|Table of Contents|

Geochemical Characteristics and Geodynamic Implications of Xiaolaihe Banded Iron Formation and Its Wall Rock in Qingyuan Area of Liaoning, China(PDF)

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

Issue:
2022年第03期
Page:
481-498
Research Field:
基础地质与矿产地质
Publishing date:

Info

Title:
Geochemical Characteristics and Geodynamic Implications of Xiaolaihe Banded Iron Formation and Its Wall Rock in Qingyuan Area of Liaoning, China
Author(s):
YANG Fan1 ZHANG Wei1 LI Zhuang1* ZHANG Xi1 CUI Ying2
(1. College of Geosciences, China University of Petroleum, Beijing 102249, China; 2. School of Earth and Space Sciences, Peking University, Beijing 100871, China)
Keywords:
banded iron formation geochemistry provenance petrogenesis iron deposit Sm-Nd isotope Liaoning
PACS:
P541; P581; P597
DOI:
10.19814/j.jese.2021.10004
Abstract:
Early Precambrian banded iron formation(BIF)is the most important source of iron in China, accounting for more than 60% of the national iron reserves, among which the Late Neoarchean BIF in North China Craton is the most typical. The petrological, geochemical and isotopic data of Xiaolaihe BIF and its wall rock in Qingyuan area of Liaoning, North China Craton were combined to constrain their provenance and tectonic setting. The Xiaolaihe BIF is composed of magnetite, quartz and silicates(e.g., ferrohypersthene), and is characterized by variable SiO2 and FeOT contents. The higher Al2O3 contents(>1%)of subordinate amounts of Xiaolaihe BIF indicate some terrigenous input during deposition. Other detrital-free Xiaolaihe BIF samples have low abundances of Al2O3, HFSE, and transition metals, normalized REE patterns enriched in HREE and depleted in LREE, and positive Eu anomalies, which is reflective of seawater. Modeling reveals that the REE patterns of Xiaolaihe BIF well match that of mixture from the high-temperature hydrothermal fluids and ambient seawater with the ratio of 1:100, suggesting that heat and mass from the seafloor hydrothermal activity contribute to Xiaolaihe BIF. Xiaolaihe BIF preserved in Shipengzi Formation is commonly found to be interbedded with metamorphosed volcanic rocks, and minor metamorphosed clastic sedimentary rocks. The chemical characteristics of the clastic sedimentary rocks associated with Xiaolaihe BIF are mainly controlled by complex source compositions(tonalite and trondhjemite, and minor mafic rocks)within an island arc setting, although they have undergone low-intermediate source weathering, which is consistent with the provenance of BIF. Combined with recent studies on geology, geochemistry, isotope and geochronology of the BIF, it is revealed that Xiaolaihe BIF is classified as Algoma-type one deposited in a back-arc basin within an oceanic island arc system.

References:

[1] JAMES H L.Sedimentary Facies of Iron-formation[J].Economic Geology,1954,49(3):235-293.
[2] GROSS G A.A Classification of Iron Formations Based on Depositional Environments[J].Canadian Mineralogist,1980,18(2):215-222.
[3] 沈保丰.中国BIF型铁矿床地质特征和资源远景[J].地质学报,2012,86(9):1376-1395.
SHEN Bao-feng.Geological Characters and Resource Prospect of BIF-type Iron Ore Deposits in China[J].Acta Geologica Sinica,2012,86(9):1376-1395.
[4] 李文君,靳新娣,崔敏利,等.BIF微量稀土元素分析方法及其在冀东司家营铁矿中的应用[J].岩石学报,2012,28(11):3670-3678.
LI Wen-jun,JIN Xin-di,CUI Min-li,et al.Characteri-stics of Rare Earth Elements,Trace Elements and Geological Significations of BIF from Sijiaying in Eastern Hebei[J].Acta Petrologica Sinica,2012,28(11):3670-3678.
[5] 佟小雪,王长乐,彭自栋,等.鞍山地区新太古代大孤山条带状铁建造年代学及Hf同位素应用[J].矿物学报,2017,37(增1):439-440.
TONG Xiao-xue,WANG Chang-le,PENG Zi-dong,et al.Geochronology and Hf Isotope Application of Neoarchean Dagushan BIF in Anshan Area[J].Acta Mineralogica Sinica,2017,37(S1):439-440.
[6] 李延河,侯可军,万德芳,等.Algoma型和Superior型硅铁建造地球化学对比研究[J].岩石学报,2012,28(11):3513-3519.
LI Yan-he,HOU Ke-jun,WAN De-fang,et al.A Compare Geochemistry Study for Algoma- and Superior-type Banded Iron Formations[J].Acta Petrologica Si-nica,2012,28(11):3513-3519.
[7] 李志红,朱祥坤,唐索寒.鞍山—本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示[J].岩石矿物学杂志,2008,27(4):285-290.
LI Zhi-hong,ZHU Xiang-kun,TANG Suo-han.Cha-racters of Fe Isotopes and Rare Earth Elements of Banded Iron Formations form Anshan-Benxi Area:Implications for Fe Source[J].Acta Petrologica et Mi-neralogica,2008,27(4):285-290.
[8] 李志红,朱祥坤,唐索寒.鞍山—本溪地区条带状铁矿的Fe同位素特征及其对成矿机理和地球早期海洋环境的制约[J].岩石学报,2012,28(11):3545-3558.
LI Zhi-hong,ZHU Xiang-kun,TANG Suo-han.Fe Isotope Compositions of Banded Iron Formation from Anshan Benxi Area:Constraints on the Formation Mechanism and Archean Ocean Environment[J].Acta Petrologica Sinica,2012,28(11):3545-3558.
[9] 张连昌,翟明国,万渝生,等.华北克拉通前寒武纪BIF铁矿研究:进展与问题[J].岩石学报,2012,28(11):3431-3445.
ZHANG Lian-chang,ZHAI Ming-guo,WAN Yu-sheng,et al.Study of the Precambrian BIF-iron Deposits in the North China Craton:Progress and Questions[J].Acta Petrologica Sinica,2012,28(11):3431-3445.
[10] 彭自栋,张连昌,王长乐,等.新太古代清原绿岩带下甸子BIF铁矿地质特征及含黄铁矿条带BIF的成因探讨[J].岩石学报,2018,34(2):146-174.
PENG Zi-dong,ZHANG Lian-chang,WANG Chang-le,et al.Geological Features and Genesis of the Neoarchean Pyrite-bearing Xiadianzi BIF,Qingyuan Gre-enstone Belt[J].Acta Petrologica Sinica,2018,34(2):146-174.
[11] ALEXANDER B W,BAU M,ANDERSSON P,et al.Continentally-derived Solutes in Shallow Archean Seawater:Rare Earth Element and Nd Isotope Evidence in Iron Formation from the 2.9 Ga Pongola Supergroup,South Africa[J].Geochimica et Cosmochimica Acta,2008,72(2):378-394.
[12] 万渝生,董春艳,颉颃强,等.华北克拉通太古宙研究若干进展[J].地球学报,2015,36(6):685-700.
WAN Yu-sheng,DONG Chun-yan,XIE Hang-qiang,et al.Some Progress in the Study of Archean Basement of the North China Craton[J].Acta Geoscientica Sinica,2015,36(6):685-700.
[13] LAN C Y,ZHOU Y Y,WANG C L,et al.Depositional Age and Protoliths of the Paleoproterozoic Upper Taihua Group in the Wuyang Area in the Southern Margin of the North China Craton:New Insights into Stratigraphic Subdivision and Tectonic Setting[J].Precambrian Research,2017,297(8):77-100.
[14] 张连昌,彭自栋,翟明国,等.华北克拉通北缘新太古代清原绿岩带BIF与VMS共生矿床的构造背景及成因联系[J].地球科学,2020,45(1):5-20.
ZHANG Lian-chang,PENG Zi-dong,ZHAI Ming-guo,et al.Tectonic Setting and Genetic Relationship Between BIF and VMS in the Qingyuan Neoarchean Greenstone Belt,Northern North China Craton[J].Earth Science,2020,45(1):5-20.
[15] 兰彩云,张连昌,赵太平,等.河南舞阳铁山庙式BIF铁矿的矿物学与地球化学特征及对矿床成因的指示[J].岩石学报,2013,29(7):2567-2582.
LAN Cai-yun,ZHANG Lian-chang,ZHAO Tai-ping,et al.Mineral and Geochemical Characteristics of the Tieshanmiao-type BIF-iron Deposit in Wuyang Region of Henan Province and Its Implications for Ore-forming Processes[J].Acta Petrologica Sinica,2013,29(7):2567-2582.
[16] 赵子然,沈其韩,宋会侠.山东韩旺新太古代条带状铁矿的稀土和微量元素特征[J].地球学报,2009,30(6):693-699.
ZHAO Zi-ran,SHEN Qi-han,SONG Hui-xia.Characteristics of Rare Earth Elements and Trace Elements in Hanwang Neo-Archaean Banded Iron Formations,Shandong Province[J].Acta Geoscientica Sinica,2009,30(6):693-699.
[17] 李志红,朱祥坤,唐索寒,等.冀东、五台和吕梁地区条带状铁矿的稀土元素特征及其地质意义[J].现代地质,2010,24(5):840-846.
LI Zhi-hong,ZHU Xiang-kun,TANG Suo-han,et al.Characteristics of Rare Earth Elements and Geological Significations of BIFs from Jidong,Wutai and Luliang Area[J].Geoscience,2010,24(5):840-846.
[18] WANG C L,ZHANG L C,DAI Y P,et al.Source Cha-racteristics of the ~2.5 Ga Wangjiazhuang Banded Iron Formation from the Wutai Greenstone Belt in the North China Craton:Evidence from Neodymium Isotopes[J].Journal of Asian Earth Sciences,2014,93:288-300.
[19] WANG C L,ZHANG L C,LAN C Y,et al.Petrology and Geochemistry of the Wangjiazhuang Banded Iron Formation and Associated Supracrustal Rocks from the Wutai Greenstone Belt in the North China Craton:Implications for Their Origin and Tectonic Setting[J].Precambrian Research,2014,255:603-626.
[20] PLANAVSKY N,BEKKER A,ROUXEL O J,et al.Rare Earth Element and Yttrium Compositions of Archean and Paleoproterozoic Fe Formations Revisited:New Perspectives on the Significance and Mechanisms of Deposition[J].Geochimica et Cosmochimica Acta,2010,74(22):6387-6405..
[21] ZHANG L C,ZHAI M G,ZHANG X J,et al.Formation Age and Tectonic Setting of the Shirengou Neoarchean Banded Iron Deposit in Eastern Hebei Pro-vince:Constraints from Geochemistry and SIMS Zircon U-Pb Dating[J].Precambrian Research,2012,222/223:325-338.
[22] LI Y,KONHAUSER K O,COLE D R,et al.Mineral Ecophysiological Data Provide Growing Evidence for Microbial Activity in Banded-iron Formations[J].Geology,2011,39(8):707-710.
[23] 彭自栋,王长乐,佟小雪,等.辽北清原绿岩带构造演化与成矿作用探讨[J].矿物学报,2017,37(增1):432-433.
PENG Zi-dong,WANG Chang-le,TONG Xiao-xue,et al.Discussion on Tectonic Evolution and Mineralization of Qingyuan Greenstone Belt in Northern Liao-ning[J].Acta Mineralogica Sinica,2017,37(S1):432-433.
[24] LI Z,WEI C J,CHEN B,et al.U-Pb-Hf-O-Nd Isotopic and Geochemical Constraints on the Origin of Archean TTG Gneisses from the North China Craton:Implications for Crustal Growth[J].Precambrian Research,2021,354(3):106078.
[25] PENG Z D,WANG C L,ZHANG L C,et al.Geochemistry of Metamorphosed Volcanic Rocks in the Neoarchean Qingyuan Greenstone Belt,North China Craton:Implications for Geodynamic Evolution and VMS Mineralization[J].Precambrian Research,2019,326:196-221.
[26] ZHAO G C,WILDE S A,GUO J H,et al.Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton[J].Precambrian Research,2010,177(3/4):266-276.
[27] ZHAO G C,SUN M,WILDE S A,et al.Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J].Precambrian Research,2005,136(2):177-202.
[28] 翟明国.华北前寒武纪成矿系统与重大地质事件的联系[J].岩石学报,2013,29(5):1759-1773.
ZHAI Ming-guo.Secular Changes of Metallogenic Systems Link with Continental Evolving of the North China Craton[J].Acta Petrologica Sinica,2013,29(5):1759-1773.
[29] ZHAI M G,SANTOSH M.The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview[J].Gondwana Research,2011,20(1):6-25.
[30] ZHAO G C,ZHAI M G.Lithotectonic Elements of Precambrian Basement in the North China Craton:Review and Tectonic Implications[J].Gondwana Research,2013,23(4):1207-1240.
[31] 赵国春,孙 敏,WILDE S A.华北克拉通基底构造单元特征及早元古代拼合[J].中国科学:D辑,地球科学,2002,32(7):538-549.
ZHAO Guo-chun,SUN Min,WILDE S A.Characteri-stics of Basement Tectonic Units of North China Craton and Early Proterozoic Amalgamation[J].Science in China:Series D,Earth Sciences,2002,32(7):538-549.
[32] 毛德宝,沈保丰.辽北清原地区太古宙地质演化及其对成矿的控制作用[J].前寒武纪研究进展,1997,20(3):1-10.
MAO De-bao,SHEN Bao-feng.Archean Geological Evolution and Metallogeny in Qingyuan Area,Northern Liaoning Province,China[J].Research Progress of Precambrian,1997,20(3):1-10.
[33] 万渝生,宋 彪,杨 淳,等.辽宁抚顺—清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义[J].地质学报,2005,79(1):78-87.
WAN Yu-sheng,SONG Biao,YANG Chun,et al.Zircon SHRIMP U-Pb Geochronology of Archean Rocks from the Fushun-Qingyuan Area,Liaoning Province and Its Geological Significance[J].Acta Geologica Sinica,2005,79(1):78-87.
[34] 万渝生,刘敦一,董春艳,等.华北克拉通早前寒武纪条带状铁建造形成时代-SHRIMP锆石U-Pb定年[J].地质学报,2012,86(9):1447-1478.
WAN Yu-sheng,LIU Dun-yi,DONG Chun-yan,et al.Formation Ages of Early Precambrian BIFs in the North China Craton:SHRIMP Zircon U-Pb Dating[J].Acta Geologica Sinica,2012,86(9):1447-1478.
[35] WU D,WEI C J.Metamorphic Evolution of Two Types of Garnet Amphibolite from the Qingyuan Terrane,North China Craton:Insights from Phase Equilibria Modelling and Zircon Dating[J].Precambrian Research,2021,355:106091.
[36] PENG Z D,WANG C L,TONG X X,et al.Element Geochemistry and Neodymium Isotope Systematics of the Neoarchean Banded Iron Formations in the Qing-yuan Greenstone Belt,North China Craton[J].Ore Geology Reviews,2018,102(11):562-584.
[37] 张雅静.辽宁清原花岗—绿岩带的演化及成矿作用研究[D].长春:吉林大学,2014.
ZHANG Ya-jing.Formation,Evolution and Metallogenesis of Granite-greenstone Belt in Qingyuan,Liao-ning Province[D].Changchun:Jilin University,2014.
[38] 于凤金.红透山式矿床成矿模式与找矿模型研究[D].沈阳:东北大学,2006.
YU Feng-jin.The Study of Metallogenic Model and Prospecting Pattern of Hongtoushan-type Deposit[D].Shenyang:Northeasten University,2006.
[39] 黄婉康,王明再,龚国洪,等.小莱河麻粒岩相铁建造的矿物组合:变质过程p、T变化的探讨[J].矿物学报,1994,14(3):247-256.
HUANG Wan-kang,WANG Ming-zai,GONG Guo-hong,et al.Mineral Assemblages in the Granulite-facies Iron-forming of Laihe:A Discussion of p-T Variations During Metamorphism[J].Acta Mineralogica Sinica,1994,14(3):247-256.
[40] 李 壮,陈 斌,刘经纬,等.辽东半岛南辽河群锆石U-Pb年代学及其地质意义[J].岩石学报,2015,31(6):1589-1605.
LI Zhuang,CHEN Bin,LIU Jing-wei,et al.Zircon U-Pb Ages and Their Implications for the South Liaohe Group in the Liaodong Peninsula,Northeast China[J].Acta Petrologica Sinica,2015,31(6):1589-1605.
[41] FEDO C M,NESBITT H W,YOUNG G M.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols,with Implications for Paleoweathering Conditions and Provenance[J].Geo-logy,1995,23(10):921-924.
[42] AGUE J J.Evidence for Major Mass Transfer and Volume Strain During Regional Metamorphism of Pe-lites[J].Geology,1991,19(8):855-858.
[43] MCLENNAN S M.Rare Earth Elements in Sedimentary Rocks:Influence of Provenance and Sedimentary Processes[J].Reviews in Mineralogy and Geochemistry,1989,21(1):169-200.
[44] CULLERS R L,BOCK B,GUIDOTTI C.Elemental Distributions and Neodymium Isotopic Compositions of Silurian Metasediments,Western Maine,USA:Redistribution of the Rare Earth Elements[J].Geochi-mica et Cosmochimica Acta,1997,61(9):1847-1861.
[45] RODDAZ M,VIERS J,BRUSSET S,et al.Controls on Weathering and Provenance in the Amazonian Foreland Basin:Insights from Major and Trace Element Geochemistry of Neogene Amazonian Sediments[J].Chemical Geology,2006,226(1/2):31-65.
[46] WANG C L,ZHANG L C,DAI Y P,et al.Geochro-nological and Geochemical Constraints on the Origin of Clastic Meta-sedimentary Rocks Associated with the Yuanjiacun BIF from the Luliang Complex,North China[J].Lithos,2015,212/213/214/215:231-246.
[47] NESBITT H W,MARKOVICS G,PRICE R C.Chemical Processes Affecting Alkalis and Alkaline Earths During Continental Weathering[J].Geochimica et Cosmochimica Acta,1980,44(11):1659-1666.
[48] NESBITT H W,YOUNG G M.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites[J].Nature,1982,299:715-717.
[49] LI Q G,LIU S W,WANG Z Q,et al.Contrasting Pro-venance of Late Archean Metasedimentary Rocks from the Wutai Complex,North China Craton:Detrital Zircon U-Pb,Whole-rock Sm-Nd Isotopic,and Geochemical Data[J].International Journal of Earth Sciences,2008,97(3):443-458.
[50] 李红中,翟明国,张连昌.基于物质来源的前寒武纪BIF沉积过程[J].矿物学报,2015,35(增1):528-529.
LI Hong-zhong,ZHAI Ming-guo,ZHANG Lian-chang.Precambrian BIF Deposition Process Based on Material Source[J].Acta Mineralogica Sinica,2015,35(S1):528-529.
[51] NESBITT H W,YOUNG G M.Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations[J].Geochimica et Cosmochimica Acta,1984,48(7):1523-1534.
[52] MCLENNAN S M,HEMMING S R,MCDANIEL D K,et al.Geochemical Approaches to Sedimentation,Provenance,and Tectonics[R]∥JOHNSSON M J,BASU A.Processes Controlling the Composition of Clastic Sediments.Boulder:Geological Society of America,1993:21-40.
[53] SIMONEN A.Stratigraphy and Sedimentation of the Svecofennidic,Early Archean Supracrustal Rocks in Southwestern Finland[J].Bulletin of the Geological Society of Finland,1953,160:1-64.
[54] LI Z,CHEN B,YAN X L.The Liaohe Group:An Insight into the Paleoproterozoic Tectonic Evolution of the Jiao-Liao-Ji Belt,North China Craton[J].Precambrian Research,2019,326(6):174-195.
[55] MCLENNAN S M,TAYLOR S R,ERIKSSON K A.Geochemistry of Archean Shales from the Pilbara Supergroup,Western Australia[J].Geochimica et Cosmochimica Acta,1983,47(7):1211-1222.
[56] PENG P,WANG C,WANG X,et al.Qingyuan High-grade Granite-greenstone Terrain in the Eastern Nor-th China Craton:Root of a Neoarchaean Arc[J].Tectonophysics,2015,662(11):7-21.
[57] ROSER B P, KORSCH R J.Determination of Tectonic Setting of Sandstone-mudstone Suites Using SiO2 Content and K2O/Na2O Ratio[J].The Journal of Geology,1986,94(5):635-650.
[58] LUDWIG K R.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[R].Berkeley:Berkeley Geochronology Center,2003.
[59] CONDIE K C.Chemical Composition and Evolution of the Upper Continental Crust:Contrasting Results from Surface Samples and Shales[J].Chemical Geology,1993,104(1/2/3/4):1-37.
[60] WANG C L,KONHAUSER K O,ZHANG L C.De-positional Environment of the Paleoproterozoic Yuanjiacun Banded Iron Formation in Shanxi Province,China[J].Economic Geology,2015,110(6):1515-1539.
[61] 蓝廷广,范宏瑞,胡芳芳,等.鲁东昌邑古元古代BIF铁矿矿床地球化学特征及矿床成因讨论[J].岩石学报,2012,28(11):167-183.
LAN Ting-guang,FAN Hong-rui,HU Fang-fang,et al.Geological and Geochemical Characteristics of Paleoproterozoic Changyi Banded Iron Formation Deposit,Jiaodong Peninsula of Eastern China[J].Acta Petrologica Sinica,2012,28(11):167-183.
[62] 沈其韩,宋会侠,杨崇辉,等.山西五台山和冀东迁安地区条带状铁矿的岩石化学特征及其地质意义[J].岩石矿物学杂志,2011,30(2):161-171.
SHEN Qi-han,SONG Hui-xia,YANG Chong-hui,et al.Petrochemical Characteristics and Geological Significations of Banded Iron Formations in the Wutai Mountain of Shanxi and Qian'an of Eastern Hebei[J].Acta Petrologica et Mineralogica,2011,30(2):161-171.
[63] LI Z,WEI C J,CHEN B,et al.Late Neoarchean High-grade Regional Metamorphism in the Eastern North China Craton:New Constraints from Monazite Dating in Northern Liaoning[J].Precambrian Research,2022,373:106625.
[64] CONDIE K C.Geochemical Changes in Baslts and Andesites Across the Archean-Proterozoic Boundary:Identification and Significance[J].Lithos,1989,23(1/2):1-18.
[65] BOLHAR R,KAMBER B S,MOORBATH S,et al.Characterisation of Early Archaean Chemical Sediments by Trace Element Signatures[J].Earth and Planetary Science Letters,2004,222(1):43-60.
[66] DANIELSON A,MOLLER P,DULSKI P.The Europium Anomalies in Banded Iron Formations and the Thermal History of the Oceanic Crust[J].Chemical Geology,1992,97(1/2):89-100.
[67] ALIBO D S,NOZAKI Y.Rare Earth Elements in Seawater:Particle Association,Shale-normalization,and Ce Oxidation[J].Geochimica et Cosmochimica Acta,1999,63(3):363-372.
[68] MCDANIEL D K,HEMMING S R,MCLENNAN S M,et al.Resetting of Neodymium Isotopes and Redistribution of REEs During Sedimentary Processes:The Early Proterozoic Chelmsford Formation,Sudbury Basin,Ontario,Canada[J].Geochimica et Cosmochimica Acta,1994,58(2):931-941.
[69] THURSTON P C,KAMBER B S,WHITEHOUSE M.Archean Cherts in Banded Iron Formation:Insight into Neoarchean Ocean Chemistry and Depositional Processes[J].Precambrian Research,2012,214/215:227-257.
[70] KLEIN C.Some Precambrian Banded Iron-formations(BIFs)from Around the World:Their Age,Geologic Setting,Mineralogy,Metamorphism,Geochemistry,and Origins[J].American Mineralogist,2005,90(10):1473-1499.
[71] DYMEK R F,KLEIN C.Chemistry,Petrology and Origin of Banded Iron-formation Lithologies from the 3 800 Ma Isua Supracrustal Belt,West Greenland[J].Precambrian Research,1988,39(4):247-302.
[72] JACOBSEN S B,PIMENTEL-KLOSE M R.A Nd Isotopic Study of the Hamersley and Michipicoten Banded Iron Formations:The Source of REE and Fe in Archean Oceans[J].Earth and Planetary Science Letters,1988,87(1/2):29-44.
[73] WANG Y F,XU H F,MERINO E,et al.Generation of Banded Iron Formations by Internal Dynamics and Leaching of Oceanic Crust[J].Nature Geoscience,2009,2(11):781-784.
[74] DERRY L A,JACOBSEN S B.The Chemical Evolution of Precambrian Seawater:Evidence from REEs in Banded Iron Formations[J].Geochimica et Cosmochimica Acta,1990,54(11):2965-2977.
[75] 刘 利,张连昌,代堰锫,等.内蒙古固阳绿岩带三合明BIF型铁矿的形成时代、地球化学特征及地质意义[J].岩石学报,2012,28(11):195-209.
LIU Li,ZHANG Lian-chang,DAI Yan-pei,et al.Formation Age,Geochemical Signatures and Geological Significance of the Sanheming BIF-type Iron Deposit in the Guyang Greenstone Belt,Inner Mongolia[J].Acta Petrologica Sinica,2012,28(11):195-209.
[76] ZHAI M G,YANG R Y,LU W J,et al.Geochemistry and Evolution of the Qingyuan Archaean Granite-greenstone Terrain,NE China[J].Precambrian Research,1985,27(1):37-62.
[77] LI Z,WEI C J.Two Types of Neoarchean Basalts from Qingyuan Greenstone Belt,North China Craton:Petrogenesis and Tectonic Implications[J].Precambrian Research,2017,292(5):175-193.

Memo

Memo:
-
Last Update: 2022-06-01