|本期目录/Table of Contents|

[1]马永智,韩方元,李龙山,等.宁夏水泥黄土电阻率响应规律和模型[J].地球科学与环境学报,2025,47(04):646-661.[doi:10.19814/j.jese.2024.09042]
 MA Yong-zhi,HAN Fang-yuan,LI Long-shan,et al.Response Law and Model of Electrical Resistivity of Cement-improved Loess in Ningxia, China[J].Journal of Earth Sciences and Environment,2025,47(04):646-661.[doi:10.19814/j.jese.2024.09042]
点击复制

宁夏水泥黄土电阻率响应规律和模型(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第04期
页码:
646-661
栏目:
黄河流域生态保护和高质量发展专刊(下)
出版日期:
2025-07-15

文章信息/Info

Title:
Response Law and Model of Electrical Resistivity of Cement-improved Loess in Ningxia, China
文章编号:
1672-6561(2025)04-0646-16
作者:
马永智1韩方元23李龙山1王杰14高建强5张营5薛志佳5*
(1. 宁夏海平高速公路管理有限公司,宁夏 中卫 755000; 2. 宁夏交通建设股份有限公司,宁夏 银川 750021; 3. 宁夏回族自治区道路养护工程技术研究中心,宁夏 银川 750021; 4. 宁夏大学 土木与水利工程学院,宁夏 银川 750021; 5. 长安大学 公路学院,陕西 西安 710064)
Author(s):
MA Yong-zhi1HAN Fang-yuan23LI Long-shan1WANG Jie14GAO Jian-qiang5ZHANG Ying5XUE Zhi-jia5*
(1. Ningxia Haiping Expressway Management Co., Ltd., Zhongwei 755000, Ningxia, China; 2. Ningxia Communications Construction Co., Ltd., Yinchuan 750021, Ningxia, China; 3. Ningxia Hui Autonomous Region Road Maintenance Engineering Technology Research Center, Yinchuan 750021, Ningxia, China; 4. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, Ningxia, China; 5. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
关键词:
湿陷性黄土 水泥黄土 电阻率法 挤密桩 多因素表征模型 含水率 干密度
Keywords:
collapsible loess cement-improved loess resistivity method compaction pile multi-factor characterization model moisture dry density
分类号:
TU444
DOI:
10.19814/j.jese.2024.09042
文献标志码:
A
摘要:
研究水泥黄土挤密桩的电阻率响应规律,对提高湿陷性黄土地基质量检测效率、降低检测成本具有重要意义。以宁夏海原—甘肃平川高速公路宁夏段的水泥黄土挤密桩为研究对象,通过控制电流频率、干密度、含水率和养护龄期等变量,测定水泥黄土的电阻率变化规律,并建立多因素耦合电阻率模型,以期为宁夏水泥黄土挤密桩的无损检测提供理论依据。结果表明:①在干密度为1.62~1.81 g·cm-3、含水率为8%~14%和养护龄期为1~28 d的试验条件下,水泥黄土内部颗粒的排列方式及胶结作用使其呈现明显的频率依赖性; 在电流频率低于50 kHz时,土体表现出显著的电容器效应,导致电阻率随电流频率变化明显; 而当电流频率超过50 kHz后,电容器效应减弱,电阻率趋于稳定; ②含水率与干密度的增加会增强土体的导电性,使电阻率逐渐降低; 但当含水率超过最优含水率(11.0%)后,自由水膜连通性趋于饱和,电阻率降幅减缓; 养护龄期的延长促使水泥水化产物填充孔隙,降低离子迁移效率,导致电阻率逐渐升高。基于试验数据建立了宁夏水泥黄土电阻率与含水率、干密度、养护龄期的多因素表征模型——多因素耦合电阻率模型,其相关性良好。敏感性分析表明,各因素对电阻率的影响程度从大到小依次为含水率、干密度、养护龄期。
Abstract:
Study on the resistivity response characteristics of cement-improved loess compaction piles is of great significance for improving the quality inspection efficiency and reducing the testing costs of collapsible loess foundations. Taking the cement-improved loess compaction piles in Ningxia section of Haiyuan-Pingchuan highway from Ningxia to Gansu as the research object, variables including current frequency, dry density, moisture, and curing age were used to measure the resistivity variation patterns of cement-improved loess and establish a multi-factor coupled resistivity model, aiming to provide theoretical basis for non-destructive testing of cement-improved loess compaction piles in Ningxia. The results show that ① within the experimental conditions of dry density(1.62-1.81 g·cm-3), moisture(8%-14%)and curing age(1-28 d), the particle arrangement and cementation effects in cement-improved loess exhibit significant frequency dependence; when the current frequency is below 50 kHz, the soil demonstrates notable capacitor effects, causing obvious resistivity variations with current frequency changes; when the current frequency exceeds 50 kHz, the capacitor effects weaken and the resistivity stabilizes; ② the increase of moisture and dry density enhances the cement-improved loess conductivity, leading to gradual reduction of resistivity; however, when moisture exceeds the optimum moisture(11.0%), the connectivity of free water films approaches saturation and the decreasing trend of resistivity slows down; the extension of curing age promotes cement hydration products to fill pores, reducing ion migration efficiency and consequently increasing resistivity gradually. Based on experimental data, a multi-factor characterization model, named as multi-factor coupled resistivity model, was established according to the resistivity of cement-improved loess in Ningxia changing with moisture, dry density and curing age, showing good correlation. Sensitivity analysis reveals that the influencing factors on resistivity are moisture, dry density and curing age in descending order.

参考文献/References:

[1] JIANG M J,ZHANG F G,HU H J,et al.Structural Characterization of Natural Loess and Remolded Loe-ss Under Triaxial Tests[J].Engineering Geology,2014,181:249-260.
[2] SHAO X X,ZHANG H Y,TAN Y.Collapse Beha-vior and Microstructural Alteration of Remolded Loe-ss Under Graded Wetting Tests[J].Engineering Geo-logy,2018,233:11-22.
[3] 孙 磊,胡海军,严瑞珉,等.压实黄土地基载荷浸水模型试验及湿陷变形计算方法研究[J].地震工程学报,2023,45(2):319-328.
SUN Lei,HU Hai-jun,YAN Rui-min,et al.Loading-wetting Model Test on the Compacted Loess Foundation and Calculation of Its Collapsible Deformation[J].China Earthquake Engineering Journal,2023,45(2):319-328.
[4] CAI G Q,LIU Q Q,LI K H,et al.Volume Change Behavior of Compacted Loess Under Drying/Wetting and Freezing/Thawing Cycles[J].Engineering Geology,2023,326:107329.
[5] 焦红波,赵继伟,刘耀宗.土挤密桩法在湿陷性黄土地基处理中的应用[J].人民黄河,2012,34(4):121-122,125.
JIAO Hong-bo,ZHAO Ji-wei,LIU Yao-zong.Application of Earth Pile in Collapsible Loess Ground Treatment[J].Yellow River,2012,34(4):121-122,125.
[6] 马天忠,孙晨东,高玉广,等.湿陷性黄土场地双向螺旋挤土灌注桩成孔挤密效应与极限承载力试验研究[J].建筑科学与工程学报,2022,39(5):241-250.
MA Tian-zhong,SUN Chen-dong,GAO Yu-guang,et al.Test Research on Soil Compaction Effect and Ultimate Bearing Capacity of Bidirectional Soil Displacement Screw Piles in Collapsible Loess Site[J].Journal of Architecture and Civil Engineering,2022,39(5):241-250.
[7] 辛鹏飞,吴 刚,余 斌,等.素土挤密桩在湿陷性黄土地区车库地基中的应用[J].建筑结构,2022,52(增1):2804-2808.
XIN Peng-fei,WU Gang,YU Bin,et al.Application of Plain Soil Compaction Pile in Garage Foundation of Collapsible Loess Area[J].Building Structure,2022,52(S1):2804-2808.
[8] 邓友生,李 龙,孙雅妮,等.水泥粉煤灰处理湿陷性黄土路基承载性能[J].交通运输工程学报,2023,23(4):92-103.
DENG You-sheng,LI Long,SUN Ya-ni,et al.Bearing Capability of Collapsible Loess Subgrade Through Cement-fly Ash Treatment[J].Journal of Traffic and Transportation Engineering,2023,23(4):92-103.
[9] 徐林荣,刘明宇,吕大伟,等.冰水堆积物路基压实质量评定方法研究[J].铁道科学与工程学报,2010,7(6):50-54.
XU Lin-rong,LIU Ming-yu,LYU Da-wei,et al.Determination Method Study on Compaction Effect of Fluvioglacial Deposits-subgrade[J].Journal of Railway Science and Engineering,2010,7(6):50-54.
[10] 李小勇,富志根.路基压实密度气囊检测方法研究[J].岩土工程学报,2003,25(5):619-623.
LI Xiao-yong,FU Zhi-gen.Study on Balloon Testing Method for Compacted Density of Roadbed[J].Chinese Journal of Geotechnical Engineering,2003,25(5):619-623.
[11] 储 亚,查甫生,刘松玉,等.基于电阻率法的膨胀土膨胀性评价研究[J].岩土力学,2017,38(1):157-164.
CHU Ya,ZHA Fu-sheng,LIU Song-yu,et al.Evaluation of Expansibility of Expansive Soil Using Resistivity Method[J].Rock and Soil Mechanics,2017,38(1):157-164.
[12] 朱银侠,刘汉乐,杨登波,等.PFAS污染砂土的电阻率特性试验[J].地球物理学进展,2023,38(4):1912-1918.
ZHU Yin-xia,LIU Han-le,YANG Deng-bo,et al.Electrical Resistivity Experiment of Sand Contaminated by PFAS[J].Progress in Geophysics,2023,38(4):1912-1918.
[13] 吴道祥,熊福才,郭静芳,等.不同含水率膨胀土的无侧限抗压强度-电阻率试验研究[J].合肥工业大学学报(自然科学版),2016,39(12):1688-1692.
WU Dao-xiang,XIONG Fu-cai,GUO Jing-fang,et al.Unconfined Compressive Strength and Resistivity Test of Expansive Soil with Different Water Contents[J].Journal of Hefei University of Technology(Natural Science),2016,39(12):1688-1692.
[14] 温 浩,索崇娴,郝雅芬,等.赤泥-钙基复合水泥土的强度与电阻率特性研究[J].广西大学学报(自然科学版),2021,46(4):822-830.
WEN Hao,SUO Chong-xian,HAO Ya-fen,et al.Study on Strength and Resistivity of Red Mud Calcium-based Composite Cemented Soil[J].Journal of Guangxi University(Natural Science Edition),2021,46(4):822-830.
[15] 陈议城,黄 翔,陈学军,等.含水率及孔隙率对黏性土电阻率影响的试验研究:以桂林红黏土、粉质黏土为例[J].科学技术与工程,2020,20(33):13777-13783.
CHEN Yi-cheng,HUANG Xiang,CHEN Xue-jun,et al.Experimental Study on Influences of Moisture Content and Porosity to Cohesive Soil Resistivity:Ta-king Guilin Red Clay and Silty Clay as Example[J].Science Technology and Engineering,2020,20(33):13777-13783.
[16] CUI P,GE Y G,LI S J,et al.Scientific Challenges in Disaster Risk Reduction for the Sichuan-Tibet Railway[J].Engineering Geology,2022,309:106837.
[17] 兰恒星,彭建兵,祝艳波,等.黄河流域地质地表过程与重大灾害效应研究与展望[J].中国科学:地球科学,2022,52(2):199-221.
LAN Heng-xing,PENG Jian-bing,ZHU Yan-bo,et al.Research on Geological and Surfacial Processes and Major Disaster Effects in the Yellow River Basin[J].Science China:Earth Sciences,2022,52(2):199-221.
[18] ARULANANDAN K,SMITH S S.Electrical Dispersion in Relation to Soil Structure[J].Journal of the Soil Mechanics and Foundations Division,1973,99(12):1113-1133.
[19] TAYLOR M A,ARULANANDAN K.Relationships Between Electrical and Physical Properties of Cement Pastes[J].Cement and Concrete Research,1974,4(6):881-897.
[20] 刘志彬,张 勇,方 伟,等.黄土电阻率与其压实特性间关系试验研究[J].西安科技大学学报,2013,33(1):84-90.
LIU Zhi-bin,ZHANG Yong,FANG Wei,et al.Experimental Research on Relationship Between Electrical Resistivity and Compactibility of Loess[J].Journal of Xi'an University of Science and Technology,2013,33(1):84-90.
[21] 查甫生,刘松玉,杜延军,等.击实黄土的电阻率特性试验研究[J].岩土力学,2011,32(增2):155-158,165.
ZHA Fu-sheng,LIU Song-yu,DU Yan-jun,et al.Cha-racteristics of Electrical Resistivity of Compacted Loess[J].Rock and Soil Mechanics,2011,32(S2):155-158,165.
[22] 韩立华.电阻率法在污染土评价与处理中的应用研究[D].南京:东南大学,2006.
HAN Li-hua.Study on the Application of Electrical Resistivity Method in Evaluation and Reinforcement for Contaminated Soils[D].Nanjing:Southeast University,2006.
[23] 刘国华,王振宇,黄建平.土的电阻率特性及其工程应用研究[J].岩土工程学报,2004,26(1):83-87.
LIU Guo-hua,WANG Zhen-yu,HUANG Jian-ping.Research on Electrical Resistivity Feature of Soil and Its Application[J].Chinese Journal of Geotechnical Engineering,2004,26(1):83-87.
[24] 蒋 超,晏长根,辛 远,等.水泥土电阻率对测试频率与含水率的响应特征试验研究[J].公路交通科技,2023,40(7):52-59.
JIANG Chao,YAN Chang-gen,XIN Yuan,et al.Experimental Study on Response Characteristics of Cement-soil Resistivity to Test Frequency and Water Content[J].Journal of Highway and Transportation Research and Development,2023,40(7):52-59.
[25] 宋 杰,李术才,刘 斌,等.基于电阻率特性的非饱和土压实度定量评价方法[J].长安大学学报(自然科学版),2015,35(6):33-41.
SONG Jie,LI Shu-cai,LIU Bin,et al.Quantitative Assessment Method of Unsaturated Soil Compaction Degree Based on Resistivity Property[J].Journal of Chang'an University(Natural Science Edition),2015,35(6):33-41.
[26] 胡 智,艾聘博,李志超,等.干湿循环-动荷载贯序耦合作用下压实粉质黏土电阻率演化规律[J].岩土力学,2021,42(10):2722-2732.
HU Zhi,AI Pin-bo,LI Zhi-chao,et al.Electrical Resistivity Evolution of Compacted Silty Clay Under Wetting-drying Cycles Sequentially Coupled with Dynamic Loads[J].Rock and Soil Mechanics,2021,42(10):2722-2732.
[27] DE MELO L B B,SILVA B M,PEIXOTO D S,et al.Effect of Compaction on the Relationship Between Electrical Resistivity and Soil Water Content in Oxisol[J].Soil and Tillage Research,2021,208:104876.
[28] HOVHANNISSIAN G,PODWOJEWSKI P,LE TROQUER Y,et al.Mapping Spatial Distribution of Soil Properties Using Electrical Resistivity on a Long Term Sugarcane Trial in South Africa[J].Geoderma,2019,349:56-67.
[29] 申纪伟,万 水,刘素英,等.锌污染对紫色土干缩与电阻率影响的试验研究[J].岩土力学,2021,42(3):656-664.
SHEN Ji-wei,WAN Shui,LIU Su-ying,et al.Experimental Study on the Effect of Zinc Pollution on Dry-ing Shrinkage and Resistivity of Purple Soil[J].Rock and Soil Mechanics,2021,42(3):656-664.
[30] DE LIMA O A L,NIWAS S.Estimation of Hydraulic Parameters of Shaly Sandstone Aquifers from Geoelectrical Measurements[J].Journal of Hydrology,2000,235(1/2):12-26.
[31] LI K X,NAN T C,ZENG X K,et al.Depth-depen-dent Relation Between Hydraulic Conductivity and Electrical Resistivity in Geologic Formations[J].Jour-nal of Hydrology,2019,578:124081.
[32] 詹泸成,马芬艳,陈建生,等.条子泥围垦区水盐特征与植被分布的关系[J].水科学进展,2021,32(1):127-138.
ZHAN Lu-cheng,MA Fen-yan,CHEN Jian-sheng,et al.Relationship Between Water Salinity Characte-ristics and Vegetation Distribution in the Tiaozini Re-clamation Area[J].Advances in Water Science,2021,32(1):127-138.
[33] 郭青林,王旭东,薛 平,等.敦煌莫高窟底层洞窟岩体内水汽与盐分空间分布及其关系研究[J].岩石力学与工程学报,2009,28(增2):3769-3775.
GUO Qing-lin,WANG Xu-dong,XUE Ping,et al.Research on Spatial Distribution and Relations of Salinity and Moisture Content Inside Rock Mass of Low-layer Caves in Dunhuang Mogao Grottoes[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(S2):3769-3775.
[34] BORNER F,GRUHNE M,SCHON J.Contamination Indications Derived from Electrical Properties in the Low Frequency Range[J].Geophysical Prospecting,1993,41(1):83-98.
[35] ZHANG D W,CAO Z G,FAN L B,et al.Evaluation of the Influence of Salt Concentration on Cement Stabilized Clay by Electrical Resistivity Measurement Method[J].Engineering Geology,2014,170:80-88.
[36] KHALIL M A,SANTOS F A M.Influence of Degree of Saturation in the Electric Resistivity-hydraulic Con-ductivity Relationship[J].Surveys in Geophysics,2009,30(6):601-615.
[37] GUNN D A,CHAMBERS J E,UHLEMANN S,et al.Moisture Monitoring in Clay Embankments Using Electrical Resistivity Tomography[J].Construction and Building Materials,2015,92:82-94.
[38] KIBRIA G,HOSSAIN M S.Quantification of Degree of Saturation at Shallow Depths of Earth Slopes Us-ing Resistivity Imaging Technique[J].Journal of Geo-technical and Geoenvironmental Engineering,2016,142(7):0001476.
[39] 张天林,刘德仁,李 青,等.基于静力触探测试的深厚自重黄土场地湿陷性快速评价方法研究[J].工程地质学报,2023,31(5):1767-1773.
ZHANG Tian-lin,LIU De-ren,LI Qing,et al.Study on Rapid Evaluation of Self-weight Collapsibility of Deep Loess Based on Static Probe Test[J].Journal of Engineering Geology,2023,31(5):1767-1773.
[40] GB/T 50123—2019,土工试验方法标准[S].
GB/T 50123—2019,Standard for Geotechnical Testing Method[S].
[41] ASTM G187—05,Standard Test Method for Measu-rement of Soil Resistivity Using the Two-electrode Soil Box Method[S].
[42] DUAN Z,YAN X S,SUN Q,et al.New Models for Calculating the Electrical Resistivity of Loess Affected by Moisture Content and NaCl Concentration[J].Environmental Science and Pollution Research International,2022,29(12):17280-17294.
[43] DUAN Z,YAN X S,SUN Q,et al.Effects of Water Content and Salt Content on Electrical Resistivity of Loess[J].Environmental Earth Sciences,2021,80:469.
[44] 黄凤凤.赤泥及其水泥固化土的特性研究[D].太原:太原理工大学,2017.
HUANG Feng-feng.Study on Characteristics of Red Mud and Its Cement-solidfied Soil[D].Taiyuan:Tai-yuan University of Technology,2017.
[45] 徐兴倩,彭光灿,赵 熹,等.非饱和红黏土受压过程中的电阻率特性及其模型试验研究[J].土木工程学报,2023,56(增2):50-57.
XU Xing-qian,PENG Guang-can,ZHAO Xi,et al.A Theoretical Model and Measurements of Resistivity of Unsaturated Laterite Under Compression[J].China Civil Engineering Journal,2023,56(S2):50-57.
[46] SABOORIAN-JOOYBARI H,CHEN Z X.Calculation of Re-defined Electrical Double Layer Thickness in Symmetrical Electrolyte Solutions[J].Results in Physics,2019,15:102501.
[47] XIAO S,YANG J,MA C H,et al.Nondestructive Te-sting of Seepage in Check Dams Using High-density Electrical Resistivity Tomography Based on Labora-tory Test[J].Construction and Building Materials,2024,411:134265.
[48] 宋志伟,韩素丽,秦鹏举,等.氧化钙改性赤泥固化黄土的电阻率特性及机理[J].太原理工大学学报,2024,55(2):331-337.
SONG Zhi-wei,HAN Su-li,QIN Peng-ju,et al.Electrical Resistivity Characteristics and Mechanism of Solidified Loess Mixed with Calcium Oxide-modified Red Mud[J].Journal of Taiyuan University of Technology,2024,55(2):331-337.
[49] KIM M S,JUN Y B,LEE C H,et al.Use of CaO as an Activator for Producing a Price-competitive Non-cement Structural Binder Using Ground Granulated Blast Furnace Slag[J].Cement and Concrete Resear-ch,2013,54:208-214.
[50] XIONG B B,YANG S J,ZHAO B Q,et al.Conductivity Characteristics of Landslide Considering Poro-sity,Saturation,Temperature and Ion Concentration[J].Journal of Mountain Science,2023,20(8):2133-2148.
[51] 蒋潇伊.木质素纤维-水泥改良土力学性能与微观结构研究[D].南昌:东华理工大学,2022.
JIANG Xiao-yi.Study on Mechanical Properties and Microstructure of Lignin Fiber-cement Modified Soil[D].Nanchang:East China University of Technology,2022.
[52] 刘 新,冯 攀,沈叙言,等.水泥水化产物:水化硅酸钙(C-S-H)的研究进展[J].材料导报,2021,35(9):9157-9167.
LIU Xin,FENG Pan,SHEN Xu-yan,et al.Advances in the Understanding of Cement Hydrate:Calcium Si-licate Hydrate(C-S-H)[J].Materials Reports,2021,35(9):9157-9167.
[53] ARCHIE G E.The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics[J].Transactions of the AIME,1942,146(1):54-62.
[54] KELLER G V,FRISCHKNECHT F C.Electrical Me-thods in Geophysical Prospecting[M].New York:Pe-rgamon Press,1966.
[55] 章定文,曹智国,刘松玉,等.水泥固化铅污染土的电阻率特性与经验公式[J].岩土工程学报,2015,37(9):1685-1691.
ZHANG Ding-wen,CAO Zhi-guo,LIU Song-yu,et al.Characteristics and Empirical Formula of Electrical Resistivity of Cement-solidified Lead-contaminated Soils[J].Chinese Journal of Geotechnical Engineering,2015,37(9):1685-1691.

相似文献/References:

[1]胡志平,温馨,张勋,等.湿陷性黄土地区海绵城市建设研究进展[J].地球科学与环境学报,2021,43(02):376.[doi:10.19814/j.jese.2020.12033]
 HU Zhi-ping,WEN Xin,ZHANG Xun,et al.Review on Sponge City Construction in Collapsible Loess Area[J].Journal of Earth Sciences and Environment,2021,43(04):376.[doi:10.19814/j.jese.2020.12033]

备注/Memo

备注/Memo:
收稿日期:2024-09-24; 修回日期:2025-03-23
基金项目:国家自然科学基金项目(41902280); 宁夏回族自治区交通运输厅项目(202200192); 陕西省高校科协青年人才托举计划项目(20210422); 中国博士后科学基金项目(2022M710486); 陕西省自然科学基础研究计划项目(2023-JC-QN-0445); 长安大学中央高校基本科研业务费专项资金项目(300102212101)
*通信作者:薛志佳(1990-),男,辽宁义县人,副教授,工学博士,E-mail:xuegeneral@126.com。
更新日期/Last Update: 2025-07-25