|本期目录/Table of Contents|

[1]祝艳波*,刘浩,韦佳龙,等.物理状态变化对三趾马红土蠕变特性的影响试验[J].地球科学与环境学报,2025,47(04):583-599.[doi:10.19814/j.jese.2025.02002]
 ZHU Yan-bo*,LIU Hao,WEI Jia-long,et al.Experiment on the Influence of Physical State Variation on the Creep Characteristics of Hipparion Red Clay[J].Journal of Earth Sciences and Environment,2025,47(04):583-599.[doi:10.19814/j.jese.2025.02002]
点击复制

物理状态变化对三趾马红土蠕变特性的影响试验(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第04期
页码:
583-599
栏目:
黄河流域生态保护和高质量发展专刊(下)
出版日期:
2025-07-15

文章信息/Info

Title:
Experiment on the Influence of Physical State Variation on the Creep Characteristics of Hipparion Red Clay
文章编号:
1672-6561(2025)04-0583-17
作者:
祝艳波*刘浩韦佳龙张宇轩刘振谦
(长安大学 地质工程与测绘学院,陕西 西安 710054)
Author(s):
ZHU Yan-bo*LIU HaoWEI Jia-longZHANG Yu-xuanLIU Zhen-qian
(School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China)
关键词:
三趾马红土 滑坡 蠕变 干密度 含水率 本构模型 黄土高原
Keywords:
Hipparion red clay landslide creep dry density moisture constitutive model Loess Plateau
分类号:
P642.22
DOI:
10.19814/j.jese.2025.02002
文献标志码:
A
摘要:
我国西北地区新近系三趾马红土易软化变形演化成大型黄土滑坡的滑带,三趾马红土松密、软硬多变的物理状态影响其长期蠕变行为。为此,开展含水率、干密度对三趾马红土蠕变特性影响试验研究,揭示其在不同物理状态下的差异蠕变行为,并基于五元件广义Kelvin模型探讨了模型参数随物理状态变化的响应规律。结果表明:①物理状态变化显著改变了三趾马红土的蠕变特性,含水率越高、干密度越小,其蠕变行为越强烈,更易演化为滑坡敏感区; ②五元件广义Kelvin模型可精准表征土体蠕变的瞬时变形、衰减变形、稳态变形等3个阶段,并能同步反映黏弹性与黏塑性变形的耦合效应; 相较于传统Merchant模型和Burgers模型,该模型在高荷载应力状态下对试样非线性流塑特性的预测精度显著提升,同时可有效反映试样含水率升高导致的流塑特性及干密度增大引起的压硬特性; ③模型参数随物理状态呈现规律性变化; 当含水率升高时,瞬时剪切模量G0,黏弹性剪切模量G1G2,黏滞系数η1线性降低,而黏滞系数η2呈非线性衰减,表明土体强度劣化与黏塑性流动加剧; 当干密度增大时,剪切模量G0G1G2显著提升,黏滞系数η1η2降低,表明土体密实程度的增加抑制了变形。
Abstract:
The Neogene Hipparion red clay in Northwest China is prone to softening and deformation, evolving into slip zones of large-scale loess landslides. The variable physical states of Hipparion red clay significantly affect its long-term creep behavior. To reveal the differential creep behavior under varying physical states, experiments were conducted to investigate the effects of moisture and dry density on its creep characteristics; furthermore, based on the five-element generalized Kelvin model, the response patterns of model parameters to physical state variation were explored. The results show that ① physical state variations markedly alter the creep characteristics of Hipparion red clay; higher moisture and lower dry density lead to more pronounced creep behavior, increasing susceptibility to landslide-prone areas. ② The five-element generalized Kelvin model accurately characterizes instantaneous, decay, and steady-state deformations during soil creep, while simultaneously reflecting the coupling effects of viscoelastic and viscoplastic deformations; compared to traditional Merchant and Burgers models, this model significantly improves prediction accuracy for nonlinear rheoplastic properties under high load stress state, effectively capturing rheoplastic behavior induced by elevating moisture and pressure-hardening characteristics caused by increasing dry density. ③ Model parameters exhibit systematic variations with physical states; as moisture increases, the instantaneous shear modulus(G0), viscoelastic shear moduli(G1, G2), and viscosity coefficient(η1)decrease linearly, whereas η2 shows nonlinear attenuation, indicating soil strength degradation and intensified viscoplastic flow; higher dry density enhances G0, G1 and G2, while reducing η1 and η2, demonstrating that denser soil suppresses deformation.

参考文献/References:

[1] DING Z L,XIONG S F,SUN J M,et al.Pedostratigra-phy and Paleomagnetism of a ~7.0 Ma Eolian Loess-red Clay Sequence at Lingtai,Loess Plateau,North-central China and the Implications for Paleomonsoon Evolution[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1999,152(1/2):49-66.
[2] 李 滨,吴树仁,石菊松,等.陕西宝鸡市三趾马红土工程地质特性及灾害效应[J].地质通报,2013,32(12):1918-1924.
LI Bin,WU Shu-ren,SHI Ju-song,et al.Engineering Geological Properties and Hazard Effects of Hipparion Laterite in Baoji,Shaanxi Province[J].Geological Bulletin of China,2013,32(12):1918-1924.
[3] 杜长城,祝艳波,苗帅升,等.三趾马红土失水收缩裂缝演化规律研究[J].岩土力学,2019,40(8):3019-3027.
DU Chang-cheng,ZHU Yan-bo,MIAO Shuai-sheng,et al.The Evolution of Cracks in the Dewatering Sh-rinkage Process of Hipparion Red Soil[J].Rock and Soil Mechanics,2019,40(8):3019-3027.
[4] 祝艳波,韩宇涛,兰恒星,等.接触角度对黄土-三趾马红土界面剪切力学特性影响研究[J].工程地质学报,2021,29(3):879-890.
ZHU Yan-bo,HAN Yu-tao,LAN Heng-xing,et al.Experimental Study on Influence of Contact Angle on Shear Strength of Interfaces Between Loess and Hi-pparion Red Clay[J].Journal of Engineering Geology,2021,29(3):879-890.
[5] 张茂省,李同录.黄土滑坡诱发因素及其形成机理研究[J].工程地质学报,2011,19(4):530-540.
ZHANG Mao-sheng,LI Tong-lu.Triggering Factors and Forming Mechanism of Loess Landslides[J].Journal of Engineering Geology,2011,19(4):530-540.
[6] ZHANG M,LIU J.Controlling Factors of Loess Landslides in Western China[J].Environmental Earth Sciences,2010,59(8):1671-1680.
[7] 曲永新,张永双,覃祖淼.三趾马红土与西北黄土高原滑坡[J].工程地质学报,1999,7(3):257-265.
QU Yong-xin,ZHANG Yong-shuang,QIN Zu-miao.Hipparion Laterite and Landslide Hazards on Loess Plateau of Northwestern China[J].Journal of Engineering Geology,1999,7(3):257-265.
[8] 付昱凯,张子然.基于蠕变试验及Burgers模型参数分析的三趾马红土长期强度确定[J].科学技术与工程,2020,20(2):735-740.
FU Yu-kai,ZHANG Zi-ran.Long-term Strength Determination of Hipparion Red Clay Based on Creep Test and Parameter Analysis of Burgers Model[J].Science Technology and Engineering,2020,20(2):735-740.
[9] 路昌明,王祚鹏,吴 靓,等.基于环剪试验的蠕变型滑坡滑带力学性质:以甘肃舟曲地区锁儿头滑坡为例[J].地球科学与环境学报,2024,46(5):677-688.
LU Chang-ming,WANG Zuo-peng,WU Liang,et al.Mechanical Properties of Creep-type Landslide Slip Zone Based on Ring Shear Test:A Case Study of Suo'ertou Landslide in Zhouqu Area of Gansu,China[J].Journal of Earth Sciences and Environment,2024,46(5):677-688.
[10] 王新刚,刘 凯,王友林,等.典型黄土滑坡滑带土不同含水率下蠕变特性试验研究[J].水文地质工程地质,2022,49(5):137-143.
WANG Xin-gang,LIU Kai,WANG You-lin,et al.An Experimental Study of the Creep Characteristics of Loess Landslide Sliding Zone Soil with Different Water Contents[J].Hydrogeology & Engineering Geology,2022,49(5):137-143.
[11] 杨校辉,赵子毅,郭 楠,等.横观各向同性非饱和黄土蠕变特性及沉降预测[J].岩土力学,2025,46(5):1489-1500,1510.
YANG Xiao-hui,ZHAO Zi-yi,GUO Nan,et al.Creep Characteristics and Settlement Prediction of Transversely Isotropic Unsaturated Loess[J].Rock and Soil Mechanics,2025,46(5):1489-1500,1510.
[12] LAN H X,ZHANG T W,PENG J B,et al.Large Sca-le Land Reclamation and the Effects on Hydro-mechanical Behavior in Loess and Loess-derived Fill[J].Engineering Geology,2023,323:107241.
[13] 祝艳波,刘振谦,李文杰,等.黄土-三趾马红土滑坡滑带土的长期强度影响因素研究[J].水文地质工程地质,2022,49(2):148-156.
ZHU Yan-bo,LIU Zhen-qian,LI Wen-jie,et al.Experimental Investigation of Influencing Factors on the Long-term Strength of Sliding Zones of the Loess-Hi-pparion Laterite Landslide[J].Hydrogeology & Engineering Geology,2022,49(2):148-156.
[14] 葛苗苗,李 宁,郑建国,等.基于一维固结试验的压实黄土蠕变模型[J].岩土力学,2015,36(11):3164-3170.
GE Miao-miao,LI Ning,ZHENG Jian-guo,et al.A Creep Model for Compacted Loess Based on 1D Oedometer Test[J].Rock and Soil Mechanics,2015,36(11):3164-3170.
[15] 胡连信,骆亚生,王鹏程,等.黄土平面蠕变特性试验研究[J].西安理工大学学报,2014,30(3):366-371.
HU Lian-xin,LUO Ya-sheng,WANG Peng-cheng,et al.Testing Research on Plane Creep Behaviors of Loess[J].Journal of Xi'an University of Technology,2014,30(3):366-371.
[16] TANG H,LUO J Z,DUAN Z,et al.Experimental Investigation of the Creep Behaviour of Remoulded Loe-ss Under Different Levels of Compactness[J].PLOS One,2022,17(1):e0262456.
[17] 王松鹤,骆亚生.复杂应力下黄土蠕变特性试验研究[J].岩土力学,2009,30(增2):43-47.
WANG Song-he,LUO Ya-sheng.Research on Creep Characteristics of Loess Under Complex Stress[J].Rock and Soil Mechanics,2009,30(S2):43-47.
[18] 胡敏云,肖 斌,陆雨珂,等.重塑超固结饱和黏土蠕变试验与蠕变模型[J].岩土工程学报,2023,45(增1):6-10.
HU Min-yun,XIAO Bin,LU Yu-ke,et al.Creep Te-sts and Creep Model for Reconstituted Over-consolidated Saturated Clay[J].Chinese Journal of Geotechnical Engineering,2023,45(S1):6-10.
[19] 慕焕东,何 也,白逸松,等.靖边Q3砂质黄土湿陷特征及其微观机制研究[J].岩土力学,2024,45(10):3024-3036.
MU Huan-dong,HE Ye,BAI Yi-song,et al.Collapsi-bility Characteristics and Microscopic Mechanism of Q3 Sandy Loess in Jingbian[J].Rock and Soil Mecha-nics,2024,45(10):3024-3036.
[20] 蔡国军,陈世豪,赵大安,等.饱和砂土蠕变特性及其影响因素试验研究[J].工程地质学报,2019,27(5):1048-1055.
CAI Guo-jun,CHEN Shi-hao,ZHAO Da-an,et al.Experimental Study on Creep Characteristics of Saturated Sand and Its Influencing Factors[J].Journal of Engineering Geology,2019,27(5):1048-1055.
[21] 张子然.黄土-三趾马红土滑坡蠕变特性研究[D].西安:长安大学,2015.
ZHANG Zi-ran.Study on Creep Characteristics of Loess-Hipparion Red Clay Landslide[D].Xi'an:Chang'an University,2015.
[22] 慕焕东,邓亚虹,赫 佳,等.基于分数阶导数理论的Q3黄土流变本构模型研究[J].工程地质学报,2022,30(4):1077-1086.
MU Huan-dong,DENG Ya-hong,HE Jia,et al.Study on Rheological Model of Q3 Loess Based on Fractio-nal Derivative Theory[J].Journal of Engineering Geo-logy,2022,30(4):1077-1086.
[23] ZHANG C,ZHANG J H,LI J Z.An Improved Creep Model for Unsaturated Reticulated Red Clay[J].Journal of Rock Mechanics and Geotechnical Engineering,2024,16(11):4754-4768.
[24] REN S Y,WANG H M,NI W K,et al.A New One-dimensional Consolidation Creep Model for Clays[J].Computers and Geotechnics,2024,169:106214.
[25] LIU J S,ZHOU N,ZHOU H,et al.Creep Damage Characteristics and Fractional-order Model of Weakly Cemented Soft Rock[J].Rock Mechanics and Rock Engineering,2025,DOI:10.1007/s00603-025-04539-z.
[26] 林 斌,赵法锁,霍 亮.黄土损伤与流变耦合模型及参数研究[J].工程地质学报,2010,18(5):685-691.
LIN Bin,ZHAO Fa-suo,HUO Liang.Coupling Study on Damage and Rheological Model of Loess and Its Parameter[J].Journal of Engineering Geology,2010,18(5):685-691.
[27] 杨爱武,程姝晓,梁振振,等.高含水率吹填土大变形固结与流变叠加效应研究[J].岩土力学,2025,46(7):1977-1987.
YANG Ai-wu,CHENG Shu-xiao,LIANG Zhen-zhen,et al.Combined Effects of Large-strain Consolidation and Creep in High-moisture Dredger Fill[J].Rock and Soil Mechanics,2025,46(7):1977-1987.
[28] 唐 皓,赵法锁,段 钊,等.考虑含水损伤的Q2黄土非线性蠕变模型[J].南水北调与水利科技,2014,12(5):6-10.
TANG Hao,ZHAO Fa-suo,DUAN Zhao,et al.Study of Nonlinear Creep Model of Q2 Loess Considering Water Damage[J].South-to-north Water Transfers and Water Science & Technology,2014,12(5):6-10.
[29] 尹检务,旷杜敏,王智超.压实土固结蠕变特征及分数阶流变模型参数分析[J].湖南科技大学学报(自然科学版),2015,30(3):46-51.
YIN Jian-wu,KUANG Du-min,WANG Zhi-chao.Consolidation Creep Characteristics of Compacted Clay and Its Parameters Analysis of Rheological Constitutive Model Based on Fractional Calculus[J].Journal of Hunan University of Science & Technology(Natural Science Edition),2015,30(3):46-51.
[30] 苏艳军.不同干密度条件下的地基土非线性蠕变特性及力学模型研究[J].水运工程,2021(9):159-166.
SU Yan-jun.Nonlinear Creep Characteristics and Mechanical Model of Foundation Soil Under Different Dry Densities Conditions[J].Port & Waterway Engineering,2021(9):159-166.
[31] 祝艳波,刘耀文,郑慧涛,等.基于DIC技术的三趾马红土表面干缩裂纹扩展与自愈规律[J].工程地质学报,2022,30(4):1157-1168.
ZHU Yan-bo,LIU Yao-wen,ZHENG Hui-tao,et al.Experimental Study on Propagation and Self-healing Law of Desiccation Cracks in Hipparion Red Clay by DIC Technology[J].Journal of Engineering Geology,2022,30(4):1157-1168.
[32] GB/T 50123—2019,土工试验方法标准[S].
GB/T 50123—2019,Standard for Geotechnical Test-ing Method[S].
[33] 刘振谦.三趾马红土水敏特性试验研究[D].西安:长安大学,2022.
LIU Zhen-qian.Experimental Study on the Water Sensitivity Characteristics of the Loess-Hipparion Lateri-te[D].Xi'an:Chang'an University,2022.
[34] 唐 皓,党 琪,段 钊,等.关中咸阳地区Q2黄土蠕变特性试验研究[J].防灾减灾工程学报,2014,34(6):758-763.
TANG Hao,DANG Qi,DUAN Zhao,et al.Study on Creep Characteristics of Q2 Loess of Xianyang Area in the Guanzhong Basin[J].Journal of Disaster Prevention and Mitigation Engineering,2014,34(6):758-763.
[35] 范 涛,顾强康,刘少博,等.重塑Q3黄土K0三轴蠕变特性的试验研究[J].水土保持通报,2016,36(3):56-61.
FAN Tao,GU Qiang-kang,LIU Shao-bo,et al.Experimental Study on K0 Triaxial Creep Properties of Remolded Q3 Loess[J].Bulletin of Soil and Water Conservation,2016,36(3):56-61.
[36] 张吉宏,段 钊,唐 皓.蠕变对河流侧蚀型黄土滑坡影响的数值模拟[J].人民黄河,2020,42(2):142-146.
ZHANG Ji-hong,DUAN Zhao,TANG Hao.Numerical Simulation of the Effect of Creep on Loess Landslide Caused by Lateral River Erosion[J].Yellow Ri-ver,2020,42(2):142-146.
[37] 戚志宇,李志清.黄土蠕变特性研究进展[J].地球科学与环境学报,2023,45(3):485-510.
QI Zhi-yu,LI Zhi-qing.Review on Creep Properties of Loess[J].Journal of Earth Sciences and Environment,2023,45(3):485-510.
[38] 周瑞光,成彬芳,曲永新,等.三趾马红土力学性质实验研究[C]∥中国地质学会工程地质专业委员会.第五届全国工程地质大会文集.北京:中国地质学会工程地质专业委员会,1996:503-508.
ZHOU Rui-guang,CHENG Bin-fang,QU Yong-xin,et al.Experimental Study on the Mechanical Properties of Hipparion Red Clay[C]∥Engineering Geology Professional Committee of the Geological Society of China.Proceedings of the Fifth National Engineering Geology Conference.Beijing:Engineering Geology Professional Committee of the Geological Society of China,1996:503-508.
[39] 杜长城,祝艳波,苗帅升,等.初始含水率对三趾马红土失水收缩特性影响[J].水土保持研究,2019,26(1):227-233.
DU Chang-cheng,ZHU Yan-bo,MIAO Shuai-sheng,et al.Effect of Initial Moisture Content on the Shrinkage Characteristics of the Red Soil of Hipparion[J].Research of Soil and Water Conservation,2019,26(1):227-233.
[40] 辛 远,孙 强,包 含,等.黄土-三趾马红土界面直剪破坏特性研究[J].工程地质学报,2023,DOI:10.13544/j.cnki.jeg.2023-0228.
XIN Yuan,SUN Qiang,BAO Han,et al.Study of Direct Shear Damage Characteristics of Loess-Hipparion Red Clay Interface[J].Journal of Engineering Geology,2023,DOI:10.13544/j.cnki.jeg.2023-0228.
[41] 朱才辉,李 宁,刘俊平.压实Q3马兰黄土蠕变规律研究[J].西安理工大学学报,2011,27(4):392-399.
ZHU Cai-hui,LI Ning,LIU Jun-ping.Research on the Creep Behavior of Compacted Q3 Malan Loess[J].Journal of Xi'an University of Technology,2011,27(4):392-399.

相似文献/References:

[1]邓通发,桂勇,罗嗣海,等.降雨条件下花岗岩残坡积土路堑边坡稳定性研究[J].地球科学与环境学报,2012,34(04):88.
 DENG Tong-fa,GUI Yong,LUO Si-hai,et al.Study on Slope Stability of Granite Residual Soil Cutting Excavation with Rainfall[J].Journal of Earth Sciences and Environment,2012,34(04):88.
[2]王志兵,邹永胜,李斌,等.桂东南花岗岩风化土与残余节理的微观结构及演化[J].地球科学与环境学报,2020,42(03):405.[doi:10.19814/j.jese.2019.10040]
 WANG Zhi-bing,ZOU Yong-sheng,LI Bin,et al.Micro-structure and Evolution of Relict Joints and Weathered Granite Soils in the Southeastern Guangxi, China[J].Journal of Earth Sciences and Environment,2020,42(04):405.[doi:10.19814/j.jese.2019.10040]
[3]祝艳波,韩宇涛,苗帅升,等.黄土-三趾马红土滑坡滑带土剪切力学特性影响因素[J].地球科学与环境学报,2021,43(04):744.[doi:10.19814/j.jese.2021.05024]
 ZHU Yan-bo,HAN Yu-tao,MIAO Shuai-sheng,et al.Influencing Factors on the Shear Strength of Sliding Zone of Loess-Hipparion Red Clay Landslide[J].Journal of Earth Sciences and Environment,2021,43(04):744.[doi:10.19814/j.jese.2021.05024]
[4]杨 玲,魏 静*,许子伏.基于平滑先验法-麻雀搜索算法-支持向量机回归模型的滑坡位移预测——以三峡库区八字门和白水河滑坡为例[J].地球科学与环境学报,2022,44(06):1096.[doi:10.19814/j.jese.2022.07043]
 YANG Ling,WEI Jing*,XU Zi-fu.Displacement Prediction of Landslide Based on SPA-SSA-SVR Model—Taking Bazimen and Baishuihe Landslides in Three Gorges Reservoir Area, China as Examples[J].Journal of Earth Sciences and Environment,2022,44(04):1096.[doi:10.19814/j.jese.2022.07043]
[5]张雪,魏云杰*,杨成生,等.云南昭通地区滑坡隐患InSAR广域识别与监测[J].地球科学与环境学报,2025,47(01):128.[doi:10.19814/j.jese.2024.04030]
 ZHANG Xue,WEI Yun-jie*,YANG Cheng-sheng,et al.InSAR Wide-area Identification and Monitoring of Landslide Hazards in Zhaotong Area of Yunnan, China[J].Journal of Earth Sciences and Environment,2025,47(04):128.[doi:10.19814/j.jese.2024.04030]

备注/Memo

备注/Memo:
收稿日期:2025-02-07; 修回日期:2025-05-16
基金项目:国家自然科学基金项目(41877247); 中央高校基本科研业务费专项资金项目(300102264906)
*通信作者:祝艳波(1985-),男,辽宁阜新人,教授,博士研究生导师,工学博士,E-mail:zhuyanbo@chd.edu.cn。
更新日期/Last Update: 2025-07-25