|本期目录/Table of Contents|

[1]王志刚,冯亚亚*,张长青,等.黄河上游地区泥石流冲击刚性防护结构运动过程的移动粒子半隐式流固耦合模拟[J].地球科学与环境学报,2025,47(04):618-633.[doi:10.19814/j.jese.2024.11015]
 WANG Zhi-gang,FENG Ya-ya*,ZHANG Chang-qing,et al.MPS-based Fluid-structure Interaction Simulation of Debris Flow Impact on Rigid Protective Structures in the Upper Yellow River Region, China[J].Journal of Earth Sciences and Environment,2025,47(04):618-633.[doi:10.19814/j.jese.2024.11015]
点击复制

黄河上游地区泥石流冲击刚性防护结构运动过程的移动粒子半隐式流固耦合模拟(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第04期
页码:
618-633
栏目:
黄河流域生态保护和高质量发展专刊(下)
出版日期:
2025-07-15

文章信息/Info

Title:
MPS-based Fluid-structure Interaction Simulation of Debris Flow Impact on Rigid Protective Structures in the Upper Yellow River Region, China
文章编号:
1672-6561(2025)04-0618-16
作者:
王志刚1冯亚亚1*张长青2孙中科3徐扬1卢明辉1黄丽颖1马鑫弟1郑俊杰1刘冠男2
(1. 天津铁道职业技术学院 铁道建筑学院,天津 300240; 2. 中国地质科学院矿产资源研究所 自然资源部成矿作用与资源评价重点实验室,北京 100037; 3. 中铁第六勘察设计院集团有限公司,天津 300308)
Author(s):
WANG Zhi-gang1FENG Ya-ya1*ZHANG Chang-qing2SUN Zhong-ke3XU Yang1LU Ming-hui1HUANG Li-ying1MA Xin-di1ZHENG Jun-jie1LIU Guan-nan2
(1. Railway Construction College, Tianjin Railway Technical and Vocational College, Tianjin 300240, China; 2. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China; 3. China Railway Sixth Survey and Design Institute Group Co., Ltd., Tianjin 300308, China)
关键词:
泥石流 刚性防护结构 移动粒子半隐式方法 宾汉姆流变模型 流固耦合 冲击荷载 黄河
Keywords:
debris flow rigid protective structure MPS method Bingham rheological model fluid-structure interaction impact load Yellow River
分类号:
P694
DOI:
10.19814/j.jese.2024.11015
文献标志码:
A
摘要:
黄河上游地区泥石流灾害具有高突发性和强破坏性,其细颗粒含量高、黏度大的特性使得传统数值方法难以准确模拟其冲击过程。基于移动粒子半隐式(MPS)方法与宾汉姆流变模型的耦合框架,构建了适用于泥石流-结构流固耦合模拟的高精度数值模型,并通过对比模型模拟结果与前人试验结果验证了该模型的准确性; 针对黄河上游地区典型泥石流灾害场景,系统模拟了不同泥石流体积(10~30 m3)和边坡坡度(5°~15°)下泥石流对刚性防护结构冲击动力过程的影响。结果表明:①在边坡坡度为5°工况下,当泥石流体积为25 m3时,泥石流冲击力峰值为287.80 kN; 当泥石流体积为30 m3时,泥石流冲击力第1个峰值陡增至681.71 kN,且第2个峰值(261.07 kN)仍具显著破坏性; 当泥石流体积为15~30 m3时,泥石流冲击力峰值与泥石流体积之间的关系呈现指数函数关系; 根据这一关系,泥石流体积从20 m3增长到25 m3时,泥石流冲击力峰值增大幅度仅为52.4%,但是泥石流体积从25 m3增长到30 m3时,泥石流冲击力峰值增大幅度高达116.5%; 泥石流冲击力峰值突变对应的泥石流体积阈值为27 m3。②在泥石流体积为15 m3工况下,当边坡坡度增大至15°时,泥石流冲击力时程曲线呈现显著双峰特征,峰值分别为442.54和398.29 kN(两者相差小于10%),导致刚性防护结构反复受力的风险增加。
Abstract:
Debris flow disasters in the upper Yellow River region are characterized by high suddenness and strong destructiveness, with their high fine-particle content and viscosity posing challenges for traditional numerical methods in accurately simulating impact processes. The high-precision numerical models for fluid-structure interaction(FSI)simulation of debris flows were developed by coupling the moving particle semi-implicit(MPS)method with Bingham rheological model; the high-precision numerical models' accuracy was validated through the comparison of simulations results by the models and experimental results from the literatures; focusing on typical debris flow scenarios in the upper Yellow River region, the effects of debris flow volume(10-30 m3)and slope gradient(5°-15°)on the impact dynamics of rigid protective structures were systematically simulated. The results show that ① under the slope gradient of 5°, when the debris flow volume is 25 m3, the peak impact force of debris flow is 287.80 kN; when the debris flow volume is 25 m3, the first peak impact force of debris flow sharply increases to 681.71 kN with a secondary peak(261.07 kN)remaining significantly destructive; when the debris flow volume is 15-30 m3, the relationship between peak impact force and volume of debris flow is exponential function; according to the relationship, the increase amplitudes of peak impact force are 52.4% and 116.5% when the debris flow volumes increase from 20 to 25 m3 and from 25 to 30 m3, respectively; there is a critical volume threshold(27 m3)of debris flow when the peak impact force increases sharply. ② Under the debris flow volume of 15 m3, when the slope gradient is 15°, the time-history curves of the impact force of debris flow is a distinct bimodal, with two peaks reaching 442.54 and 398.29 kN, respectively(the difference is less than 10%), increasing structural fatigue risk.

参考文献/References:

[1] 张士俊,王宏宇,唐 莉.黄河流域陕西段地质灾害空间分布特征及其对极端气温的响应[J].水利水电技术,2024,55(12):54-65.
ZHANG Shi-jun,WANG Hong-yu,TANG Li.Spatial Distribution Characteristics of Geological Hazards and Their Response to Extreme Temperatures in the Shaanxi Section of the Yellow River Basin[J].Water Resources and Hydropower Engineering,2024,55(12):54-65.
[2] 李 松,刘晋文,窦晓东.甘肃省地质灾害发育特征[J].科学技术与工程,2024,24(11):4416-4424.
LI Song,LIU Jin-wen,DOU Xiao-dong.Development Characteristics of Geological Hazards in Gansu Pro-vince[J].Science Technology and Engineering,2024,24(11):4416-4424.
[3] 张 地,张 岩,杨海明,等.青海黄河流域泥石流空间格局和趋势预估[J].辽宁工程技术大学学报(自然科学版),2024,43(1):10-19.
ZHANG Di,ZHANG Yan,YANG Hai-ming,et al.Spatial Pattern and Prediction of Debris Flow in the Yellow River Basin of Qinghai[J].Journal of Liaoning Technical University(Natural Science),2024,43(1):10-19.
[4] 申艳军,杨博涵,王双明,等.黄河几字弯区煤炭基地地质灾害与生态环境典型特征[J].煤田地质与勘探,2022,50(6):104-117.
SHEN Yan-jun,YANG Bo-han,WANG Shuang-ming,et al.Typical Characteristics of Geological Ha-zards and Ecological Environment of Coal Base in the Bends Area of the Yellow River[J].Coal Geology & Exploration,2022,50(6):104-117.
[5] 郭富赟,宋晓玲,刘明霞.黄河流域甘肃段地质灾害发育特征[J].中国地质灾害与防治学报,2021,32(5):130-136.
GUO Fu-yun,SONG Xiao-ling,LIU Ming-xia.The Development Characteristics of Geological Hazards in Gansu Segment of the Yellow River Basin[J].The Chinese Journal of Geological Hazard and Control,2021,32(5):130-136.
[6] 王东坡,瞿华南,沈 伟,等.考虑坝后淤积的泥石流冲击拦挡坝动力响应研究[J].工程科学与技术,2021,53(2):1-9.
WANG Dong-po,QU Hua-nan,SHEN Wei,et al.Dynamic Response Analysis for Debris Flow Dam with Sediments[J].Advanced Engineering Sciences,2021,53(2):1-9.
[7] WANG G L,QI S W,LAN H X.Numerical Simulation of Limit Pressure Against Debris Flow for the 8th August,2010 Sanyanyu Debris Flow in China:A Case Study[C]∥IAEG.Proceedings of the International Symposium and 9th Asian Regional Conference of IAEG.Beijing:IAEG,2013:173-177.
[8] LAN H X,MARTIN C D,ZHOU C H.Numerical Modeling of Debris Flow Kinematics Using Discrete Element Method Combined with GIS[M]∥CHEN Z Y,ZHANG J M,HO K,et al.Landslides and Engineered Slopes:From the Past to the Future.London:CRC Press,2008:198-206.
[9] HE X Z,LIANG D F,WU W,et al.Study of the Interaction Between Dry Granular Flows and Rigid Barriers with an SPH Model[J].International Journal for Numerical and Analytical Methods in Geomechanics,2018,42(11):1217-1234.
[10] 刘洪江,兰恒星,程维明.玉树地震后结古镇群发式泥石流灾害数值模拟及危险性分析[J].山地学报,2010,28(4):444-452.
LIU Hong-jiang,LAN Heng-xing,CHEN Wei-ming.Numeric Simulation for Group-occurring Debris Flows and Its Risk Analysis in Jiegu Township After the Earthquake of Yushu,Qinghai Province[J].Journal of Mountain Science,2010,28(4):444-452.
[11] 于 虹,李 昊,许 标,等.基于SPH-FEM耦合方法的泥石流冲击输电塔基础的动力分析[J].防灾减灾工程学报,2024,44(1):68-78.
YU Hong,LI Hao,XU Biao,et al.Dynamic Response of Transmission Tower Foundation Impacted by Debris Flow Using Coupled SPH-FEM Method[J].Journal of Disaster Prevention and Mitigation Engineering,2024,44(1):68-78.
[12] 陆玉春,郝梦洁,赵德博,等.基于SPH-FEM耦合的泥石流冲击双柱桥墩动力分析[J].深圳大学学报(理工版),2025,42(4):419-427.
LU Yu-chun,HAO Meng-jie,ZHAO De-bo,et al.Dynamic Analysis of Debris Flow Impact on Double-co-lumn Bridge Piers Based on SPH-FEM Coupling[J].Journal of Shenzhen University(Science and Engineering),2025,42(4):419-427.
[13] 刘建康,蔡 强,张恒翔,等.基于SPH-DEM-FEM 耦合的泥石流冲击排导槽肋槛的动力响应研究[J].工程科学与技术,2025,DOI:10.12454/j.jsuese.202401040.
LIU Jian-kang,CAI Qiang,ZHANG Heng-xiang,et al.Dynamic Response Analysis of Debris Flow Impacting Drainage Channel Rib Sills Based on SPH-DEM-FEM Coupling[J].Advanced Engineering Sciences,2025,DOI:10.12454/j.jsuese.202401040.
[14] 王 浩,张金涛,代 林,等.基于数值模拟的泥石流拦挡坝群布局优化[J].山地学报,2024,42(6):805-815.
WANG Hao,ZHANG Jin-tao,DAI Lin,et al.Layout Optimization of Debris Flow Check Dam Cascade Ba-sed on Numerical Simulation[J].Mountain Research,2024,42(6):805-815.
[15] 张伟喜,闫长斌.考虑双向流固耦合的受泥流冲刷桥墩力学性能分析[J].人民黄河,2024,46(10):158-162.
ZHANG Wei-xi,YAN Chang-bin.Analysis of Mechanical Properties of Silt Washed Pier Considering Two-way Fluid-structure Coupling[J].Yellow River,2024,46(10):158-162.
[16] ZHUANG J Q,MA P H,CHANG L,et al.Mudflows Due to Liquefaction Triggered by Earthquakes in Terrains with Gentle Lower Slopes:A Case Study[J].Landslides,2025,22(1):95-108.
[17] 叶 豪,王乃昂,赵力强,等.积石山Ms6.2级地震同震泥流动力学过程模拟研究[J].冰川冻土,2025,47(2):430-440.
YE Hao,WANG Nai-ang,ZHAO Li-qiang,et al.Dynamic Process Simulation of Coseismic Mudflow Triggered by the Jishishan Ms6.2 Earthquake[J].Journal of Glaciology and Geocryology,2025,47(2):430-440.
[18] YANG W B,OUYANG C J,XIANG W,et al.Mechanism Analysis and Numerical Simulation of the Zhongchuan Loess Earthflow Induced by the Ms6.2 Earthquake[J].Journal of Glaciology and Geocryology,2025,47(2):430-440.
[18] YANG W B,OUYANG C J,XIANG W,et al.Mechanism Analysis and Numerical Simulation of the Zhongchuan Loess Earthflow Induced by the b>s 6.2 Jishishan Earthquake in Gansu,China[J].Engineering Geology,2025,344:107828.
[19] 庞海松,谢骏锦,张小明,等.基于RAMMS数值模拟的短时强降雨型泥石流危险性评价[J].地质科技通报,2024,43(2):215-225.
PANG Hai-song,XIE Jun-jin,ZHANG Xiao-ming,et al.Hazard Assessment of Debris Flow Induced by Short-time Heavy Rainfall Based on RAMMS Nume-rical Simulation[J].Bulletin of Geological Science and Technology,2024,43(2):215-225.
[20] 宋俊钢,杨 顺,焦加璇,等.基于易发性评价的泥石流沟危险范围模拟预测研究:以得荣县为例[J].三峡大学学报(自然科学版),2025,47(3):50-58.
SONG Jun-gang,YANG Shun,JIAO Jia-xuan,et al.Simulation and Prediction of Dangerous Range of Debris Flow Gully Based on Vulnerability Assessment:A Case Study of Derong County[J].Journal of China Three Gorges University(Natural Sciences),2025,47(3):50-58.
[21] RICKENMANN D,LAIGLE D,MCARDELL B W,et al.Comparison of 2D Debris-flow Simulation Mo-dels with Field Events[J].Computational Geoscien-ces,2006,10(2):241-264.
[22] TANG H,XIA C Y,WANG K P,et al.Reliability-based Vulnerability Analysis of Bridge Pier Subjected to Debris Flow Impact[J].Structure and Infrastructure Engineering,2024,20(1):1-12.
[23] 曾浩楠,何沛建,冯 侠,等.泥石流冲击桥梁结构研究综述[J].公路交通技术,2024,40(6):30-41.
ZENG Hao-nan,HE Pei-jian,FENG Xia,et al.Research Review on Debris Flow Impact on Bridge Stru-cture[J].Technology of Highway and Transport,2024,40(6):30-41.
[24] REN S K,ZHANG P,MAN T,et al.Numerical Assessments of the Influences of Soil-boulder Mixed Flow Impact on Downstream Facilities[J].Computers and Geotechnics,2023,153:105055.
[25] XIONG Q G,MADADI E,LORENZINI G.A LBM-DEM Solver for Fast Discrete Particle Simulation of Particle-fluid Flows[J].Continuum Mechanics and Thermodynamics,2014,26(6):907-917.
[26] LIU C,YU Z X,ZHAO S C.A Coupled SPH-DEM-FEM Model for Fluid-particle-structure Interaction and a Case Study of Wenjia Gully Debris Flow Impact Estimation[J].Landslides,2021,18(7):2403-2425.
[27] QIAO Z T,SHEN W,BERTI M,et al.An Advanced SPH Model for Protective Constructions of Debris Flows Adopting the Modified HBP Constitutive Law[J].Landslides,2023,20(11):2437-2453.
[28] XIAO S H,ZHANG L M,HE J,et al.Hypermobility of a Catastrophic Earthquake-induced Loess Landslide[J].Engineering Geology,2024,343:107777.
[29] 梁 恒,李吉林,刘发明,等.基于光滑粒子流体动力学方法的泥石流冲击桥墩试验模拟[J].岩土力学,2021,42(5):1473-1484.
LIANG Heng,LI Ji-lin,LIU Fa-ming,et al.Simulation of Debris Flow Impacting Bridge Pier Tests Ba-sed on Smooth Particle Hydromechanics Method[J].Rock and Soil Mechanics,2021,42(5):1473-1484.
[30] LUCY L B.A Numerical Approach to the Testing of the Fission Hypothesis[J].The Astronomical Journal,1977,82:1013-1024.
[31] KOSHIZUKA S,OKA Y.Moving-particle Semi-implicit Method for Fragmentation of Incompressible Fluid[J].Nuclear Science and Engineering,1996,123(3):421-434.
[32] LI G,GAO J C,WEN P P,et al.A Review on MPS Method Developments and Applications in Nuclear Engineering[J].Computer Methods in Applied Mechanics and Engineering,2020,367:113166.
[33] HIDAYATI A N,WARIS A,MUSTARI A P A,et al.Moving Particle Semi-implicit Simulation on the Molten Wood's Metal Downward Relocation Process[J].Nuclear Science and Techniques,2021,32(8):88.
[34] MUSTARI A P A,OKA Y.Molten Uranium Eutectic Interaction on Iron-alloy by MPS Method[J].Nuclear Engineering and Design,2014,278:387-394.
[35] LI G,OKA Y.Sensitivity Study of Melt Behavior of Fukushima Daiichi Unit 1 Type Accident with MELCOR Code and MPS Method[J].Journal of Nuclear Science and Technology,2015,52(1):109-121.
[36] CHEN R H,OKA Y,LI G,et al.Numerical Investigation on Melt Freezing Behavior in a Tube by MPS Method[J].Nuclear Engineering and Design,2014,273:440-448.
[37] JAFARI NODOUSHAN E,SHAKIBAEINIA A,HOSSEINI K.A Multiphase Meshfree Particle Method for Continuum-based Modeling of Dry and Submerged Granular Flows[J].Powder Technology,2018,335:258-274.
[38] SUN Z,DJIDJELI K,XING J T,et al.Modified MPS Method for the 2D Fluid Structure Interaction Pro-blem with Free Surface[J].Computers & Fluids,2015,122:47-65.
[39] ZHANG Y L,TANG Z Y,WAN D C.Numerical Investigations of Waves Interacting with Free Rolling Body by Modified MPS Method[J].International Journal of Computational Methods,2016,13(4):1641013.
[40] HASHIMOTO H,GRENIER N,SUEYOSHI M,et al.Comparison of MPS and SPH Methods for Solving Forced Motion Ship Flooding Problems[J].Applied Ocean Research,2022,118:103001.
[41] IDELSOHN S,OÑATE E,BECKER P.Particle Me-thods in Computational Fluid Dynamics[M]∥STEIN E,BORST R D,HUGHES T J R.Encyclopedia of Computational Mechanics.Hoboken:Wiley,2018:ecm2113.
[42] 贾世涛,崔 鹏,陈晓清,等.拦沙坝调节泥石流拦挡与输移性能的试验研究[J].岩石力学与工程学报,2011,30(11):2338-2345.
JIA Shi-tao,CUI Peng,CHEN Xiao-qing,et al.Experimental Study of Regulating Barrage and Transportation Properties of Debris Flow by Silt-trap Dam[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(11):2338-2345.
[43] KOMATINA D,JOVANOVIC M.Experimental Stu-dy of Steady and Unsteady Free Surface Flows with Water-clay Mixtures[J].Journal of Hydraulic Research,1997,35(5):579-590.
[44] CANELAS R B,CRESPO A J C,DOMÍNGUEZ J M,et al.SPH-DCDEM Model for Arbitrary Geometries in Free Surface Solid-fluid Flows[J].Computer Phy-sics Communications,2016,202:131-140.
[45] XIONG J B,ZHU Y Z,ZHANG T F,et al.Lagrangi-an Simulation of Three-dimensional Macro-scale Mel-ting Based on Enthalpy Method[J].Computers & Fluids,2019,190:168-177.
[46] TAO Y,SHIBATA K,KOSHIZUKA S.A Bingham Snow Model for Train Safety Built Using the Moving Particle Semi-implicit Method[J].Transactions of the Japan Society for Computational Engineering and Science,2017,2017:20170010.
[47] 冯 鑫,陈兴长,陈 慧,等.泥石流宽级配砾石土结构特征实验研究[J].科学技术与工程,2023,23(32):13934-13943.
FENG Xin,CHEN Xing-zhang,CHEN Hui,et al.Experimental Study on Packing Structural Characteristics of Wide-graded Gravel Soil in Debris Flow[J].Science Technology and Engineering,2023,23(32):13934-13943.
[48] 杨 超,张怀新.移动粒子半隐式法模拟入水冲击流固耦合问题[J].浙江大学学报(工学版),2018,52(11):2092-2097.
YANG Chao,ZHANG Huai-xin.Simulation of Fluid-solid Coupling Problem During Water-entry Impact Using Moving-particle Semi-implicit Method[J].Journal of Zhejiang University(Engineering Science),2018,52(11):2092-2097.
[49] KOSHIZUKA S,SHIBATA K,TANAKA M,et al.Numerical Analysis of Fluid-structure and Fluid-rigid Body Interactions Using a Particle Method[C]∥ASME/JSME.ASME/JSME 2007 5th Joint Fluids Engineering Conference Fluids Engineering Division Summer Meeting Volume 1:Symposia,Parts A and B.San Diego:ASME/JSME.2007:177-182.
[50] 刘福臻,张浩韦,肖东升.基于FLO-2D数值模拟的结底岗村公路泥石流危险性评价[J].科学技术与工程,2022,22(13):5417-5424.
LIU Fu-zhen,ZHANG Hao-wei,XIAO Dong-sheng.Risk Assessment of Highway Debris Flow in Jiedigang Village Based on FLO-2D Numerical Simulation[J].Science Technology and Engineering,2022,22(13):5417-5424.
[51] 张浩韦,刘福臻,王军朝,等.基于FLO-2D数值模拟的工布江达县城泥石流灾害危险性评价[J].地质力学学报,2022,28(2):306-318.
ZHANG Hao-wei,LIU Fu-zhen,WANG Jun-chao,et al.Hazard Assessment of Debris Flows in Kongpo Gyamda,Tibet Based on FLO-2D Numerical Simulation[J].Journal of Geomechanics,2022,28(2):306-318.
[52] SONG D R,CHEN X Q.A New Framework to Cha-racterize and Unify the Impact Load Exerted by Flow-type Mass Movements[J].Landslides,2024,21(8):1929-1940.
[53] CHOI C E,NG C W W,SONG D,et al.Flume Investigation of Landslide Debris-resisting Baffles[J].Canadian Geotechnical Journal,2014,51(5):540-553.
[54] 赵德博,郝梦洁,熊 昊.基于SPH-DEM的泥石流冲击刚性防护结构的动力过程研究[J].自然灾害学报,2023,32(6):47-57.
ZHAO De-bo,HAO Meng-jie,XIONG Hao.Research on the Dynamic Process of Debris Flow Impacting Ri-gid Barrier Based on SPH-DEM[J].Journal of Natural Disasters,2023,32(6):47-57.
[55] SHA S Y,DYSON A P,KEFAYATI G,et al.An Equi-valent Stiffness Flexible Barrier for Protection Against Boulders Transported by Debris Flow[J].Internatio-nal Journal of Civil Engineering,2024,22(5):705-722.

相似文献/References:

[1]谢和平,邓建辉,李碧雄.四川芦山地震灾害调查与灾后重建的相关问题分析[J].地球科学与环境学报,2013,35(02):1.
 XIE He-ping,DENG Jian-hui,LI Bi-xiong.Investigation of Lushan Earthquake Disasters and Analysis of Related Problems During Post-quake Reconstruction in Sichuan[J].Journal of Earth Sciences and Environment,2013,35(04):1.
[2]谢洪,刘维明,赵晋恒,等.四川石棉2012年“7·14”唐家沟泥石流特征[J].地球科学与环境学报,2013,35(04):90.
 XIE Hong,LIU Wei-ming,ZHAO Jin-heng,et al.Characteristics of Tangjiagou Debris Flow in Shimian of Sichuan in July 14, 2012[J].Journal of Earth Sciences and Environment,2013,35(04):90.
[3]马超,胡凯衡,宋国虎,等.汶川地震灾区帽壳子滑坡形成泥石流的过程和特征[J].地球科学与环境学报,2013,35(04):98.
 MA Chao,HU Kai-heng,SONG Guo-hu,et al.Processes and Characteristics of Debris Flows Induced by Maoqiaozi Landslide in Wenchuan Earthquake Stricken Area[J].Journal of Earth Sciences and Environment,2013,35(04):98.
[4]乔成,欧国强,潘华利,等.泥石流数值模拟方法研究进展[J].地球科学与环境学报,2016,38(01):134.
 QIAO Cheng,OU Guo-qiang,PAN Hua-li,et al.Review on Numerical Modeling Methods of Debris Flow[J].Journal of Earth Sciences and Environment,2016,38(04):134.
[5]宋志,李宗亮,巴仁基,等.贡嘎山东坡雅家埂河特大型泥石流动力学特征[J].地球科学与环境学报,2010,32(04):416.
 SONG Zhi,LI Zong-liang,BA Ren-ji,et al.Kinetic Characteristics of Oversize Mud-rock Flow in Yajiageng River of Eastern Gongga Mountain[J].Journal of Earth Sciences and Environment,2010,32(04):416.
[6]李阔,唐川.泥石流危险范围预测模型及在昆明东川城区的应用[J].地球科学与环境学报,2006,28(04):69.
 LI Kuo,TANG Chuan.Application of Prediction Model of Hazard Range about Debris Flows around Dongchuan Zone in Kunming[J].Journal of Earth Sciences and Environment,2006,28(04):69.
[7]田梅青,姜振泉,刘炜金,等.山东省栖霞市泥石流灾害的 成生环境及危险性趋势分区评价[J].地球科学与环境学报,2005,27(04):24.
 TIAN Mei-qing,JIANG Zhen-quan,LIU Wei-jin,et al.Zonal Evaluation on Formation Environment and Dangerous Trend of Debris Flow in Qixia City of Shandong Province[J].Journal of Earth Sciences and Environment,2005,27(04):24.
[8]夏曼玉,张少杰*,杨红娟,等.基于光纤传感技术的泥石流冲击力测量系统与反演方法[J].地球科学与环境学报,2021,43(06):1009.[doi:10.19814/j.jese.2021.04030]
 XIA Man-yu,ZHANG Shao-jie*,YANG Hong-juan,et al.Fiber Sensing Technique Based System to Measure and Invert Debris Flow Impact Force[J].Journal of Earth Sciences and Environment,2021,43(04):1009.[doi:10.19814/j.jese.2021.04030]

备注/Memo

备注/Memo:
收稿日期:2024-11-13; 修回日期:2025-06-15
基金项目:国家自然科学基金项目(41902290); 现代职业教育体系建设改革新模式专项项目(ZBJ240021); 中国地质科学院矿产资源研究所基本科研业务费专项资金项目(KK2416,KK2202)
*通信作者:冯亚亚(1984-),女,河北保定人,讲师,E-mail:283590460@qq.com。
更新日期/Last Update: 2025-07-25