|本期目录/Table of Contents|

[1]杨 丹,王黎娟*,鲍瑞娟.夏季欧亚环流的低频振荡对长江流域降水影响的多尺度诊断[J].地球科学与环境学报,2024,46(01):54-66.[doi:10.19814/j.jese.2023.08026]
 YANG Dan,WANG Li-juan*,BAO Rui-juan.Multiscale Diagnosis of the Impact of Low-frequency Oscillation of Summer Eurasian Circulation on Precipitation over Yangtze River Basin, China[J].Journal of Earth Sciences and Environment,2024,46(01):54-66.[doi:10.19814/j.jese.2023.08026]
点击复制

夏季欧亚环流的低频振荡对长江流域降水影响的多尺度诊断(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第46卷
期数:
2024年第01期
页码:
54-66
栏目:
环境与可持续发展
出版日期:
2024-01-15

文章信息/Info

Title:
Multiscale Diagnosis of the Impact of Low-frequency Oscillation of Summer Eurasian Circulation on Precipitation over Yangtze River Basin, China
文章编号:
1672-6561(2024)01-0054-13
作者:
杨 丹1234王黎娟1234*鲍瑞娟23
(1. 南京信息工程大学 气象灾害教育部重点实验室,江苏 南京 210044; 2. 福建省灾害天气重点实验室,福建 福州 350001; 3. 中国气象局海峡灾害天气重点开放实验室,福建 福州 350001; 4. 南京信息工程大学 气象灾害预报预警与评估协同创新中心,江苏 南京 210044)
Author(s):
YANG Dan1234 WANG Li-juan1234* BAO Rui-juan23
(1. Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China; 2. Fujian Key Laboratory of Severe Weather, Fuzhou 350001, Fujian, China; 3. Key Laboratory of Straits Severe Weather, China Meteorological Administration, Fuzhou 350001, Fujian, China; 4. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China)
关键词:
异常环流 夏季降水 多尺度诊断 低频振荡 传播特征 水汽通量 长江流域
Keywords:
anomalous circulation summer precipitation multiscale diagnosis low-frequency oscillation propagation feature moisture flux Yangtze River Basin
分类号:
P466
DOI:
10.19814/j.jese.2023.08026
文献标志码:
A
摘要:
长江流域夏季降水与欧亚中高纬大气低频振荡密切相关,定量诊断不同尺度环流异常对降水的贡献,对于提高旱涝灾害预测准确率具有重要意义。利用ERA5逐日再分析资料和CN05.1逐日降水资料,通过定义环流指数(CI),将夏季欧亚环流划分为两脊一槽(DR)型和两槽一脊(DT)型,并探究了其低频特征以及不同尺度环流异常对长江流域降水的影响。结果表明:两类环流型是环流指数低频循环周期中的两个不同位相,均具有10~30 d振荡周期,对长江流域低频降水有着重要影响。其主要表现为:①两类环流型对应的500 hPa低频环流场在欧亚中高纬呈现正、负位势高度异常交替的波列结构,具有明显向东传播的特征,平均传播速度约为每天5°(经度); ②当DR型达峰值位相时,850 hPa低频风场中鄂霍次克海反气旋南侧的东北风引导中高纬干冷空气向长江流域入侵,与来自南海反气旋西侧的西南气流交汇,使太平洋和南海的大量水汽向长江流域输送,低频降水正异常滞后于环流2 d达到最强,DT型的特征则与之相反; ③欧亚环流对长江流域低频降水的影响以大于30 d的背景水汽条件和10~30 d低频尺度环流的共同作用为主导,小于10 d的天气尺度环流次之,大于30 d的背景环流较前二者作用偏弱,并且水汽辐合项约为水汽平流项贡献的3倍,先由湿平流提供充足的水汽条件,再通过较强的水汽辐合产生降水。
Abstract:
The summer precipitation over Yangtze River Basin(YRB)are closely related to the low-frequency oscillations at mid-high latitude over Eurasia, so quantitatively diagnosing the contribution of the circulation anomalies at different scales to precipitation is of great significance in improving the prediction accuracy of droughts and floods. Based on ERA5 daily reanalysis data and CN05.1 daily precipitation data, a circulation index(CI)is defined to classify the summer Eurasian circulation into double-ridge(DR)type and double-trough(DT)type, and the low-frequency oscillation characteristics and the impact of different scales circulation anomalies on precipitation over YRB were investigated. The results show that DR and DT types reflect the different phases of the same low-frequency oscillation cycle of CI, which both have a dominant periodicity of 10-30 days and exert substantial influences on precipitation over YRB. The main results are as follows: ① Both two types exhibit a wave train with alternating positive and negative low-frequency height anomalies at 500 hPa over Eurasian mid-high latitude and propagates eastward at the speed of 5°(longitudes)per day; ② when DR type reaches the peak phase, the northeastern winds at 850 hPa from the north of low-frequency anticyclone over Okhotsk Sea are conducive to the invasion of dry and cold air from mid-high latitude area to YRB, which converges with the southwestern winds from the west of anticyclone over South China Sea, leading to the transportation of water vapor from South China Sea and Pacific to YRB and the strongest low-frequency precipitation lagging circulation 2 days, which is opposite to the DT type; ③ the impact of Eurasian circulation on low-frequency precipitation over YRB is dominated by the background water vapor(greater than 30 days)and low-frequency circulation(10-30 days), followed by the synoptic-scale circulation(less than 10 days)and the background circulation(greater than 30 days), respectively. The contribution of moisture convergence term is about 3 times larger than that of moisture advection term, indicating that the wet advection leads to sufficient moisture conditions, and then precipitation is produced through strong moisture convergence.

参考文献/References:

[1] XU K,LU R Y,MAO J Y,et al.Circulation Anomalies in the Mid-high Latitudes Responsible for the Extremely Hot Summer of 2018 over Northeast Asia[J].Atmospheric and Oceanic Science Letters,2019,12(4):231-237.
[2] YAO Y,ZHANG W Q,LUO D H,et al.Seasonal Cumulative Effect of Ural Blocking Episodes on the Frequent Cold Events in China During the Early Winter of 2020/21[J].Advances in Atmospheric Sciences,2022,39(4):609-624.
[3] DU Z Y,ZHOU L T,YIN X X.An Interdecadal Enhancement of Relationship Between Northwest and North China Summer Precipitation Since Early 2000[J].Theoretical and Applied Climatology,2022,150(3/4):1131-1144.
[4] 孙晓晴,金荣花,肖天贵,等.江淮梅雨季亚洲阻塞高压活动统计特征[J].气象学报,2020,78(4):580-592.
SUN Xiao-qing,JIN Rong-hua,XIAO Tian-gui,et al.Statistical Characteristics of Asian Blocking Activity During the Yangtze-Huaihe Meiyu Season[J].Acta Meteorologica Sinica,2020,78(4):580-592.
[5] YU R,ZHAI P M.Changes in Summer Persistent Pre-cipitation over the Middle-lower Reaches of the Yang-tze River and Associated Atmospheric Circulation Patterns[J].Journal of Meteorological Research,2021,35(3):393-401.
[6] CHEN Y,ZHAI P M.Synoptic-scale Precursors of the East Asia/Pacific Teleconnection Pattern Responsible for Persistent Extreme Precipitation in the Yang-tze River Valley[J].Quarterly Journal of the Royal Meteorological Society,2015,141:1389-1403.
A表示-86 400×1/g∫300p0Δ·(q^- V^-)'dp; B表示-86 400×1/g∫300p0Δ·(q^- V')'dp; C表示-86 400×1/g∫300p0Δ·(q^- V″)'dp;
D
表示-86 400×1/g∫300p0Δ·(q' V^-)'dp; E表示-86 400×1/g∫300p0Δ·(q' V')'dp; F表示-86 400×1/g∫300p0Δ·(q' V″)'dp;
G表示-86 400×1/g∫300p0Δ·(q″ V^-)'dp; H表示-86 400×1/g∫300p0Δ·(q″ V')'dp; I表示-86 400×1/g∫300p0Δ·(q″ V″)'dp
图10 长江流域区域平均整层水汽通量辐合项的贡献
Fig.
10 Contributions of Integrated Moisture Flux Convergence Terms Averaged in Yangtze River BasinA1表示-86 400×1/g∫300p0(q^- Δ·V^-)'dp; A2表示-86 400×1/g∫300p0(V^-·Δq^-)'dp; B1表示-86 400×1/g∫300p0(q^- Δ·V')'dp;
B2表示-86 400×1/g∫300p0(V'·Δq^-)'dp; C1表示-86 400×1/g∫300p0(q^- Δ·V″)'dp; C2表示-86 400×1/g∫300p0(V″·Δq^-)'dp^-)'d11 长江流域区域平均水汽辐合项和水汽平流项的贡献
Fig.11 Contributions of Moisture Convergence Terms and Moisture Advection Terms Averaged in Yangtze River Basin[7] WANG L J,WANG C,GUO D.Evolution Mechanism of Synoptic-scale EAP Teleconnection Pattern and Its Relationship to Summer Precipitation in China[J].At-mospheric Research,2018,214:150-162.
[8] 郭紫薇,王黎娟,刘丹玲.“丝绸之路”型与东亚—太平洋型遥相关的低频特征及其对江淮流域夏季降水的影响[J].地球科学与环境学报,2023,45(6):1341-1354.
GUO Zi-wei,WANG Li-juan,LIU Dan-ling.Low-frequency Characteristics of Silk-road and East Asia-Pacific Patterns and Their Effects on Summer Precipitation in Jianghuai River Basin,China[J].Journal of Earth Sciences and Environment,2023,45(6):1341-1354.
[9] YANG S Y,LI T.The Role of Intraseasonal Variabi-lity at Mid-high Latitudes in Regulating Pacific Blockings During Boreal Winter[J].International Journal of Climatology,2017,37(S1):1248-1256.
[10] MADDEN R A,JULIAN P R.Detection of a 40-50 Day Oscillation in the Zonal Wind in the Tropical Pacific[J].Journal of the Atmospheric Sciences,1971,28(5):702-708.
[11] 徐 敏,丁小俊,罗连升,等.淮河流域夏季旱涝急转的低频环流成因[J].气象学报,2013,71(1):86-95.
XU Min,DING Xiao-jun,LUO Lian-sheng,et al.A Possible Cause of the Low Frequency Circulation of Summertime Drought-flood Abrupt Alternation over the Huaihe River Basin[J].Acta Meteorologica Sinica,2013,71(1):86-95.
[12] ZHOU F,FANG Y H,SHI J,et al.Modulation of Mid-high-latitude Intraseasonal Variability on the Occurrence Frequency of Northeast China Cold Vortex in Early Summer[J].Journal of Climate,2023,36(12):4235-4253.
[13] ZHU T,YANG J.Two Types of Mid-high-latitude Low-frequency Intraseasonal Oscillations near the Ural Mountains During Boreal Summer[J].Journal of Climate,2021,34(11):4279-4296.
[14] WANG Y F,XU Y P,LEI C G,et al.Spatio-temporal Characteristics of Precipitation and Dryness/Wetness in Yangtze River Delta,Eastern China,During 1960-2012[J].Atmospheric Research,2016,172/173:196-205.
[15] CHEN J P,WEN Z P,WU R G,et al.Influences of Northward Propagating 25-90 Day and Quasi-biweekly Oscillations on Eastern China Summer Rainfall[J].Climate Dynamics,2015,45(1):105-124.
[16] 杨秋明.全球环流20~30 d振荡与长江下游强降水[J].中国科学:D辑,地球科学,2009,39(11):1515-1529.
YANG Qiu-ming.The 20-30-day Oscillation of the Global Circulation and Heavy Precipitation over the Lower Reaches of the Yangtze River Valley[J].Scien-ce in China:Series D,Earth Sciences,2009,39(11):1515-1529.
[17] 王黎娟,庞 玥,于 波,等.江淮流域梅雨期持续性强降水及其10~30 d低频环流特征[J].热带气象学报,2014,30(5):851-860.
WANG Li-juan,PANG Yue,YU Bo,et al.The Cha-racteristics of Persistent Heavy Rain Events and 10-30 Day Low-frequency Circulation in Yangtze-Huaihe River Basin During Meiyu Period[J].Journal of Tro-pical Meteorology,2014,30(5):851-860.
[18] HERSBACH H,BELL B,BERRISFORD P,et al.The ERA5 Global Reanalysis[J].Quarterly Journal of the Royal Meteorological Society,2020,146:1999-2049.
[19] 吴 佳,高学杰.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报,2013,56(4):1102-1111.
WU Jia,GAO Xue-jie.A Gridded Daily Observation Dataset over China Region and Comparison with the Other Datasets[J].Chinese Journal of Geophysics,2013,56(4):1102-1111.
[20] 潘 婕,王盘兴,纪立人.夏季欧亚中高纬持续流型特征Ⅰ:流型指数与持续流型[J].气象科学,2004,24(2):127-136.
PAN Jie,WANG Pan-xing,JI Li-ren.Study on the Summertime Persistent Circulation Pattern Features over Asian-European Mid-high Latitude PartⅠ:Circulation Pattern Index and Persistent Circulation Pattern[J].Scientia Meteorologica Sinica,2004,24(2):127-136.
[21] TORRENCE C,COMPO G P.A Practical Guide to Wavelet Analysis[J].Bulletin of the American Meteo-rological Society,1998,79(1):61-78.
[22] DUCHON C E.Lanczos Filtering in One and Two Dimensions[J].Journal of Applied Meteorology,1979,18(8):1016-1022.
[23] 魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.
WEI Feng-ying.The Statistical Diagnosis and Prediction Techniques of Modern Climatology[M].Beijing:China Meteorological Press,2007.
[24] HSU P C,XIE J H,LEE J Y,et al.Multiscale Intera-ctions Driving the Devastaing Floods in Henan Pro-vince,China During July 2021[J].Weather and Climate Extremes,2023,39:100541.
[25] JIANG X N,LI T,WANG B.Structures and Mechanisms of the Northward Propagating Boreal Summer Intraseasonal Oscillation[J].Journal of Climate,2004,17(5):1022-1039.
[26] YANG D,WANG L J.The Summertime Circulation Types over Eurasia and Their Connections with the North Atlantic Oscillation Modulated by North Atlan-tic SST[J].Atmosphere,2022,13(12):2093.

相似文献/References:

[1]郭紫薇,王黎娟*,刘丹玲.“丝绸之路”型与东亚—太平洋型遥相关的低频特征及其对江淮流域夏季降水的影响[J].地球科学与环境学报,2023,45(06):1341.[doi:10.19814/j.jese.2023.05040]
 GUO Zi-wei,WANG Li-juan*,LIU Dan-ling.Low-frequency Characteristics of Silk-road and East Asia-Pacific Patterns and Their Effects on Summer Precipitation in Jianghuai River Basin, China[J].Journal of Earth Sciences and Environment,2023,45(01):1341.[doi:10.19814/j.jese.2023.05040]

备注/Memo

备注/Memo:
收稿日期:2023-08-18; 修回日期:2023-11-28投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(41975085); 福建省灾害天气重点实验室/中国气象局海峡灾害天气重点开放实验室开放课题(2023KFKT01)
作者简介:杨 丹(1999-),女,内蒙古呼和浩特人,南京信息工程大学理学硕士研究生,E-mail:gretadan@163.com。
*通信作者:王黎娟(1970-),女,湖北恩施人,南京信息工程大学教授,博士研究生导师,理学博士,E-mail:wljfw@163.com。
更新日期/Last Update: 2024-01-25