|Table of Contents|

Glacier and Climate Changes over the Past Millennium Recorded by Proglacial Sediment Sequence from Qiangyong Lake, Southern Tibetan Plateau(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2011年第04期
Page:
402-411
Research Field:
水资源与环境
Publishing date:

Info

Title:
Glacier and Climate Changes over the Past Millennium Recorded by Proglacial Sediment Sequence from Qiangyong Lake, Southern Tibetan Plateau
Author(s):
LI Jiu-le12XU Bai-qing1LIN Shu-biao12GAO Shao-peng1
1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China; 2. Graduate University ofChinese Academy of Sciences, Beijing 100049, China
Keywords:
climate change melting strength glacier sediment lacustrine core proglacial lake Qiangyong Lake Tibetan Plateau
PACS:
P532;P512.4+2
DOI:
-
Abstract:
The 1.06 m lacustrine core, which was from the proglacial Da Qiangyong Lake, southern Tibetan Plateau, was investigated; multi-indicators including grain size, magnetic susceptibility, element content, carbonate content and total organic carbon content in the sediment sample were analyzed. Based on the understanding of sediment source, the factors on these indicators and their significance on climate and environment were discussed. Associated with the radioisotope dating result, the above indicators were comprehensively compared, and the glacier and climate changes over the past millennium from Qiangyong Lake, southern Tibetan Plateau, were reconstructed. The results showed that the time scale of the 1.06 m sediment sequence was about one millennium since the 11th century; the sediment was mainly composed of dust particles which were carried by meltwater of Qiangyong glacier, and the variations of grain size, magnetic susceptibility and chemical contents of the sediment were closely related to the melting strength of Qiangyong glacier influenced by the regional climate change; the environmental temperature in southern Tibetan Plateau gradually increased with little fluctuation since the 11th century, and then Qiangyong glacier gradually melted. Particularly, the environmental temperature was lower and Qiangyong glacier weakly melted in southern Tibetan Plateau at the beginning of the 11th century; the climate was warm and the glacier strongly melted from the middle of the 11th century to the beginning of the 13th century; the Little Ice Age occurred and the melting of glacier greatly weakened from the beginning of the 14th century to the middle of the 18th century; the environmental temperature increased rapidly and the melting of glacier greatly strengthened since the middle-late of the 18th century.

References:

[1] Karlén W.Lacustrine Sediment Studies:a Technique to Obtain a Continous Record of Holocene Glacier Variations[J].Geografiska Annaler:Series A,Physical Geography,1981,63(3/4):273-281.
[2] Karlén W,Rosqvist G.Glacier Fluctuations Recorded in Lacustrine Sediments on Mount Kenya[J].National Geographic Research,1988,4:219-232.
[3] Matthews J A,Dahl S O,Nesje A,et al.Holocene Glacier Variations in Central Jotunheimen,Southern Norway Based on Distal Glaciolacustrine Sediment Cores[J].Quaternary Science Reviews,2000,19(16):1625-1647.
[4] Nesje A,Matthews J A,Dahl S O,et al.Holocene Glacier Fluctuations of Flatebreen and Winter-precipitation Changes in the Jostedalsbreen Region,Western Norway,Based on Glaciolacustrine Sediment Records[J].The Holocene,2001,11(3):267-280.
[5] Bakke J,Lie Ø,Nesje A,et al.Utilizing Physical Sediment Variability in Glacier-fed Lakes for Continuous Glacier Reconstructions During the Holocene,Northern Folgefonna,Western Norway[J].The Holocene,2005,15(2):161-176.
[6] Nesje A,Dahl S O,Andersson C,et al.The Lacustrine Sedimentary Sequence in Sygneskardvatnet Western Norway:a Continuous,High-resolution Record of the Jostedalsbreen Ice Cap During the Holocene[J].Quaternary Science Reviews,2000,19(11):1047-1065.
[7] Karlén W.Lacustrine Sediments and Tree-limit Variations as Indicators of Holocene Climatic Fluctuations in Lappland,Northern Sweden[J].Geografiska Annaler:Series A,Physical Geography,1976,58(1/2):1-34.
[8] Beuning K R M,Talbot M R,Kelts K.A Revised 30 000-year Palaeoclimatic and Palaeohydrologic History of Lake Albert,East Africa[J].Palaeogeography Palaeoclimatology Palaeoecology,1997,136(1/2):259-279.
[9] Fritz S C,Baker P A,Seltzer G O,et al.Quaternary Glaciation and Hydrologic Variation in the South American Tropics as Reconstructed from the Lake Titicaca Drilling Project[J].Quaternary Research,2007,68(3):410-420.
[10] Tiercelin J J,Gibert E,Umer M,et al.High-resolution Sedimentary Record of the Last Deglaciation from a High-altitude Lake in Ethiopia[J].Quaternary Science Reviews,2008,27(5/6):449-467.
[11] Zale R,Karlén W.Lake Sediment Cores from the Antarctic Peninsula and Surrounding Islands[J].Geografiska Annaler:Series A,Physical Geography,1989,71(3/4):211-220.
[12] Webster J,Hawes I,Downes M,et al.Evidence for Regional Climate Change in the Recent Evolution of a High Latitude Proglacial Lake[J].Antarctic Science,1996,8(1):49-59.
[13] Rosqvist G,Schuber P.Millennial-scale Climate Changes on South Georgia,Southern Ocean[J].Quaternary Research,2003,59(3):470-475.
[14] Borghini F,Colacevich A,Bargagli R.Water Geochemistry and Sedimentary Pigments in Northern Victoria Land Lakes,Antarctica[J].Polar Biology,2007,30(9):1173-1182.
[15] Rosqvist G.Proglacial Lacustrine Sediments from El Altar,Ecuador:Evidence for Late-Holocene Climatic Change[J].The Holocene,1995,5(1):111-117.
[16] Leonard E M.Glaciological and Climatic Controls on Lake Sedimentation,Canadian Rocky Mountains[J].Zeitschrift für Gletscherkunde und Glazialgeologie,1985,21(1/2):35-42.
[17] Leonard E M.The Relationship Between Glacial Activity and Sediment Production:Evidence from a 4 450-year Varve Record of Neoglacial Sedimentation in Hector Lake,Alberta,Canada[J].Journal of Paleolimnology,1997,17(3):319-330.
[18] Rosqvist G,Jonsson C,Yam R,et al.Diatom Oxygen Isotopes in Proglacial Lake Sediments from Northern Sweden:a 5 000-year Record of Atmospheric Circulation[J].Quaternary Science Reviews,2004,23(7/8):851-859.
[19] Yao T D,Wang Y Q,Liu S Y,et al.Recent Glacial Retreat in High Asia and Its Impact on Water Resource in Northwest China[J].Science in China:Series D,2004,47(12):1065-1075.
[20] Yang B,Bräuning A,Dong Z B,et al.Late Holocene Monsoonal Temperate Glacier Fluctuations on the Tibetan Plateau[J].Global and Planetary Change,2008,60(1/2):126-140.
[21] 罗日升,曹 峻,刘耕年,等.西藏枪勇冰川冰下富碎屑化学沉淀特征与冰下过程[J].地理学报,2003,58(5):757-764.
[22] Owen L A,Finkel R C,Barnard P L,et al.Climatic and Topographic Controls on the Style and Timing of Late Quaternary Glaciation Throughout Tibet and the Himalaya Defined by 10Be Cosmogenic Radionuclide Surface Exposure Dating[J].Quaternary Science Reviews,2005,24(12/13):1391-1411.
[23] 李炳元,王富葆,张青松.西藏第四纪地质[M].北京:科学出版社,1983.
[24] 夏代祥,刘世坤.西藏自治区区域地质志[M].武汉:中国地质大学出版社,1993.
[25] Wu G J,Xu B Q,Zhang C L,et al.Geochemistry of Dust Aerosol over the Eastern Pamirs[J].Geochimica et Cosmochimica Acta,2009,73(4):977-989.
[26] Goldberg E D.Geochronology with 210Pb[C]∥International Atomic Energy Agency.Symposium Proceedings(1962)of Radioactive Dating.Vienna:International Atomic Energy Agency,1963:121-131.
[27] Robbins J A,Geochemical and Geophysical Applications of Radioactive Lead[C]∥Nriagu J O.The Biogeochemistry of Lead in the Environment.Amsterdam:Elsevier,1978:285-393.
[28] Evans D W,Alberts J J,Clark R A.Reversible Ion-exchange Fixation of Cesium-137 Leading to Mobilization from Reservoir Sediments[J].Geochimica et Cosmochimica Acta,1983,47(6):1041-1046.
[29] Jansson P,Rosqvist G,Schneider T.Glacier Fluctuations,Suspended Sediment Flux and Glacio-lacustrine Sediments[J].Geografiska Annaler:Series A,Physical Geography,2005,87:37-50.
[30] 刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984.
[31] Wake C P,Mayewski P A,Li Z,et al.Modern Eolian Dust Deposition in Central Asia[J].Tellus B,1994,46(3):220-233.
[32] Smith N D.Sedimentary Processes and Patterns in a Glacier-fed Lake with Low Sediment Input[J].Canadian Journal of Earth Sciences,1978,15(5):741-756.
[33] Wentworth C K.A Scale of Grade and Class Terms for Clastic Sediments[J].The Journal of Geology,1922,30(5):377-392.
[34] 孙知明,胡守云,马醒华.现代湖泊沉积物中磁性矿物的研究及其环境意义[J].地球物理学报,1996,39(2):178-187.
[35] 朱立平,陈 玲,张平中,等.环境磁学反映的藏南沉错地区1 300年来冷暖变化[J].第四纪研究,2001,21(6):520-527.
[36] 符超峰,宋友桂,强小科,等.环境磁学在古气候环境研究中的回顾与展望[J].地球科学与环境学报,2009,31(3):312-322.
[37] 李世杰,区荣康,朱照宇,等.24万年来西昆仑山甜水海湖岩芯碳酸盐含量变化与气候环境演化[J].湖泊科学,1998,10(2):58-65.
[38] 沈 吉,张恩楼,夏威岚.青海湖近千年来环境变化的湖泊沉积记录[J].第四纪研究,2001,21(6):508-513.
[39] 沈华东,于 革.青藏高原兹格塘错流域50年来湖泊水量对气候变化响应的模拟研究[J].地球科学与环境学报,2011,33(3):282-287.
[40] Barnes M A,Barnes W C.Organic Compounds in Lake Sediments[C]∥Lerman A.Lakes:Chemistry,Geology,Physics.New York:Springer-Verlag,1978:127-152.
[41] Meyers P A,Ishiwatari R.Lacustrine Organic Geochemistry:an Overview of Indicators of Organic Matter Sources and Diagenesis in Lake Sediments[J].Organic Geochemistry,1993,20(7):867-900.
[42] 金章东.湖泊沉积物的矿物组成、成因、环境指示及研究进展[J].地球科学与环境学报,2011,33(1):34-44.
[43] 周才平,欧阳华,王勤学,等.青藏高原主要生态系统净初级生产力的估算[J].地理学报,2004,59(1):74-79.
[44] Krishnamurthy R V,Bhattacharya S K,Kusumgar S.Palaeoclimatic Changes Deduced from 13C/12C and C/N Ratios of Karewa Lake Sediments,India[J].Nature,1986,323:150-152.
[45] 朱立平,鞠建廷,王君波,等.湖芯沉积物揭示的末次冰消开始时期普莫雍错湖区环境变化[J].第四纪研究,2006,26(5):772-780.
[46] Brohan P,Kennedy J J,Harris I,et al.Uncertainty Estimates in Regional and Global Observed Temperature Changes:a New Data Set from 1850[J].Journal of Geophysical Research,2006,111(D12106).DOI:10.1029/2005JD006548.
[47] 吴艳宏,李世杰,夏威岚.可可西里苟仁错湖泊沉积物元素地球化学特征及其环境意义[J].地球科学与环境学报,2004,26(3):64-68.

Memo

Memo:
-
Last Update: 2011-12-20