|Table of Contents|

Runoff Nitrogen and Phosphorus Output Load and Water Source Analysis in Forest Small Watersheds on Loess Plateau, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2025年第04期
Page:
794-805
Research Field:
黄河流域生态保护和高质量发展专刊(下)
Publishing date:

Info

Title:
Runoff Nitrogen and Phosphorus Output Load and Water Source Analysis in Forest Small Watersheds on Loess Plateau, China
Author(s):
XU Guo-ce1*ZHANG Teng-fei1PU Yi-fan2LI Jing1GU Feng-you1WANG Bin1
(1. State Key Laboratory of Water Engineering Ecology and Environment in Arid Area, Xi'an University of Technology, Xi'an 710048, Shaanxi, China; 2. PowerChina Eco-environmental Group Co., Ltd., Shenzhen 518102, Guangdong, China)
Keywords:
loss of nitrogen and phosphorus streamflow component total nitrogen total phosphorus multiple linear regression model water source analysis end-member mixed model Loess Plateau
PACS:
P343.1; X522
DOI:
10.19814/j.jese.2024.10009
Abstract:
Vegetation restoration on Loess Plateau changes the eco-hydrological processes in the basin, which has a great impact on the nitrogen and phosphorus output load in the individual rainfall event. Nanyukou forest small watershed in Huangling area of Shaanxi was taken as the research object; based on the water quality and hydrogen stable isotope monitoring data of different water bodies under three rainfall events(moderate rain, heavy rain and rainstorm), the nitrogen and phosphorus output load of the watershed under different rainfall events were analyzed by end-member mixed model and multiple linear regression model; and the effects of different runoff sources on the loss of nitrogen and phosphorus were determined. The results show that the total nitrogen(TN)outputs are 12.90, 110.95 and 208.01 kg under moderate rain, heavy rain and rainstorm events, respectively; the total phosphorus(TP)outputs are 0.43, 2.15 and 6.35 kg under moderate rain, heavy rain and rainstorm events, respectively; the contribution ratio and contribution of pre-event water(pre-basin water storage)to the total river flow are 90.05% and 7 688 m3 under moderate rain event, 64.80% and 20 929 m3 under heavy rain event, and 69.48% and 49 794 m3 under rainstorm event, respectively; and the contribution ratio and contribution of event water(rain water)to the total river flow are 9.95% and 849 m3 under moderate rain event, 35.20% and 11 347 m3 under heavy rain event, and 30.52% and 21 871 m3 under rainstorm event, respectively; the determination coefficient of the multiple linear regression model built is above 0.8, demonstrating good simulation accuracy; under individual rainfall event, runoff sources are found to effectively characterize the impacts of leaching and scouring processes on the loss of nitrogen and phosphorus.

References:

[1] 宁 珍,高光耀,傅伯杰.黄土高原流域水沙变化研究进展[J].生态学报,2020,40(1):2-9.
NING Zhen,GAO Guang-yao,FU Bo-jie.Changes in Streamflow and Sediment Load in the Catchments of the Loess Plateau,China:A Review[J].Acta Ecologica Sinica,2020,40(1):2-9.
[2] LI C H,SHI W H,HUANG M B.Effects of Crop Rotation and Topography on Soil Erosion and Nutrient Loss Under Natural Rainfall Conditions on the Chinese Loess Plateau[J].Land,2023,12(2):265.
[3] 张宝庆,田 磊,赵西宁,等.植被恢复对黄土高原局地降水的反馈效应研究[J].中国科学:地球科学,2021,51(7):1080-1091.
ZHANG Bao-qing,TIAN Lei,ZHAO Xi-ning,et al.Feedbacks Between Vegetation Restoration and Local Precipitation over the Loess Plateau in China[J].Science China:Earth Sciences,2021,51(7):1080-1091.
[4] DONG L B,LI J W,ZHANG Y,et al.Effects of Ve-getation Restoration Types on Soil Nutrients and Soil Erodibility Regulated by Slope Positions on the Loess Plateau[J].Journal of Environmental Management,2022,302:113985.
[5] 李宗善,杨 磊,王国梁,等.黄土高原水土流失治理现状、问题及对策[J].生态学报,2019,39(20):7398-7409.
LI Zong-shan,YANG Lei,WANG Guo-liang,et al.The Management of Soil and Water Conservation in the Loess Plateau of China:Present Situations,Pro-blems,and Counter-solutions[J].Acta Ecologica Sinica,2019,39(20):7398-7409.
[6] 张靖坤,刘 飞,邹嘉文,等.华北平原典型压采区地下水循环的氢氧同位素示踪[J].南水北调与水利科技,2022,20(2):385-392.
ZHANG Jing-kun,LIU Fei,ZOU Jia-wen,et al.Application of Hydrogen and Oxygen Isotopes to Trace Groundwater Circulation in a Typical Groundwater Exploitation Reduction Area,North China Plain[J].South-to-north Water Transfers and Water Science & Technology,2022,20(2):385-392.
[7] 马天文,徐国策,赵超志,等.基于氢氧稳定同位素示踪的秦岭森林小流域径流水源解析[J].地球科学与环境学报,2022,44(3):545-557.
MA Tian-wen,XU Guo-ce,ZHAO Chao-zhi,et al.Water Source Analysis of Runoff in Qinling Forest Small Watershed,China Based on H-O Stable Isotope Tracing[J].Journal of Earth Sciences and Environment,2022,44(3):545-557.
[8] 周思捷,孙从建,陈 伟,等.黄土高原东部夏半年降水稳定同位素特征及水汽来源分析[J].地理学报,2022,77(7):1745-1761.
ZHOU Si-jie,SUN Cong-jian,CHEN Wei,et al.Precipitation Isotope Characteristics and Water Vapor Sources in Summer in Eastern Loess Plateau[J].Acta Geographica Sinica,2022,77(7):1745-1761.
[9] 郭亚文,田富强,胡宏昌,等.南小河沟流域地表水和地下水的稳定同位素和水化学特征及其指示意义[J].环境科学,2020,41(2):682-690.
GUO Ya-wen,TIAN Fu-qiang,HU Hong-chang,et al.Characteristics and Significance of Stable Isotopes and Hydrochemistry in Surface Water and Groundwater in Nanxiaohegou Basin[J].Environmental Science,2020,41(2):682-690.
[10] DUAN W L,HE B,NOVER D,et al.Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods[J].Sustainability,2016,8(2):133.
[11] LI Z Y,FANG H Y.Impacts of Climate Change on Water Erosion:A Review[J].Earth-science Reviews,2016,163:94-117.
[12] WANG D Y,LI Z W,LI Z W,et al.Response of Organic Carbon in Drainage Ditch Water to Rainfall Events in Zoige Basin in the Qinghai-Tibet Plateau[J].Journal of Hydrology,2019,579:124187.
[13] GB/T 28592—2012,降水量等级[S].
GB/T 28592—2012,Grade of Precipitation[S].
[14] 邓文平,余新晓,贾国栋,等.北京西山鹫峰地区氢氧稳定同位素特征分析[J].水科学进展,2013,24(5):642-650.
DENG Wen-ping,YU Xin-xiao,JIA Guo-dong,et al.An Analysis of Characteristics of Hydrogen and Oxygen Stable Isotopes in Jiufeng Mountain Areas of Beijing[J].Advances in Water Science,2013,24(5):642-650.
[15] 潘 钊,孙自永,马 瑞,等.黑河上游高寒山区降雨-径流形成过程的同位素示踪[J].地球科学,2018,43(11):4226-4236.
PAN Zhao,SUN Zi-yong,MA Rui,et al.Isotopic Investigation of Rainfall-runoff Generation in an Alpine Catchment in Headwater Regions of Heihe River,Northeast Qinghai-Tibet Plateau[J].Earth Science,2018,43(11):4226-4236.
[16] VON FREYBERG J,STUDER B,KIRCHNER J W.A Lab in the Field:High-frequency Analysis of Water Quality and Stable Isotopes in Stream Water and Precipitation[J].Hydrology and Earth System Sciences,2017,21(3):1721-1739.
[17] 杜展鹏,王明净,严长安,等.基于绝对主成分-多元线性回归的滇池污染源解析[J].环境科学学报,2020,40(3):1130-1137.
DU Zhan-peng,WANG Ming-jing,YAN Chang-an,et al.Pollution Source Apportionment of Lake Dianchi Based on Absolute Principal Component Score-multiple Linear Regression[J].Acta Scientiae Circumstantiae,2020,40(3):1130-1137.
[18] 汪少勇,王巧丽,吴锦奎,等.长江源区降水氢氧稳定同位素特征及水汽来源[J].环境科学,2019,40(6):2615-2623.
WANG Shao-yong,WANG Qiao-li,WU Jin-kui,et al.Characteristics of Stable Isotopes in Precipitation and Moisture Sources in the Headwaters of the Yangtze River[J].Environmental Science,2019,40(6):2615-2623.
[19] 严维兵,饶文波,栗天宁,等.江苏沿海沉积物有机磷含量、总有机碳、总氮与同位素特征及有机质来源解析[J].地球科学与环境学报,2024,46(1):67-80.
YAN Wei-bing,RAO Wen-bo,LI Tian-ning,et al.Organic Phosphorus Contents,Total Organic Carbon,Total Nitrogen and Their Isotopic Characteristics from Sediments in Jiangsu Coast,China and Source Identification of Organic Matter[J].Journal of Earth Sciences and Environment,2024,46(1):67-80.
[20] 张宝琦,王 兵,许欢欢,等.黄土高原不同降雨强度下生物土壤结皮对坡面流水动力参数的影响[J].水土保持研究,2024,31(3):128-134.
ZHANG Bao-qi,WANG Bing,XU Huan-huan,et al.Effects of Biological Soil Crust on Dynamic Parameters of Slope Flow Under Different Rainfall Intensities in the Loess Plateau[J].Research of Soil and Water Conservation,2024,31(3):128-134.
[21] 孙亚荣,陈云明,王亚娟,等.黄土丘陵区柠条人工林土壤水分动态变化特征及降雨特征对其影响[J].水土保持学报,2023,37(1):272-279.
SUN Ya-rong,CHEN Yun-ming,WANG Ya-juan,et al.Dynamic Variation Characteristics of Soil Moisture in Caragana Korshinskii<0.05),表明雨水冲刷作用对总磷流失的贡献略占优势。
3 讨 论
从3场降雨事件数据可知,不同类型降雨条件下,事件前水和事件水对河道径流的贡献量各不相同,这与雨强、降雨量、下垫面条件等因素有关。黄土高原的黄土以粉砂为主,具有容重低、入渗能力强的特点,24 h降雨量小于10 mm一般不产流而是全部下渗[20],中雨事件24 h降雨量仅10.12 mm,较小的降雨量使流域产流对河道径流贡献量较小,降雨直接降落到河面成为主要的贡献来源,因此中雨事件下事件水贡献率较小,事件前水占主导。大雨事件下事件水贡献率比暴雨事件下大,暴雨事件下双峰形雨强分布可能导致两个峰值时段流域迅速产流,但降雨对河道径流补给持续时间相对较短; 大雨事件下多峰形雨强分布使地表径流量随雨强的波动多次起伏,由于降雨事件发生前土壤含水量较低,所以降雨初期土壤能吸收更多水分,此时事件水贡献量相对小,随着降雨持续,土壤逐渐饱和,事件水贡献量则会增加[21]。相比之下,大雨事件持续时间长,土壤在整个降雨过程中可能保持较高含水量,事件水贡献量相对稳定[22]
以往研究显示,森林流域[23-24]、高寒山区[25]以及草原地区[26]河道水源划分的不确定性范围分别是8%~25%、3%~38%和1%~4%。在本研究中,中雨、大雨、暴雨事件下的河道径流水源划分不确定性在95%置信区间下分别为14.86%、15.25%和22.02%,在70%置信区间下分别为7.14%、7.15%和11.41%。本研究中河道水源划分的不确定性范围明显高于草原地区,更接近森林流域和高寒山区,说明水源划分的结果可靠性较强。
大雨事件下总氮的流失主要源于事件前水的淋溶作用; 中雨、暴雨事件下总氮的流失则受事件前水淋溶作用和事件水冲刷作用的影响相当。陕西黄陵地区南峪口森林小流域主要植被类型为阔叶纯林和针阔混交林,夏季植被覆盖度为64%~89%,3场降雨均发生在植被覆盖度较高的7月至9月。植被会影响土壤水分响应和土壤水文过程[27],在有植被覆盖的缓冲带上,长历时降雨使土壤能渗透更多水分,而高峰值、高强度降雨反而使土壤渗透水分效果降低[28]。大雨事件降雨量较大,但最大雨强小于中雨、暴雨事件,并且多峰形的雨强分布伴随着每次雨强峰值相对较小,因此,降雨对土壤表面冲刷作用较弱; 此外,大雨事件较小的雨强延迟了土壤封闭的过程,使雨水更易渗入土壤深层,带动更多氮素向下淋溶,随着流域前期储水汇入河道径流,故而淋溶作用在大雨事件的氮素流失中占据主要地位[29]。中雨事件短历时、小雨强的降雨特征可能使土壤水分不能完全饱和,淋溶作用较弱,也不足以产生强烈的冲刷作用,因此,淋溶作用和冲刷作用对总氮流失的影响较为均衡。暴雨事件短时间内较大的雨强加速土壤表面封闭过程,降低了雨水入渗速率,易使表层土壤快速饱和产生坡面流。次降雨事件累计入渗量的大小取决于降雨的供给[30],并且入渗的水分为土壤氮素淋溶提供载体,土壤水分响应的常见模式是响应时间在给定土壤剖面中随着深度的加深逐渐增加[31]。然而,在研究区两种林分不同深度土壤水分和降雨监测的现有研究中存在深层土壤对较大雨强的补给速率快于浅层土壤的情况[32],这可能表明土壤中存在优先流机制[33]。研究区主要林分在地下形成的根系通道、土壤缝隙在暴雨事件下可能激活研究区林地的地下水,使优先流在重力作用下生成[34],也使得氮素在土壤中淋溶。此外,在植被覆盖度较低或土壤表层封闭的情况下,暴雨事件较大的雨强可能通过地表径流的冲刷作用将氮素快速带入河道[35],并且氮素主要通过地表径流流失[36],但雨强峰值持续时间较短以及一定的植被覆盖度,减少了降雨对土壤的冲刷时间,使土壤有足够的时间进行淋溶。因此,暴雨事件下总氮的流失受淋溶、冲刷作用相对平衡。
中雨、大雨事件下,总磷的流失受事件水和事件前水的影响程度基本相当。相较于溶解性较强的氮素,磷素较难溶解于水中,更易通过吸附作用固着于土壤颗粒物以颗粒态迁移[37]。在中低强度降雨条件下,有限的地表径流难以有效剥离表层富磷细颗粒,因此,径流中磷的流失量很小,使得事件前水携带的溶解态磷与事件水引发的颗粒态磷迁移呈现动态平衡,表现为两种径流来源对总磷流失的贡献相当。暴雨事件下,当雨强过大时,土壤水分过度饱和,土壤团聚体易被破坏,磷素流失量增大,短时强降雨(最大雨强为34.11 mm·h-1)对地表的强烈冲刷导致表层土壤颗粒被大量剥离,此时事件水主导的地表径流成为颗粒态磷迁移的主要载体,因此,事件水对总磷流失的影响程度大于事件前水。然而,不同降雨类型下总氮、总磷流失机制的差异可能与土壤水分运移路径的不同有关,未来研究需结合土壤水分实时监测数据与溶质运移模型,定量解析不同水文路径对养分流失的影响。综上所述,不同类型降雨事件对南峪口森林小流域土壤中总氮和总磷的流失具有不同的影响机制,应充分考虑降雨特征、土壤类型、植被覆盖等因素。今后可以因地制宜地制定水土保持策略并开展生态环境修复工作,以减少区域养分流失。
4 结 语
(1)黄土高原南峪口森林小流域次降雨事件下总氮与总磷的输出量随着雨强、降雨量的增大逐渐增大。暴雨事件下总氮和总磷的输出量最大,大雨事件次之,中雨事件最小,反映了长历时降雨和强降雨是区域养分流失的关键驱动因素。
(2)次降雨事件中事件前水(流域前期储水)始终为径流的主要来源,其贡献率在中雨、大雨、暴雨事件下分别为90.05%、64.80%和69.48%,事件水(雨水)的贡献率分别为9.95%、35.20%和30.52%。大雨和暴雨事件中事件水对径流的补给显著增强,但事件前水仍占主导地位。
(3)根据多元线性回归结果,3场降雨中径流来源对氮磷流失的驱动机制存在差异。中雨和暴雨事件下总氮流失受事件前水与事件水共同驱动,而大雨事件下总氮流失主要由事件前水主导。中雨、大雨事件下,总磷流失表现出事件前水与事件水协同驱动; 暴雨事件下,事件水对总磷流失的贡献略占优势。

[1] 宁 珍,高光耀,傅伯杰.黄土高原流域水沙变化研究进展[J].生态学报,2020,40(1):2-9.
NING Zhen,GAO Guang-yao,FU Bo-jie.Changes in Streamflow and Sediment Load in the Catchments of the Loess Plateau,China:A Review[J].Acta Ecologica Sinica,2020,40(1):2-9.
[2] LI C H,SHI W H,HUANG M B.Effects of Crop Rotation and Topography on Soil Erosion and Nutrient Loss Under Natural Rainfall Conditions on the Chinese Loess Plateau[J].Land,2023,12(2):265.
[3] 张宝庆,田 磊,赵西宁,等.植被恢复对黄土高原局地降水的反馈效应研究[J].中国科学:地球科学,2021,51(7):1080-1091.
ZHANG Bao-qing,TIAN Lei,ZHAO Xi-ning,et al.Feedbacks Between Vegetation Restoration and Local Precipitation over the Loess Plateau in China[J].Science China:Earth Sciences,2021,51(7):1080-1091.
[4] DONG L B,LI J W,ZHANG Y,et al.Effects of Ve-getation Restoration Types on Soil Nutrients and Soil Erodibility Regulated by Slope Positions on the Loess Plateau[J].Journal of Environmental Management,2022,302:113985.
[5] 李宗善,杨 磊,王国梁,等.黄土高原水土流失治理现状、问题及对策[J].生态学报,2019,39(20):7398-7409.
LI Zong-shan,YANG Lei,WANG Guo-liang,et al.The Management of Soil and Water Conservation in the Loess Plateau of China:Present Situations,Pro-blems,and Counter-solutions[J].Acta Ecologica Sinica,2019,39(20):7398-7409.
[6] 张靖坤,刘 飞,邹嘉文,等.华北平原典型压采区地下水循环的氢氧同位素示踪[J].南水北调与水利科技,2022,20(2):385-392.
ZHANG Jing-kun,LIU Fei,ZOU Jia-wen,et al.Application of Hydrogen and Oxygen Isotopes to Trace Groundwater Circulation in a Typical Groundwater Exploitation Reduction Area,North China Plain[J].South-to-north Water Transfers and Water Science & Technology,2022,20(2):385-392.
[7] 马天文,徐国策,赵超志,等.基于氢氧稳定同位素示踪的秦岭森林小流域径流水源解析[J].地球科学与环境学报,2022,44(3):545-557.
MA Tian-wen,XU Guo-ce,ZHAO Chao-zhi,et al.Water Source Analysis of Runoff in Qinling Forest Small Watershed,China Based on H-O Stable Isotope Tracing[J].Journal of Earth Sciences and Environment,2022,44(3):545-557.
[8] 周思捷,孙从建,陈 伟,等.黄土高原东部夏半年降水稳定同位素特征及水汽来源分析[J].地理学报,2022,77(7):1745-1761.
ZHOU Si-jie,SUN Cong-jian,CHEN Wei,et al.Precipitation Isotope Characteristics and Water Vapor Sources in Summer in Eastern Loess Plateau[J].Acta Geographica Sinica,2022,77(7):1745-1761.
[9] 郭亚文,田富强,胡宏昌,等.南小河沟流域地表水和地下水的稳定同位素和水化学特征及其指示意义[J].环境科学,2020,41(2):682-690.
GUO Ya-wen,TIAN Fu-qiang,HU Hong-chang,et al.Characteristics and Significance of Stable Isotopes and Hydrochemistry in Surface Water and Groundwater in Nanxiaohegou Basin[J].Environmental Science,2020,41(2):682-690.
[10] DUAN W L,HE B,NOVER D,et al.Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods[J].Sustainability,2016,8(2):133.
[11] LI Z Y,FANG H Y.Impacts of Climate Change on Water Erosion:A Review[J].Earth-science Reviews,2016,163:94-117.
[12] WANG D Y,LI Z W,LI Z W,et al.Response of Organic Carbon in Drainage Ditch Water to Rainfall Events in Zoige Basin in the Qinghai-Tibet Plateau[J].Journal of Hydrology,2019,579:124187.
[13] GB/T 28592—2012,降水量等级[S].
GB/T 28592—2012,Grade of Precipitation[S].
[14] 邓文平,余新晓,贾国栋,等.北京西山鹫峰地区氢氧稳定同位素特征分析[J].水科学进展,2013,24(5):642-650.
DENG Wen-ping,YU Xin-xiao,JIA Guo-dong,et al.An Analysis of Characteristics of Hydrogen and Oxygen Stable Isotopes in Jiufeng Mountain Areas of Beijing[J].Advances in Water Science,2013,24(5):642-650.
[15] 潘 钊,孙自永,马 瑞,等.黑河上游高寒山区降雨-径流形成过程的同位素示踪[J].地球科学,2018,43(11):4226-4236.
PAN Zhao,SUN Zi-yong,MA Rui,et al.Isotopic Investigation of Rainfall-runoff Generation in an Alpine Catchment in Headwater Regions of Heihe River,Northeast Qinghai-Tibet Plateau[J].Earth Science,2018,43(11):4226-4236.
[16] VON FREYBERG J,STUDER B,KIRCHNER J W.A Lab in the Field:High-frequency Analysis of Water Quality and Stable Isotopes in Stream Water and Precipitation[J].Hydrology and Earth System Sciences,2017,21(3):1721-1739.
[17] 杜展鹏,王明净,严长安,等.基于绝对主成分-多元线性回归的滇池污染源解析[J].环境科学学报,2020,40(3):1130-1137.
DU Zhan-peng,WANG Ming-jing,YAN Chang-an,et al.Pollution Source Apportionment of Lake Dianchi Based on Absolute Principal Component Score-multiple Linear Regression[J].Acta Scientiae Circumstantiae,2020,40(3):1130-1137.
[18] 汪少勇,王巧丽,吴锦奎,等.长江源区降水氢氧稳定同位素特征及水汽来源[J].环境科学,2019,40(6):2615-2623.
WANG Shao-yong,WANG Qiao-li,WU Jin-kui,et al.Characteristics of Stable Isotopes in Precipitation and Moisture Sources in the Headwaters of the Yangtze River[J].Environmental Science,2019,40(6):2615-2623.
[19] 严维兵,饶文波,栗天宁,等.江苏沿海沉积物有机磷含量、总有机碳、总氮与同位素特征及有机质来源解析[J].地球科学与环境学报,2024,46(1):67-80.
YAN Wei-bing,RAO Wen-bo,LI Tian-ning,et al.Organic Phosphorus Contents,Total Organic Carbon,Total Nitrogen and Their Isotopic Characteristics from Sediments in Jiangsu Coast,China and Source Identification of Organic Matter[J].Journal of Earth Sciences and Environment,2024,46(1):67-80.
[20] 张宝琦,王 兵,许欢欢,等.黄土高原不同降雨强度下生物土壤结皮对坡面流水动力参数的影响[J].水土保持研究,2024,31(3):128-134.
ZHANG Bao-qi,WANG Bing,XU Huan-huan,et al.Effects of Biological Soil Crust on Dynamic Parameters of Slope Flow Under Different Rainfall Intensities in the Loess Plateau[J].Research of Soil and Water Conservation,2024,31(3):128-134.
[21] 孙亚荣,陈云明,王亚娟,等.黄土丘陵区柠条人工林土壤水分动态变化特征及降雨特征对其影响[J].水土保持学报,2023,37(1):272-279.
SUN Ya-rong,CHEN Yun-ming,WANG Ya-juan,et al.Dynamic Variation Characteristics of Soil Moisture in antation in Loess Hilly Area and the Influence of Rainfall Characteristics on It[J].Journal of Soil and Water Conservation,2023,37(1):272-279.
[22] 翟博超,朱 燕,申小娟,等.黄土丘陵区两个典型成熟森林群落土壤水分时空变化特征及对降雨事件的响应[J].水土保持研究,2024,31(4):170-178.
ZHAI Bo-chao,ZHU Yan,SHEN Xiao-juan,et al.Spatiotemporal Variation of Soil Moisture and the Responses to Rainfall Events in Two Typical Mature Fo-rest Stands in the Loess Hilly Region[J].Research of Soil and Water Conservation,2024,31(4):170-178.
[23] LAUDON H,HEMOND H F,KROUSE R,et al.Oxygen 18 Fractionation During Snowmelt:Implications for Spring Flood Hydrograph Separation[J].Water Resources Research,2002,38(11):2002WR001510.
[24] UHLENBROOK S,FREY M,LEIBUNDGUT C,et al.Hydrograph Separations in a Mesoscale Mountainous Basin at Event and Seasonal Timescales[J].Water Resources Research,2002,38(6):2001WR000938.
[25] PENNA D,VAN MEERVELD H J,ZUECCO G,et al.Hydrological Response of an Alpine Catchment to Rainfall and Snowmelt Events[J].Journal of Hydro-logy,2016,537:382-397.
[26] BANSAH S,ALI G.Evaluating the Effects of Tracer Choice and End-member Definitions on Hydrograph Separation Results Across Nested,Seasonally Cold Watersheds[J].Water Resources Research,2017,53(11):8851-8871.
[27] ZHANG J Y,DUAN L M,LIU T X,et al.Experimental Analysis of Soil Moisture Response to Rainfall in a Typical Grassland Hillslope Under Different Ve-getation Treatments[J].Environmental Research,2022,213:113608.
[28] 熊丽君,吴建强,黄沈发.不同降雨特征下缓冲带水分及TN分配规律[J].中国环境科学,2022,42(4):1837-1846.
XIONG Li-jun,WU Jian-qiang,HUANG Shen-fa.Dis-tribution of Water and TN Loads in Buffer Strips Under Different Rainfall Characteristics[J].China Environmental Science,2022,42(4):1837-1846.
[29] WU S B,CHEN L,WANG N L,et al.Modeling Rain-fall-infiltration-runoff Processes on Sloping Surfaces Subject to Rapidly Changing Soil Properties During Seal Formation[J].Journal of Hydrology,2023,619:129318.
[30] 王承书,高 峰,孙文义,等.黄土丘陵沟壑区坡沟系统不同降雨类型的土壤入渗特征[J].生态学报,2021,41(8):3111-3122.
WANG Cheng-shu,GAO Feng,SUN Wen-yi,et al.Rainfall-infiltration Process and Characteristics of Slope-gully System in the Hilly and Gully Region of the Loess Plateau[J].Acta Ecologica Sinica,2021,41(8):3111-3122.
[31] SINGH N K,EMANUEL R E,MCGLYNN B L,et al.Soil Moisture Responses to Rainfall:Implications for Runoff Generation[J].Water Resources Research,2021,57(9):e2020WR028827.
[32] 郭义选,李 婧,徐国策,等.桥山林区不同林分和坡位土壤水分对典型降雨的响应[J].水土保持学报,2025,39(1):84-93,101.
GUO Yi-xuan,LI Jing,XU Guo-ce,et al.Response of Soil Moisture to Typical Rainfall at Different Stands and Slope Sites in Qiaoshan Forest Region[J].Journal of Soil and Water Conservation,2025,39(1):84-93,101.
[33] 牛凤娇,潘成忠,崔永生,等.晋西黄土区土地利用对降雨入渗产流模式和优先流分布的影响试验研究[J].生态学报,2023,43(10):4154-4166.
NIU Feng-jiao,PAN Cheng-zhong,CUI Yong-sheng,et al.Experimental Investigation to the Effect of Different Land-use on Rainfall Infiltration Runoff Patterns and Preferential Flow Distribution in the Loess Area of Western Shanxi Province[J].Acta Ecologica Sinica,2023,43(10):4154-4166.
[34] DEMAND D,BLUME T,WEILER M.Spatio-temporal Relevance and Controls of Preferential Flow at the Landscape Scale[J].Hydrology and Earth System Sciences,2019,23(11):4869-4889.
[35] 王龙凤,夏 军,于静洁,等.降水产流非线性驱动下坡地硝态氮产污过程试验[J].南水北调与水利科技,2022,20(1):122-130.
WANG Long-feng,XIA Jun,YU Jing-jie,et al.Experiment on Nitrate-N Pollutant Generation Process Driven by Nonlinear Rainfall-runoff[J].South-to-north Water Transfers and Water Science & Techno-logy,2022,20(1):122-130.
[36] LI T Y,ZHANG G N,LI Q M,et al.Response of Runoff N and P Concentrations,Losses,and Stoichio-metry to Rainfall Amount Category,Multisource Fertilization,and Straw Return in Sloping Croplands[J].Journal of Hydrology,2024,640:131693.
[37] CHEN L,GUO C X,ZHU K H,et al.Size-dependent of Phosphorus Loss and Migration Driven by Rainfall:Evidences from Observation and Stochastic Simulation[J].Agriculture,Ecosystems & Environment,2024,375:109220.

Memo

Memo:
-
Last Update: 2025-07-25