CORLETT R T,WANG G,et al.Hemiepiphytic Figs Kill Their Host Trees:Acquiring Phosphorus Is a Driving Factor[J].New Phytologist,2022,236(2):714-728.
[32] SONG M Y,YU L,JIANG Y L,et al.Nitrogen-controlled Intra- and Interspecific Competition Between Populus Purdomii and Salix Rehderiana Drive Primary Succession in the Gongga Mountain Glacier Retreat Area[J].Tree Physiology,2017,37(6):799-814.
[33] ZHOU J,BING H,WU Y,et al.Weathering of Primary Mineral Phosphate in the Early Stages of Ecosystem Development in the Hailuogou Glacier Foreland Chronosequence[J].European Journal of Soil Science,2018,69(3):450-461.
[34] YUAN Z Y,CHEN H Y H.Global-scale Patterns of Nutrient Resorption Associated with Latitude,Temperature and Precipitation[J].Global Ecology and Biogeography,2009,18(1):11-18.
[35] 张 军.海螺沟冰川退缩区根瘤和非根瘤先锋植物生物固氮作用及生态效应研究[D].成都:中国科学院、水利部成都山地灾害与环境研究所,2020.
ZHANG Jun.Bological Nitrogen Fixation and Ecolo-gical Effects of Nodule and Non-nodule Pioneer Plants in Hailuogou Glacier Retreating Area[D].Chengdu:Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,2020.
[36] 赵小祥.冬瓜杨落叶阔叶林与峨眉冷杉常绿针叶林养分利用策略的对比研究[D].成都:中国科学院大学,2019.
ZHAO Xiao-xiang.Comparative Research on Nutrient Utilization Strategies of Populus Purdomii Deciduous Broad-leaved Forest and Abies Fabri Evergreen Coniferous Forest[D].Beijing:University of Chinese Academy of Sciences,2019.
[37] SALVAGIOTTI F,CASSMAN K G,SPECHT J E,et al.Nitrogen Uptake,Fixation and Response to Fertilizer N in Soybeans:A Review[J].Field Crops Research,2008,108(1):1-13.
[38] HUANG Y X,WU Z J,ZONG Y Y,et al.Mixing with Coniferous Tree Species Alleviates Rhizosphere Soil Phosphorus Limitation of Broad-leaved Trees in Subtropical Plantations[J].Soil Biology and Bioche-mistry,2022,175:108853.
[39] ACOSTA-MARTINEZ V,CANO A,JOHNSON J.Simultaneous Determination of Multiple Soil Enzyme Activities for Soil Health-biogeochemical Indices[J].Applied Soil Ecology,2018,126:121-128.
[40] CUI Y X,BING H J,FANG L C,et al.Extracellular Enzyme Stoichiometry Reveals the Carbon and Phosphorus Limitations of Microbial Metabolisms in the Rhizosphere and Bulk Soils in Alpine Ecosystems[J].Plant and Soil,2021,458(1/2):7-20.
[41] 何清清.贡嘎山峨眉冷杉林凋落物分解过程中磷的释放动态及影响因素[D].成都:中国科学院、水利部成都山地灾害与环境研究所,2021.
HE Qing-qing.Phosphorus Release Dynamics and Influencing Factors During Litter Decomposition of Abies Fabri Forests in Gongga Mountain[D].Chengdu:Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,2021.
[42] RICHARDSON A E,SIMPSON R J.Soil Microorga-nisms Mediating Phosphorus Availability Update on Microbial Phosphorus[J].Plant Physiology,2011,156(3):989-996.
[43] CUI Y X,BING H J,MOORHEAD D L,et al.Ecoenzymatic Stoichiometry Reveals Widespread Soil Phosphorus Limitation to Microbial Metabolism Ac-ross Chinese Forests[J].Communications Earth & Environment,2022,3(1):184.
[44] FUHLENDORF S D,ENGLE D M.Restoring Hetero-geneity on Rangelands:Ecosystem Management Ba-sed on Evolutionary Grazing Patterns[J].Bioscience,2001,51(8):625-632.
[45] MUDRAK E L,SCHAFER J L,FUENTES-RAMIREZ A,et al.Predictive Modeling of Spatial Patterns of Soil Nutrients Related to Fertility Islands[J].Landscape Ecology,2014,29(3):491-505.
[46] KOU L,WANG H M,GAO W L,et al.Nitrogen Addition Regulates Tradeoff Between Root Capture and Foliar Resorption of Nitrogen and Phosphorus in a Subtropical Pine Plantation[J].Trees:Structure and Function,2017,31(1):77-91.
[47] ZHU H,BING H J,WU Y H,et al.Low Molecular Weight Organic Acids Regulate Soil Phosphorus Availability in the Soils of Subalpine Forests,Eastern Tibetan Plateau[J].Catena,2021,203:105328.
[48] WU Y H,ZHOU J,BING H J,et al.Rapid Loss of Phosphorus During Early Pedogenesis Along a Glaci-er Retreat Choronosequence,Gongga Mountain(SW China)[J].PeerJ,2015,3:e1377.
[49] HE X L,ZHOU J,WU Y H,et al.Leaching Disturb-ed the Altitudinal Distribution of Soil Organic Phosphorus in Subalpine Coniferous Forests on Mt.Gongga,SW China[J].Geoderma,2018,326:144-155.
[50] ZHU X Y,FANG X,WANG L F,et al.Regulation of Soil Phosphorus Availability and Composition During Forest Succession in Subtropics[J].Forest Ecology and Management,2021,502:119706.
[51] JIANG Y L,LEI Y B,YANG Y,et al.Divergent Assemblage Patterns and Driving Forces for Bacterial and Fungal Communities Along a Glacier Forefield Chronosequence[J].Soil Biology and Biochemistry,2018,118:207-216.
[52] SMITH S E,JAKOBSEN I,GRONLUND M,et al.Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition:Interactions Between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Mani-pulating Plant Phosphorus Acquisition[J].Plant Phy-siology,2011,156(3):1050-1057.
[53] LUGINBUEHL L H,MENARD G N,KURUP S,et al.Fatty Acids in Arbuscular Mycorrhizal Fungi Are Synthesized by the Host Plant[J].Science,2017,356:1175-1178.

相似文献/References:

[1]李成龙,盛雪芬,鲍睿,等.陆生蜗牛文石方解石化过程及其碳同位素组成变化高温实验[J].地球科学与环境学报,2018,40(03):275.
 LI Cheng-long,SHENG Xue-fen,BAO Rui,et al.High-temperature Experiment on Transformation from Aragonite to Calcite in Land Snail Shells and Its Impact on Carbon Isotope Composition Variations[J].Journal of Earth Sciences and Environment,2018,40(03):275.
[2]周念清,吴延浩,蔡 奕*,等.湿地关键带中磷与氮、碳循环联动耦合机制[J].地球科学与环境学报,2022,44(01):91.[doi:10.19814/j.jese.2021.09015]
 ZHOU Nian-qing,WU Yan-hao,CAI Yi*,et al.Coupling Mechanism of Phosphorus and Nitrogen, Carbon Cycles in Critical Zone of Wetland[J].Journal of Earth Sciences and Environment,2022,44(03):91.[doi:10.19814/j.jese.2021.09015]

备注/Memo

备注/Memo:
收稿日期:2022-12-23; 修回日期:2023-02-01
基金项目:国家自然科学基金项目(42271064)
作者简介:吴艳宏(1969-),男,江苏靖江人,研究员,博士研究生导师,理学博士,E-mail:yhwu@imde.ac.cn。
更新日期/Last Update: 2023-05-30