|本期目录/Table of Contents|

[1]赵敏,曾成,杨睿,等.贵州普定灯盏河岩溶泉的硫同位素季节变化特征[J].地球科学与环境学报,2012,34(03):83-88.
 ZHAO Min,ZENG Cheng,YANG Rui,et al.Seasonal Variation of Sulfur Isotope in Dengzhanhe Karst Spring of Puding, Guizhou[J].Journal of Earth Sciences and Environment,2012,34(03):83-88.
点击复制

贵州普定灯盏河岩溶泉的硫同位素季节变化特征(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第34卷
期数:
2012年第03期
页码:
83-88
栏目:
水资源与环境
出版日期:
2012-09-20

文章信息/Info

Title:
Seasonal Variation of Sulfur Isotope in Dengzhanhe Karst Spring of Puding, Guizhou
作者:
赵敏12曾成12杨睿12刘再华12
1.中国科学院地球化学研究所 环境地球化学国家重点实验室,贵州 贵阳 550002; 2.中国科学院地球化学研究所 普定喀斯特生态综合试验站,贵州 普定 562100
Author(s):
ZHAO Min12 ZENG Cheng12 YANG Rui12 LIU Zai-hua12
1. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, Guizhou, China; 2. Puding Comprehensive Karst Ecological Experiment Station,Institute of Geochemistry, Chinese Academy of Sciences, Puding 562100, Guizhou, China
关键词:
水文地球化学 硫同位素 溶解 氧化 有机硫 岩溶 贵州
Keywords:
hydrogeochemistry sulfur isotope dissolution oxidation organic sulfur spring karst Guizhou
分类号:
P595; P641.3
DOI:
-
文献标志码:
-
摘要:
通过对贵州普定后寨地下河补给区的灯盏河岩溶泉为期1年的泉水水文地球化学特征与水中SO2-4的硫同位素组成及季节性变化规律的分析,揭示灯盏河岩溶泉泉水中硫酸盐的来源及形成机理。结果表明:灯盏河岩溶泉的水化学类型主要为HCO-3·SO2-4-Ca2+型,具有很高的硫酸盐浓度,且变化幅度较大,SO2-4浓度为0.35~8.76 mmol·L-1; 灯盏河泉水SO2-4的硫同位素组成为(3.80~25.76)×10-3,反映泉水的硫同位素组成主要受土壤有机硫氧化和石膏岩层溶解的控制; 泉水硫同位素组成季节性变化明显,表现为旱季大于雨季,且旱季变化平缓,主要受石膏溶解的控制,而雨季变化幅度较大,反映雨季地下水硫酸盐土壤有机硫源贡献的增加及其季节性差异。
Abstract:
The concentration of sulfate is high in Dengzhanhe karst spring located in the recharge area of Houzhai underground river of Puding, Guizhou. Hydrogeochemistry characteristics of the spring, sulfur isotopic composition of SO2-4 and their seasonal changes were analyzed during a hydrological year, and the source and formation mechanism of sulfate in the spring were revealed. The results showed that the hydrochemical type of Dengzhanhe karst spring was HCO-3·SO2-4-Ca2+, the concentration of sulfate was very high and the range of variation was significant, the concentration of SO2-4 was 0.35-8.76 mmol·L-1; the sulfur isotopic composition of SO2-4 in the spring was(3.80-25.76)×10-3, and indicated that the sulfur isotopic composition was mainly controlled by dissolution of gypsum and oxidation of organic sulfur in soil; seasonal variation of sulfur isotopic composition was remarkable, and indicated that sulfur isotopic composition in dry season was more than that in rainy season, and the change of composition in dry season was small and mainly controlled by the dissolution of gypsum, but the change in rainy season was large and reflected the increase of organic sulfur for underground sulfate soil and its seasonal difference.

参考文献/References:

[1] 洪业汤,张鸿斌,朱咏煊,等.中国大气降水的硫同位素组成特征[J].自然科学进展,1994,4(6):741-745. HONG Ye-tang,ZHANG Hong-bin,ZHU Yong-xuan,et al.Sulfur Isotopic Composition of Rain in China[J].Progress in Natural Sciences,1994,4(6):741-745.
[2] 姚文辉,陈佑蒲,刘 坚,等.衡阳大气硫同位素组成环境意义的研究[J].环境科学研究,2003,16(3):3-5. YAO Wen-hui,CHEN You-pu,LIU Jian,et al.The Research on the Environmental Significance of Atmospheric Sulfur Isotopic Composition in Hengyang[J].Research of Environmental Sciences,2003,16(3):3-5.
[3] KNOLLER K,STRSUCH G.Assessment of the Flow Dynamic of a Mining Lake by Stable Isotope Investigations[J].Isotopes in Environmental and Health Studies,1999,35(1/2):75-83.
[4] KNOLLER K,STRSUCH G.The Application of Stable Isotopes for Assessing the Hydrological,Sulfur,and Iron Balances of Acidic Mining Lake ML 111(Lusatia,Germany)as a Basis for Biotechnological Remediation[J].Water,Air and Soil Pollution:Focus,2002,2(3):3-14.
[5] PELLICORI D A,GAMMONS C H,POULSON S R.Geochemistry and Stable Isotope Composition of the Berkeley Pit Lake and Surrounding Mine Waters,Butte,Montana[J].Applied Geochemistry,2005,20(11):2116-2137.
[6] 储雪蕾.北京地区地表水的硫同位素组成与环境地球化学[J].第四纪研究,2000,20(1):87-97. CHU Xue-lei.Sulfur Isotopic Compositions and Environmental Geochemistry of Surface Water in Beijing District[J].Quaternary Sciences,2000,20(1):87-97.
[7] SCHIFFS L,SPOELSTRA J,SEMKIN R G,et al.Drought Induced Pulses of SO2-4 from a Canadian Shield Wetland:Use of δ34S and δ18O in SO2-4 to Determine Sources of Sulfur[J].Applied Geochemistry,2005,20(4):691-700.
[8] 蒋颖魁,刘丛强,陶发祥.贵州乌江水系枯水期河水硫同位素组成研究[J].地球化学,2006,35(6):623-628. JIANG Ying-kui,LIU Cong-qiang,TAO Fa-xiang.Sulfur Isotopic Compositions of Wujiang River Water in Guizhou Province During Low-flow Period[J].Geochimica,2006,35(6):623-628.
[9] 蒋颖魁,刘丛强,陶发祥.贵州乌江水系河水硫同位素组成特征研究[J].水科学进展,2007,18(4):558-565. JIANG Ying-kui,LIU Cong-qiang,TAO Fa-xiang.Sulfur Isotope Composition Characters of Wujiang River Water in Guizhou Province[J].Advances in Water Science,2007,18(4):558-565.
[10] 王中良,刘丛强,朱兆洲.中国西南喀斯特湖泊硫酸盐来源的硫同位素示踪研究[J].矿物岩石地球化学通报,2007,26(增):580-581. WANG Zhong-liang,LIU Cong-qiang,ZHU Zhao-zhou.Stable Isotopic Research to Investigate Potential Sulfate Sources of Karst Lakes in Southwest China[J].Bulletin of Mineralogy,Petrology and Geochemi-stry,2007,26(S):580-581.
[11] BRENOT A,BRENOT M,CARIGAN J,et al.Geological and Land Use Control on δ34S and δ18O of River Dissolved Sulfate:the Moselle River Basin,France[J].Chemical Geology,2007,244(1/2):25-41.
[12] 顾慰祖,林曾平,费光灿,等.环境同位素硫在大同南寒武—奥陶系地下水资源研究中的应用[J].水科学进展,2000,11(1):14-20. GU Wei-zu,LIN Zeng-ping,FEI Guang-can,et al.The Use of Environmental Sulphur Isotopes in the Study of the Cambrian-Ordovician Aquifer System in the South of Datong[J].Advances in Water Science,2000,11(1):14-20.
[13] BOTTCHER M E.The Stable Isotopic Geochemistry of the Sulfur and Carbon Cycles in a Modern Karst Environment[J].Isotopes in Environmental and Health Studies,1999,35(1/2):39-61.
[14] PICHLER T.δ34S Isotope Values of Dissolved Sulfate(SO2-4)as a Tracer for Battery Acid(H2SO4)Contamination in Groundwater[J].Environmental Geology,2005,47(2):215-224.
[15] KNOLLER K,TRETTIN R,STRAUCH G.Sulphur Cycling in the Drinking Water Catchment Area of Torgau-Mockritz(Germany):Insights from Hydrochemical and Stable Isotope Investigations[J].Hydrological Processes,2005,19(17):3445-3465.
[16] TUTTLE M L W,BREIT G N,COZZARELLI I M.Processes Affecting δ34S and δ18O Values of Dissolved Sulfate in Alluvium Along the Canadian River,Central Oklahoma,USA[J].Chemical Geology,2009,265(3/4):455-467.
[17] YANG Y C,SHEN Z L,WEN D G,et al.Distribution of δ34S and δ18O in SO2-4 in Groundwater from the Ordos Cretaceous Groundwater Basin and Geological Implications[J].Acta Geologica Sinica:English Edition,2010,84(2):432-440.
[18] 李干蓉,刘丛强,陈 椽,等.丰水期乌江上游干流水库—河流体系硫同位素组成[J].长江流域资源与环境,2009,18(4):350-355. LI Gan-rong,LIU Cong-qiang,CHEN Chuan,et al.Sulfur Isotope Composition of River Channel and Reservoir Water in Upper Reaches of Wujiang River in High Flow Season[J].Resources and Environment in the Yangtze Basin,2009,18(4):350-355.
[19] DAS A,PAWAR N J,VEIZER J.Sources of Sulfur in Deccan Trap Rivers:a Reconnaissance Isotope Study[J].Applied Geochemistry,2011,26(3):301-307.
[20] 张江华,梁永平,王维泰,等.硫同位素技术在北方岩溶水资源调查中的应用实例[J].中国岩溶,2009,28(3):235-241. ZHANG Jiang-hua,LIANG Yong-ping,WANG Wei-tai,et al.A Practical Use of 34S in the Investigation of Karst Groundwater Resource in North China[J].Carsologica Sinica,2009,28(3):235-241.
[21] 郎赟超.喀斯特地下水文系统物质循环的地球化学特征——以贵阳市和遵义市为例[D].贵阳:中国科学院地球化学研究所,2005. LANG Yun-chao.Geochemical Characteristics of Cycling of Substances in Karstic Ground Water System—a Case Study from Guiyang and Zunyi Cities of China[D].Guiyang:Institute of Geochemistry,Chinese Academy of Sciences,2005.
[22] DOWUONA G N,MERMUT A R,KROUSE H R.Stable Isotope Geochemistry of Sulfate in Relation to Hydrogeology in Southern Saskatchewan,Canada[J].Applied Geochemistry,1993,8(3):255-263.
[23] DOGRAMACI S S,HERCZEG A L,SCHIFF S L,et al.Control on δ34S and δ18O of Dissolved Sulfate in Aquifers of the Murray Basin,Australia and Their Use as Indicators of Flow Processes[J].Applied Geochemistry,2001,16(4):475-488.
[24] KIRSTE D,DE CARITAT P,DANN R.The Application of the Stable Isotopes of Sulfur and Oxygen in Groundwater Sulfate to Mineral Exploration in the Broken Hill Region of Australia[J].Journal of Geochemical Exploration,2003,78/79:81-84.
[25] ROY S,GAILLARDET J,ALLEGRE C J.Geochemi-stry of Dissolved and Suspended Loads of the Seine River,France:Anthropogenic Impact,Carbonate and Silicate Weathering[J].Geochimica et Cosmochimica Acta,1999,63(9):1277-1292.
[26] TELMER K,VEIZER J.Carbon Fluxes,ρCO2 and Substrate Weathering in a Large Northern River Basin,Canada:Carbon Isotope Perspectives[J].Chemical Geology,1999,159(1/2/3/4):61-86.
[27] YOSHIMURA K,NAKAO S,NOTO M,et al.Geochemical and Stable Isotope Studies on Natural Water in the Taroko Gorge Karst Area,Taiwan:Chemical Weathering of Carbonate Rocks by Deep Source CO2 and Sulfuric Acid[J].Chemical Geology,2001,177(3/4):415-430.
[28] HELIE J F,HILLAIRE-MARCEL C,RONDEAU B.Seasonal Changes in the Sources and Fluxes of Dissolved Inorganic Carbon Through the St.Lawrence River:Isotopic and Chemical Constraint[J].Chemical Geology,2002,186(1/2):117-138.
[29] HAN G L,LIU C Q.Water Geochemistry Controlled by Carbonate Dissolution:a Study of the River Waters Draining Karst-dominated Terrain,Guizhou Province,China[J].Chemical Geology,2004,204(1/2):1-21.
[30] 蒙海花,王腊春.岩溶地区土地利用变化的水文响应研究——以贵州后寨河流域为例[J].中国岩溶,2009,28(3):227-234. MENG Hai-hua,WANG La-chun.Hydrological Responses to Land-use Changes in Karst Area—a Case Study in Houzhai River,Guizhou Province[J].Carsologica Sinica,2009,28(3):227-234.
[31] 赵 敏,曾 成,刘再华.土地利用变化对岩溶地下水溶解无机碳及其稳定同位素组成的影响[J].地球化学,2009,38(6):565-572. ZHAO Min,ZENG Cheng,LIU Zai-hua.Influence of Land Use Change on Dissolved Inorganic Carbon and Stable Isotopic Compositions of Karst Groundwater[J].Geochimica,2009,38(6):565-572.
[32] 束龙仓,柯婷婷,刘丽红,等.基于综合法的岩溶山区生态系统脆弱性评价——以贵州省普定县为例[J].中国岩溶,2010,29(2):141-144. SHU Long-cang,KE Ting-ting,LIU Li-hong,et al.Assessment on Ecosystem Fragility of Karst Mountain Areas Based on Synthetic Method—a Case Study in Puding Country,Guizhou Province[J].Carsologica Sinica,2010,29(2):141-144.
[33] ZHAO M,ZENG C,LIU Z H,et al.Effect of Different Land Use/Land Cover on Karst Hydrogeochemistry:a Paired Catchment Study of Chenqi and Dengzhanhe,Puding,Guizhou,SW China[J].Journal of Hydrology,2010,388(1/2):121-130.
[34] YANAGLSAWA F,SAKAL H.Thermal Decomposition of Barium Sulfate-vanadium Pentoxide-silica Glass Mixtures for Preparation of Sulfur Dioxide in Sulfur Isotope Ratio Measurements[J].Analytical Chemistry,1983,55(6):985-987.
[35] LIU Z H,ZHANG M L,LI Q,et al.Hydrochemical and Isotope Characteristics of Spring Water and Travertine in the Baishuitai Area(SW China)and Their Meaning for Paleoenvironmental Reconstruction[J].Environmental Geology,2003,44(6):698-704.
[36] 曾 成.湿亚热带岩溶系统水文水化学对不同土地利用的响应研究[D].桂林:中国地质科学院岩溶地质研究所,2009. ZENG Cheng.Study on the Response of Hydrology and Hydrochemistry of Karst Systems to Different Land Uses Under Humid Subtropical Climate[D].Guilin: Institute of Karst Geology,Chinese Academy of Geological Sciences,2009.
[37] 张 伟.西南喀斯特坡地土壤硫的生物地球化学循环研究[D].贵阳:中国科学院地球化学研究所,2009. ZHANG Wei.Biogeochemical Cycle of Sulfur in Soils on Slopes of Karst Areas,Southwest China[D].Gui-yang:Institute of Geochemistry,Chinese Academy of Sciences,2009.
[38] 郎赟超,刘丛强,SATAKE H,等.贵阳地表水-地下水的硫和氯同位素组成特征及其污染物示踪意义[J].地球科学进展,2008,23(2):151-159. LANG Yun-chao,LIU Cong-qiang,SATAKE H,et al.δ37Cl and δ34S Variations of Cl- and SO2-4 in Groundwater and Surface Water of Guiyang Area,China[J].Advances in Earth Science,2008,23(2):151-159.

相似文献/References:

[1]郭华明,郭琦,贾永锋,等.中国不同区域高砷地下水化学特征及形成过程[J].地球科学与环境学报,2013,35(03):83.
 GUO Hua-ming,GUO Qi,JIA Yong-feng,et al.Chemical Characteristics and Geochemical Processes of High Arsenic Groundwater in Different Regions of China[J].Journal of Earth Sciences and Environment,2013,35(03):83.
[2]何丹,马致远,王疆霞,等.关中盆地深部地下热水残存沉积水的同位素证据[J].地球科学与环境学报,2014,36(04):117.
 HE Dan,MA Zhi-yuan,WANG Jiang-xia,et al.Isotopic Evidence of Remaining Sedimentary Water in the Deep Geothermal Water of Guanzhong Basin[J].Journal of Earth Sciences and Environment,2014,36(03):117.
[3]胡伟伟,马致远,曹海东,等.同位素与水文地球化学方法在矿井突水水源判别中的应用[J].地球科学与环境学报,2010,32(03):268.
 HU Wei-wei,MA Zhi-yuan,CAO Hai-dong,et al.Application of Isotope and Hydrogeochemical Methods in Distinguishing Mine Bursting Water Source[J].Journal of Earth Sciences and Environment,2010,32(03):268.
[4]钱 会,李 健,窦 妍,等.布隆湖水化学成分的形成机制[J].地球科学与环境学报,2009,31(01):70.
 QIAN Hui,LI Jian,DOU Yan,et al.Formation Mechanisms of Water Composition of Bulong Lake[J].Journal of Earth Sciences and Environment,2009,31(03):70.
[5]关中盆地南部含水层间相互关系的 环境同位素水文地球化学证据.关中盆地南部含水层间相互关系的 环境同位素水文地球化学证据[J].地球科学与环境学报,2006,28(02):69.
 MA Zhi-yuan,QIAN Hui,HUANG Jian-xun,et al.Isotope and Geochemistry Constraints on Hydraulic Relationship of Groundwater Among Different Aquifers in Southern Area of Guanzhong Basin,Shaanxi Province[J].Journal of Earth Sciences and Environment,2006,28(03):69.
[6]鄢雨萌,苏东,苏小四*,等.控制砂岩型铀矿床中铀迁移转化的主要水文地球化学作用实验[J].地球科学与环境学报,2020,42(02):256.[doi:10.19814/j.jese.2019.11002]
 YAN Yu-meng,SU Dong,SU Xiao-si*,et al.Experiment on Hydrogeochemical Effects Affecting Uranium Migration and Transformation in Sandstone-type Uranium Deposit[J].Journal of Earth Sciences and Environment,2020,42(03):256.[doi:10.19814/j.jese.2019.11002]
[7]赵 岩,张 朋,毕中伟,等.沉积建造在辽东半岛古元古代杨木杆硼矿富集成矿过程中的重要作用[J].地球科学与环境学报,2022,44(02):207.[doi:10.19814/j.jese.2021.12056]
 ZHAO Yan,ZHANG Peng,BI Zhong-wei,et al.Key Role of Sedimentary Formation Played in the Mineralization Process of the Paleoproterozoic Yangmugan Boron Deposit in Liaodong Peninsula, NE China[J].Journal of Earth Sciences and Environment,2022,44(03):207.[doi:10.19814/j.jese.2021.12056]
[8]张 东,曹 莹,赵志琦*,等.煤矿开采活动对黄河中游窟野河流域溶解性硫酸盐的影响[J].地球科学与环境学报,2023,45(02):414.[doi:10.19814/j.jese.2022.10029]
 ZHANG Dong,CAO Ying,ZHAO Zhi-qi*,et al.Impacts of Coal Mining Activities on Dissolved Sulfate in the Kuye River Basin, the Midstream of Yellow River, China[J].Journal of Earth Sciences and Environment,2023,45(03):414.[doi:10.19814/j.jese.2022.10029]

备注/Memo

备注/Memo:
收稿日期:2011-10-16
基金项目:国家自然科学基金项目(41103084,41003056); 贵州省博士基金项目(2011GZ62743)
作者简介:赵 敏(1980-),女,贵州兴义人,助理研究员,理学博士,E-mail:zhaomin@mails.gyig.ac.cn。

更新日期/Last Update: 2012-09-20