|Table of Contents|

Lithology and Structure of Ground Substrate and Cover Features of Woody and Herbaceous Plant in Weibei Dry Belt of the Middle Yellow River, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2025年第04期
Page:
765-779
Research Field:
黄河流域生态保护和高质量发展专刊(下)
Publishing date:

Info

Title:
Lithology and Structure of Ground Substrate and Cover Features of Woody and Herbaceous Plant in Weibei Dry Belt of the Middle Yellow River, China
Author(s):
LI Xin-bin12*YIN Zhi-qiang3KANG Cheng-xin12XI Jun-sheng12ZHAO Hao12ZHANG Yao12ZHAO Zi-hao12
(1. Xi'an Mineral Resources Survey, China Geological Survey, Xi'an 710100, Shaanxi, China; 2. Qinling-Loess Plateau Transition Zone Observation and Research Station for Coupling of Soil and Water Elements and Conservation of Biological Resources, Tongguan 714300, Shaanxi, China; 3. Natural Resources Survey, China Geological Survey, Beijing 100055, China)
Keywords:
ground substrate lithology and structure soil fracture density vegetation coverage normalized difference vegetation index net primary productivity Yellow River
PACS:
P66
DOI:
10.19814/j.jese.2025.01051
Abstract:
It is of great significance to explore the coupling relationship between the ground substrate and vegetation coverage, and to grasp the heterogeneity characteristics of different lithology and structure of the ground substrate as well as their constraints on vegetation growth for implementing targeted ecological restoration measures and enhancing the effectiveness of vegetation restoration. Based on comprehensive surveys of ground substrate profiles and vegetation ecological quadrats, the heterogeneous characteristics of lithology and structure of ground substrate and their relationships with overlying vegetation community structure and root architecture in Hancheng area of Shaanxi, which is typical in Weibei dry belt of the middle Yellow River, were analyzed; combined with time-series of vegetation ecological indices, the constraining effects of the heterogeneity of lithology and structure of ground substrate on vegetation ecology were explored. The results show that the soil genetic layers in argillaceous rock, clastic rock interbedded with argillaceous rock, alluvial-proluvial sand, and clastic rock ground substrates are structurally intact and thick, vegetation coverage exceeds 80%, and the multi-year average annual net primary production(NPP)from 2000 to 2023 is 378.01-430.77 kg C·m-2·a-1, indicating relatively high level; however, differences in vegetation community structure are observed due to variations in pore, fracture and depth; in carbonate rock, alluvial-proluvial gravel, and granite gneiss ground substrates, the vegetation coverage is less than 50%, and the multi-year average annual NPP is relatively low(156.21-320.04 kg C·m-2·a-1); the granite gneiss ground substrate exhibits excessively developed fractures(the average fracture density is 4.73 m·m-2), and the multi-year average annual NPP(156.2 kg C·m-2·a-1)is primarily contributed by sparsely distributed deep-rooted trees, resulting in the lowest level; in the aeolian loess ground substrate, although the soil layer is thick, the water and nutrient retention capacities are weak due to well-developed vertical joints; the surface is predominantly covered by shrubs and herbaceous plants, with sporadic deep-rooted drought-resistant trees, and the multi-year average annual NPP(378.29 kg C·m-2·a-1)is at a moderate level; a highly significant positive correlation is found between vegetation coverage and the thickness of surface soil of ground substrate(p<0.01), and a significant positive correlation is also observed between vegetation coverage and the density of fissures with a width greater than 1 mm(p<0.05). In general, the lithology and structure of ground substrate(such as material composition, spatial structure and pore fractures)determine the growth and NPP level of the forest and grass on the surface of Weibei dry belt by affecting the growth of vegetation roots and water absorption.

References:

[1] 自然资源部.地表基质分类方案(试行)[R].北京:自然资源部,2020.
Ministry of Natural Resources.Issuance of the Ground Substrate Classification Scheme(Trial)[R].Beijing:Ministry of Natural Resources,2020.
[2] 殷志强,秦小光,张蜀冀,等.地表基质分类及调查初步研究[J].水文地质工程地质,2020,47(6):8-14.
YIN Zhi-qiang,QIN Xiao-guang,ZHANG Shu-ji,et al.Preliminary Study on Classification and Investigation of Surface Substrate[J].Hydrogeology & Engineering Geology,2020,47(6):8-14.
[3] 郝爱兵,殷志强,李洪宇,等.地表基质的科学内涵与理论框架[J].地质学报,2024,98(11):3225-3237.
HAO Ai-bing,YIN Zhi-qiang,LI Hong-yu,et al.The Scientific Connotation and Theoretical Framework of Ground Substrate[J].Acta Geologica Sinica,2024,98(11):3225-3237.
[4] 殷志强,陈自然,李 霞,等.地表基质综合调查:内涵、分层、填图与支撑目标[J].水文地质工程地质,2023,50(1):144-151.
YIN Zhi-qiang,CHEN Zi-ran,LI Xia,et al.Connotation,Layering,Mapping and Supporting Objectives of the Integrated Survey of Ground Substrates[J].Hy-drogeology & Engineering Geology,2023,50(1):144-151.
[5] LUO Z B,FAN J,SHAO M A,et al.Weathered Bedrock Converts Hydrological Processes in Loess Hilly-gully Critical Zone[J].Journal of Hydrology,2023,625:130112.
[6] BANWART S A,CHORVER J,GAILLARDET G,et al.Sustaining Earth's Critical Zone:Basic Science and Interdisciplinary Solutions for Global Challenges[R].Sheffield:The University of Sheffield,2013.
[7] RICHTER JR D D,MOBLEY M L.Monitoring Ear-th's Critical Zone[J].Science,2009,326:1067-1068.
[8] 刘玖芬,赵晓峰,侯红星,等.地表基质调查分层及分层测试指标体系设计与构建[J].岩矿测试,2024,43(1):16-29.
LIU Jiu-fen,ZHAO Xiao-feng,HOU Hong-xing,et al.Exploration on the Stratification of the Ground Substrate Survey and the Design and Construction of Its Testing Indicator System[J].Rock and Mineral Analysis,2024,43(1):16-29.
[9] 袁国礼,侯红星,刘建宇,等.服务生态文明的生态地质调查工作方法浅析:以地表基质调查为例[J].西北地质,2023,56(3):30-38.
YUAN Guo-li,HOU Hong-xing,LIU Jian-yu,et al.Introduction to the Methods of Ecology-geological Survey for Servicing Ecological Civilization:Example from Ecology-supporting Sphere Survey[J].Northwestern Geology,2023,56(3):30-38.
[10] 张凤荣.论地表基质层重点调查内容和优先调查区域[J].中国土地,2023(2):40-41.
ZHANG Feng-rong.Discuss the Key Investigation Contents and Priority Investigation Areas of Ground Substrate Layer[J].China Land,2023(2):40-41.
[11] HOU X Y,WU T,YU L J,et al.Characteristics of Multi-temporal Scale Variation of Vegetation Coverage in the Circum Bohai Bay Region,1999-2009[J].Acta Ecologica Sinica,2012,32(6):297-304.
[12] 王宣宣,刘 欢,胡 鹏,等.水文生态功能稳定视角下的西辽河流域植被格局优化分析[J].环境科学,2025,DOI: 10.13227/j.hjkx.202501234.
WANG Xuan-xuan,LIU Huan,HU Peng,et al.Optimization Analysis of Vegetation Pattern in the Xiliao River Basin from the Perspective of Hydrological and Ecological Function Stability[J].Environmental Science,2025,DOI: 10.13227/j.hjkx.202501234.
[13] 刘 艳,吕 阳,杨婷婷.渭北旱腰带近60年气候变化及其对农作物的影响[J].陕西气象,2023(5):37-42.
LIU Yan,LYU Yang,YANG Ting-ting.Climate Chan-ge and Its Impact on Crops in Weibei Dry Belt in Recent 60 Years[J].Journal of Shaanxi Meteorology,2023(5):37-42.
[14] FAN B H,LIU X B,ZHU Q,et al.Exploring the Interplay Between Infiltration Dynamics and Critical Zone Structures with Multiscale Geophysical Imag-ing:A Review[J].Geoderma,2020,374:114431.
[15] 金晶炜,苏纪帅,白 于,等.渭北旱塬区土壤质量对人工植被恢复模式的响应[J].草地学报,2014,22(4):737-742.
JIN Jing-wei,SU Ji-shuai,BAI Yu,et al.Response of Soil Quality to Artificial Vegetation Restoration Patterns in the Arid Area of Northern Weihe River Basin[J].Acta Agrestia Sinica,2014,22(4):737-742.
[16] 刘 林,芮会超.渭河盆地结构特征及演化研究[J].地质力学学报,2018,24(1):60-69.
LIU Lin,RUI Hui-chao.Exploration on Structural Characteristics of the Weihe Basin and Its Evolution[J].Journal of Geomechanics,2018,24(1):60-69.
[17] CALLAHAN R P,RIEBE C S,SKLAR L S,et al.Forest Vulnerability to Drought Controlled by Bedro-ck Composition[J].Nature Geoscience,2022,15(9):714-719.
[18] HAHM W J,DRALLE D N,LAPIDES D A,et al.Geologic Controls on Apparent Root-zone Storage Capacity[J].Water Resources Research,2024,60(3):e2023WR035362.
[19] 李宝峰.渭北黄土高原沟壑区困难立地生态防护林恢复营建综合造林技术[J].陕西林业科技,2013,41(4):44-47.
LI Bao-feng.Integrated Technologies on Eco-protective Forest Establishment in the Difficult Site of Loess Plateau[J].Shaanxi Forest Science and Techno-logy,2013,41(4):44-47.
[20] 王小钊,杨柳晨,李昭辰.渭北隆起中—新生代构造特征及演化分析[J].陕西地质,2019,37(1):58-62.
WANG Xiao-zhao,YANG Liu-chen,LI Zhao-chen.Mesozoic-Cenozoic Tectonic Characteristics and Evolution Analysis of the Weibei Uplift[J].Geology of Shaanxi,2019,37(1):58-62.
[21] 熊向阳.渭北旱塬沟壑区抗旱造林综合技术[J].陕西林业科技,2020,48(4):113-116.
XIONG Xiang-yang.Comprehensive Technology for Drought Resistant Afforestation in Weibei Gully Dry-land[J].Shaanxi Forest Science and Technology,2020,48(4):113-116.
[22] BEVEN K,GERMANN P.Macropores and Water Fl-ow in Soils Revisited[J].Water Resources Research,2013,49(6):3071-3092.
[23] FATICHI S,OR D,WALKO R,et al.Soil Structure Is an Important Omission in Earth System Models[J].Nature Communications,2020,11:522.
[24] BONETTI S,WEI Z W,OR D.A Framework for Quantifying Hydrologic Effects of Soil Structure Across Scales[J].Communications Earth & Environment,2021,2:107.
[25] RUSSELL D G,KESSLER A J,WONG W W,et al.Constraining Nitrogen Sources to a Seagrass-dominated Coastal Embayment by Using an Isotope Mass Balance Approach[J].Marine and Freshwater Research,2022,73(5):703-709.
[26] 刘金涛,韩小乐,刘建立,等.山坡表层关键带结构与水文连通性研究进展[J].水科学进展,2019,30(1):112-122.
LIU Jin-tao,HAN Xiao-le,LIU Jian-li,et al.Understanding of Critical Zone Structures and Hydrological Connectivity:A Review[J].Advances in Water Scien-ce,2019,30(1):112-122.
[27] 刘金涛,韩小乐,陈 喜.山坡表层关键带结构与水文过程[M].北京:科学出版社,2020.
LIU Jin-tao,HAN Xiao-le,CHEN Xi.Hillslope Critical Zone Structures and Hydrological Processes[M].Beijing:Science Press,2020.
[28] 刘鸿雁,蒋子涵,戴景钰,等.岩石裂隙决定喀斯特关键带地表木本与草本植物覆盖[J].中国科学:地球科学,2019,49(12):1974-1981.
LIU Hong-yan,JIANG Zi-han,DAI Jing-yu,et al.Rock Crevices Determine Woody and Herbaceous Plant Cover in the Karst Critical Zone[J].Science China:Earth Sciences,2019,49(12):1974-1981.
[29] 李小雁,马育军.地球关键带科学与水文土壤学研究进展[J].北京师范大学学报(自然科学版),2016,52(6):731-737.
LI Xiao-yan,MA Yu-jun.Advances in Earth's Critical Zone Science and Hydropedology[J].Journal of Beijing Normal University(Natural Science),2016,52(6):731-737.
[30] CHOROVER J,TROCH P A,RASMUSSEN C,et al.How Water,Carbon,and Energy Drive Critical Zone Evolution:The Jemez-Santa Catalina Critical Zone Observatory[J].Vadose Zone Journal,2011,10(3):884-899.
[31] KOU X M,ZHAO Z Z,DUAN L,et al.Hydrogeochemical Behavior of Shallow Groundwater Around Hancheng Mining Area,Guanzhong Basin,China[J].Water,2024,16(5):660.
[32] 黄智群,赵 云,武建超,等.渭北旱腰带困难立地生态修复技术[J].特种经济动植物,2024,27(2):172-174.
HUANG Zhi-qun,ZHAO Yun,WU Jian-chao,et al.Ecological Restoration Techniques for Challenging Si-tes in the Weibei Dry Belt[J].Special Economic Animals and Plants,2024,27(2):172-174.
[33] 扈桂让,李自红,闫小兵,等.韩城断裂晚第四纪活动性研究[J].地震地质,2017,39(1):206-217.
HU Gui-rang,LI Zi-hong,YAN Xiao-bing,et al.The Study of Late Quaternary Activity of Hancheng Fault[J].Seismology and Geology,2017,39(1):206-217.
[34] 范增睿,王 健.韩城市澽水河治理及生态护岸设计研究[J].水利规划与设计,2022(3):83-88.
FAN Zeng-rui,WANG Jian.Study on River Regulation and Ecological Revetment Design of Jushui River in Hancheng City[J].Water Resources Planning and Design,2022(3):83-88.
[35] 董金玮,周 岩,尤南山,等.2000~2022年中国30米年最大NDVI数据集[DS/OL].北京:国家生态科学数据中心,2021,DOI:10.12199/nesdc.ecodb.rs.2021.012.
DONG Jin-wei,ZHOU Yan,YOU Nan-shan,et al.The Largest 30-year NDVI Data Set in China from 2000 to 2020[DS/OL].Beijing:National Ecosystem Science Data Center,2021,DOI:10.12199/nesdc.ecodb.rs.2021.012.
[36] RUNNING S,ZHAO M.MODIS/Terra Net Primary Production Gap-filled Yearly L4 Global 500 m SIN Grid V061[DS/OL].Washington DC:NASA,2021,DOI:10.5067/MODIS/MOD17A3HGF.061.
[37] 席本野,贾黎明,刘 寅,等.宽窄行栽植模式下三倍体毛白杨吸水根系的空间分布与模拟[J].浙江林学院学报,2010,27(2):259-265.
XI Ben-ye,JIA Li-ming,LIU Yin,et al.Spatial Distribution and Simulation for Fine Roots of Triploid Po-pulus Tomentosa with Wide and Narrow Row Spacing[J].Journal of Zhejiang Forestry College,2010,27(2):259-265.
[38] SCHULTZ J.The Ecozones of the World:The Ecological Divisions of the Geosphere[J].Berlin:Springer,1995.
[39] 施俊法,吴林强,王 泉,等.地质科学新思维观与新时代地质工作战略思考[J].中国地质,2024,51(2):547-560.
SHI Jun-fa,WU Lin-qiang,WANG Quan,et al.New Perspectives on Geological Science and Strategic Th-inking on Geological Work in the New Era[J].Geo-logy in China,2024,51(2):547-560.
[40] VALLADARES F,BASTIAS C C,GODOY O,et al.Species Coexistence in a Changing World[J].Frontiers in Plant Science,2015,6:866.
[41] DING W N,REE R H,SPICER R A,et al.Ancient Orogenic and Monsoon-driven Assembly of the Wor-ld's Richest Temperate Alpine Flora[J].Science,2020,369:578-581.
[42] 肖春蕾,聂洪峰,刘建宇,等.生态-地质作用模式:诠释表生地质过程与生态特征的耦合[J].中国地质调查,2021,8(6):9-24.
XIAO Chun-lei,NIE Hong-feng,LIU Jian-yu,et al.Ecological and Geological Interaction Model:The Coupling of Supergene Geological Processes and Ecological Characteristics[J].Geological Survey of China,2021,8(6):9-24.
[43] NIE W,GUO H Y,BANWART S A.Economic Va-luation of Earth's Critical Zone:Framework,Theory and Methods[J].Environmental Development,2021,40:100654.
[44] BRISTOL R S,EULISS JR N H,BOOTH N L,et al.Science Strategy for Core Science Systems in the US Geological Survey,2013-2023[R].Reston:USGS,2012.
[45] 国振杰,易 津,张力君,等.海拔高度对羊草生物量和根茎形态可塑性的影响[J].干旱区资源与环境,2008,22(4):175-180.
GUO Zhen-jie,YI Jin,ZHANG Li-jun,et al.Effect of Different Altitude on Biomass and Rhizomatous Morphological Plasticity of Leymus chinensis[J].Journal of Arid Land Resources and Environment,2008,22(4):175-180.
[46] 嵇晓雷,杨 平.夹竹桃根系分枝角度对边坡稳定性影响[J].生态环境学报,2012,21(12):1966-1970.
JI Xiao-lei,YANG Ping.The Effects of Roots Angles of Nerium Indicum on the Stability of Slopes[J].Ecology and Environmental Sciences,2012,21(12):1966-1970.
[47] 韩烈保,王 琼,王晓蓓,等.不同立地条件下荆条根系分布规律[J].应用基础与工程科学学报,2009,17(2):231-237.
HAN Lie-bao,WANG Qiong,WANG Xiao-bei,et al.Researches on Root Distribution of Vitex Negundo Var.Heterophylla(Franch.)Rehd.on Different Si-tes Conditions[J].Journal of Basic Science and Engineering,2009,17(2):231-237.
[48] SCHENK H J,JACKSON R B.Mapping the Global Distribution of Deep Roots in Relation to Climate and Soil Characteristics[J].Geoderma,2005,126(1/2):129-140.
[49] CHEN L D,WEI W,FU B J,et al.Soil and Water Conservation on the Loess Plateau in China:Review and Perspective[J].Progress in Physical Geography,2007,31(4):389-403.
[50] 陈洪松,邵明安.黄土区坡地土壤水分运动与转化机理研究进展[J].水科学进展,2003,14(4):413-420.
CHEN Hong-song,SHAO Ming-an.Review on Hillslope Soil Water Movement and Transformation Me-chanism on the Loess Plateau[J].Advances in Water Science,2003,14(4):413-420.
[51] 徐学选,张北赢,田均良.黄土丘陵区降水-土壤水-地下水转化实验研究[J].水科学进展,2010,21(1):16-22.
XU Xue-xuan,ZHANG Bei-ying,TIAN Jun-liang.Experimental Study on the Precipitation-soil Water-groundwater Transformation in Loess Hilly Region[J].Advances in Water Science,2010,21(1):16-22.
[52] 张玉平.陕西渭北、陕北石炭二叠纪煤系共伴生高岭岩赋存规律及利用方向[J].中国煤田地质,2007,19(1):22-25.
ZHANG Yu-ping.Hosting Pattern and Utilization of Coal Measures Associated Kaolin in Weibei and Nor-thern Shaanxi Permo-Carboniferous Coalfields[J].Coal Geology of China,2007,19(1):22-25.
[53] 王党国,祝国柱.陕西省铝土矿地质特征及成矿规律[J].陕西地质,2011,29(2):33-40.
WANG Dang-guo,ZHU Guo-zhu.Geology and Meta-llogenesis of Bauxite in Shaanxi Province[J].Geology of Shaanxi,2011,29(2):33-40.
[54] ZHU X R,LIU H Y,WU L,et al.Impact of Bedrock Geochemistry on Vegetation Productivity Depends on Climate Dryness in the Guizhou Karst of China[J].Progress in Physical Geography:Earth and Environment,2021,45(1):20-32.
[55] RICHTER D D,BILLINGS S A.“One Physical Sys-tem”:Tansley's Ecosystem as Earth's Critical Zone[J].New Phytologist,2015,206(3):900-912.
[56] REMPE D M,DIETRICH W E.A Bottom-up Control on Fresh Bedrock Topography Under Landscapes[J].PNAS,2014,111(18):6576-6581.
[57] REMPE D M,DIETRICH W E.Direct Observations of Rock Moisture,a Hidden Component of the Hy-drologic Cycle[J].PNAS,2018,115(11):2664-2669.
[58] HAHM W J,RIEBE C S,LUKENS C E,et al.Bedrock Composition Regulates Mountain Ecosystems and Landscape Evolution[J].PNAS,2014,111(9):3338-3343.
[59] 卢全中,彭建兵,陈志新,等.黄土高原地区黄土裂隙发育特征及其规律研究[J].水土保持学报,2005,19(5):193-196.
LU Quan-zhong,PENG Jian-bing,CHEN Zhi-xin,et al.Research on Characteristics of Cracks and Fissures of Loess and Their Distribution in Loess Plateau of China[J].Journal of Soil and Water Conservation,2005,19(5):193-196.
[60] SHAO M A,WANG Y Q,XIA Y Q,et al.Soil Dr-ought and Water Carrying Capacity for Vegetation in the Critical Zone of the Loess Plateau:A Review[J].Vadose Zone Journal,2018,17(1):1-8.
[61] WANG S,FU B J,PIAO S L,et al.Reduced Sediment Transport in the Yellow River Due to Anthropogenic Changes[J].Nature Geoscience,2016,9:38-41.
[62] 骆占斌,樊 军,邵明安.地球关键带基岩风化层生态水文研究进展[J].科学通报,2022,67(27):3311-3323.
LUO Zhan-bin,FAN Jun,SHAO Ming-an.Progresses of Weathered Bedrock Ecohydrology in the Earth's Critical Zone[J].Chinese Science Bulletin,2022,67(27):3311-3323.
[63] 傅伯杰,刘彦随,曹 智,等.黄土高原生态保护和高质量发展现状、问题与建议[J].中国科学院院刊,2023,38(8):1110-1117.
FU Bo-jie,LIU Yan-sui,CAO Zhi,et al.Current Conditions,Issues,and Suggestions for Ecological Protection and High-quality Development in Loess Plateau[J].Bulletin of Chinese Academy of Sciences,2023,38(8):1110-1117.
[64] 彭建兵,申艳军,金 钊,等.秦岭生态地质环境系统研究关键思考[J].生态学报,2023,43(11):4344-4358.
PENG Jian-bing,SHEN Yan-jun,JIN Zhao,et al.Key Thoughts on the Study of Eco-geological Environment System in Qinling Mountains[J].Acta Ecologica Sinica,2023,43(11):4344-4358.
[65] 彭建兵,兰恒星.略论生态地质学与生态地质环境系统[J].地球科学与环境学报,2022,44(6):877-893.
PENG Jian-bing,LAN Heng-xing.Ecological Geology and Eco-geological Environment System[J].Journal of Earth Sciences and Environment,2022,44(6):877-893.

Memo

Memo:
-
Last Update: 2025-07-25