|本期目录/Table of Contents|

[1]吕 娜,郎兴海*,王旭辉,等.西藏茶巴拉地区晚白垩世角闪辉长岩与石英闪长岩年代学、岩石地球化学与成因[J].地球科学与环境学报,2022,44(01):42-64.[doi:10.19814/j.jese.2021.10046]
 LYU Na,LANG Xing-hai*,WANG Xu-hui,et al.Geochronology, Geochemistry and Petrogenesis of Late Cretaceous Hornblende Gabbros and Quartz Diorites in Chabala Area of Tibet, China[J].Journal of Earth Sciences and Environment,2022,44(01):42-64.[doi:10.19814/j.jese.2021.10046]
点击复制

西藏茶巴拉地区晚白垩世角闪辉长岩与石英闪长岩年代学、岩石地球化学与成因(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第44卷
期数:
2022年第01期
页码:
42-64
栏目:
基础地质与矿床地质
出版日期:
2022-01-15

文章信息/Info

Title:
Geochronology, Geochemistry and Petrogenesis of Late Cretaceous Hornblende Gabbros and Quartz Diorites in Chabala Area of Tibet, China
文章编号:
1672-6561(2022)01-0042-23
作者:
吕 娜郎兴海*王旭辉何 青邓煜霖杨同山董 咪
(成都理工大学 地球科学学院,四川 成都 610059)
Author(s):
LYU Na LANG Xing-hai* WANG Xu-hui HE Qing DENG Yu-lin YANG Tong-shan DONG Mi
(College of Earth Science, Chengdu University of Technology, Chengdu 610059, Sichuan, China)
关键词:
角闪辉长岩 石英闪长岩 地球化学 岩石成因 晚白垩世 洋脊俯冲 拉萨地体
Keywords:
hornblende gabbro quartz diorite geochemistry petrogenesis Late Cretaceous ridge subduction Lhasa terrane
分类号:
P581; P597
DOI:
10.19814/j.jese.2021.10046
文献标志码:
A
摘要:
青藏高原南部拉萨地体晚白垩世岩浆岩的岩石成因及地球动力学机制仍存在争议。以拉萨地体南缘曲水县茶巴拉地区西部的角闪辉长岩和石英闪长岩为研究对象,在野外地质调查基础上,开展了岩相学、地球化学和LA-ICP-MS锆石U-Pb年代学研究,查明了角闪辉长岩和石英闪长岩的形成时代及岩石成因,进一步约束了南部拉萨地体晚白垩世的构造演化。结果表明:角闪辉长岩侵位年龄为91~87 Ma,石英闪长岩侵位年龄为81 Ma。角闪辉长岩具有低SiO2含量(质量分数,下同)(48.16%~51.05%),高MgO含量(4.54%~11.13%)、Co含量((31.2~46.8)×10-6)、Ni含量((1.79~82.70)×10-6),(87Sr/86Sr)i值为0.703 925~0.704 380,εNd(t)值为2.50~3.96,表明角闪辉长岩来源于受俯冲板片流体交代的亏损地幔楔的部分熔融; 石英闪长岩普遍具有高SiO2含量(62.45%~62.90%)、Al2O3含量(15.94%~16.22%)、K2O+Na2O值(6.36%~6.46%)、Mg#值(43.77~44.65)的特征,属于准铝质Ⅰ型花岗岩,其来源于下地壳的部分熔融,并有少量幔源岩浆的加入。两类岩石均显示岛弧岩浆的特征,富集轻稀土元素及大离子亲石元素(Rb、Th、U、Sr等),亏损重稀土元素及高场强元素(Nb、Ta、Ti等)。结合区域资料,晚白垩世早期(100~80 Ma)发生在南部拉萨地体的岩浆爆发事件可能是新特提斯洋洋脊北向俯冲的结果。洋脊俯冲使软流圈物质通过板片窗上涌,并发生减压熔融形成基性岩浆,这些基性岩浆提供的热量促使地幔楔和下地壳岩石发生部分熔融,从而导致南部拉萨地体晚白垩世早期岩浆爆发。
Abstract:
The petrogenesis and geodynamic mechanism of Late Cretaceous magmatic rocks in southern Lhasa terrane, Tibet, are still controversial. The hornblende gabbros and quartz diorites in the west of Chabala area, Qushui county of southern Lhasa terrane were selected as the research object, and based on field geological surveys, the petrography, geochemistry and LA-ICP-MS zircon U-Pb geochronology were analyzed to identify the formation ages and petrogenesis of hornblende gabbros and quartz diorites, and further constrain the tectonic evolution of southern Lhasa terrane during Late Cretaceous. The results show that the hornblende gabbros emplace at 91-87 Ma, and the quartz diorites emplace at 81 Ma. The hornblende gabbros have low contents of SiO2(48.16%-51.05%), high contents of MgO(4.54%-11.13%), Co((31.2-46.8)×10-6)and Ni((1.79-82.70)×10-6), and(87Sr/86Sr)i value is 0.703 925-0.704 380, εNd(t)value is 2.50-3.96, indicating that the hornblende gabbros are generated by partial melting of a depleted mantle wedge that have been metasomatized by slab-derived fluid, and suffer from no obvious crustal contamination. The quartz diorites are generally high SiO2(62.45%-62.90%), Al2O3(15.94%-16.22%), K2O+Na2O(6.36%-6.46%)and Mg# value(43.77-44.65), thus can be grouped into quasi-aluminous I-type granite. The quartz diorites are generated by partial melting of the lower crust and mix with a little mantle-derived magma. Both rocks show the characteristics of arc magma with enrichment of LREEs and LILEs(such as Rb, Th, U and Sr), and depletion of HREEs and HFSEs(such as Nb, Ta and Ti). Integrating regional data, the “flare-up” event in southern Lhasa terrane during the early Late Cretaceous(100-80 Ma)is likely the result of the northwards subduction of an oceanic ridge of Neo-Tethys. The ridge subduction would have resulted asthenosphere material upwelling through a slab window and decompression melting to form a basic magma, which provides heat to cause partial melting of the mantle wedge and lower crustal rocks, resulting in the magma eruption during the early Late Cretaceous of southern Lhasa terrane.

参考文献/References:

[1] YIN A,HARRISON T M.Geologic Evolution of the Himalayan-Tibetan Orogen[J].Annual Review of Earth and Planetary Sciences,2000,28:211-280.
[2] ZHU D C,ZHAO Z D,NIU Y L,et al.The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth[J].Earth and Planetary Science Letters,2011,301(1/2):241-255.
[3] ZHU D C,ZHAO Z D,NIU Y L,et al.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau[J].Gondwana Research,2013,23(4):1429-1454.
[4] PAN G T,WANG L Q,LI R S,et al.Tectonic Evolution of the Qinghai-Tibet Plateau[J].Journal of Asian Earth Sciences,2012,53:3-14.
[5] 潘桂棠,王立全,朱弟成.青藏高原区域地质调查中几个重大科学问题的思考[J].地质通报,2004,23(1):12-19.
PAN Gui-tang,WANG Li-quan,ZHU Di-cheng.Thoughts on Some Important Scientific Problems in Regional Geological Survey of the Qinghai-Tibet Pla-teau[J].Geological Bulletin of China,2004,23(1):12-19.
[6] 潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J].岩石学报,2006,22(3):521-533.
PAN Gui-tang,MO Xuan-xue,HOU Zeng-qian,et al.Spatial-temporal Framework of the Gangdese Oroge-nic Belt and Its Evolutoin[J].Acta Petrologica Sinica,2006,22(3):521-533.
[7] ZHU D C,WANG Q,CAWOOD P A,et al.Raising the Gangdese Mountains in Southern Tibet[J].Journal of Geophysical Research:Solid Earth,2017,122(1):214-223.
[8] ZHU D C,MO X X,NIU Y L,et al.Geochemical Investigation of Early Cretaceous Igneous Rocks Along an East-west Traverse Throughout the Central Lhasa Terrane,Tibet[J].Chemical Geology,2009,268(3/4):298-312.
[9] MA L,WANG Q,WYMAN D A,et al.Late Cretaceous(100-89 Ma)Magnesian Charnockites with Adakitic Affinities in the Milin Area,Eastern Gangdese:Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet[J].Lithos,2013,175/176:315-332.
[10] ZHENG Y C,HOU Z Q,GONG Y L,et al.Petroge-nesis of Cretaceous Adakite-like Intrusions of the Gangdese Plutonic Belt,Southern Tibet:Implications for Mid-ocean Ridge Subduction and Crustal Growth[J].Lithos,2014,190:240-263.
[11] ZHU D C,WANG Q,ZHAO Z D,et al.Magmatic Record of India-Asia Collision[J].Scientific Reports,2015,5:14289.
[12] ZHU D C,WANG Q,CHUNG S L,et al.Gangdese Magmatism in Southern Tibet and India-Asia Convergence Since 120 Ma[J].Geological Society,London,Special Publications,2019,483:583-596.
[13] CHU M F,CHUNG S L,SONG B A,et al.Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet[J].Geology,2006,34:745-748.
[14] JI W Q,WU F Y,CHUNG S L,et al.Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith,Southern Tibet[J].Chemical Geology,2009,262:229-245.
[15] TANG J X,LANG X H,XIE F W,et al.Geological Characteristics and Genesis of the Jurassic No.I Porphyry Cu-Au Deposit in the Xiongcun District,Gangdese Porphyry Copper Belt,Tibet[J].Ore Geology Reviews,2015,70:438-456.
[16] WEI Y Q,ZHAO Z D,NIU Y L,et al.Geochronology and Geochemistry of the Early Jurassic Yeba Formation Volcanic Rocks in Southern Tiebet:Initiation of Back-arc Rifting and Crustal Accretion in the Southern Lhasa Terrane[J].Lithos,2017,278/279/280/281:477-490.
[17] WANG R Q,QIU J S,YU S B,et al.Crust-mantle Interaction During Early Jurassic Subduction of Neo-Tethyan Oceanic Slab:Evidence from the Dongga Ga-bbro-granite Complex in the Southern Lhasa Subterrane,Tibet[J].Lithos,2017,292(7):262-277.
[18] WANG X H,LANG X H,TANG J X,et al.Early-Middle Jurassic(182-170 Ma)Ruocuo Adakitic Porphyries,Southern Margin of the Lhasa Terrane,Tibet:Implications for Geodynamic Setting and Porphyry Cu-Au Mineralization[J].Journal of Asian Earth Sciences,2019,173:336-351.
[19] LANG X H,WANG X H,TANG J X,et al.Composition and Age of Jurassic Diabase Dikes in the Xiongcun Porphyry Copper-gold District,Southern Margin of the Lhasa Terrane,Tibet,China:Petrogenesis and Tectonic Setting[J].Geological Journal,2018,53:973-1993.
[20] LANG X H,LIU D,DENG Y L,et al.Detrital Zircon Geochronology and Geochemistry of Jurassic Sandstones in the Xiongcun District,Southern Lhasa Subterrane,Tibet,China:Implications for Provenance and Tectonic Setting[J].Geological Magazine,2019,156(4):683-701.
[21] LANG X H,DENG Y L,WANG X H,et al.Geochronology and Geochemistry of Volcanic Rocks of the Bima Formation,Southern Lhasa Subterrane,Tibet:Implications for Early Neo-Tethyan Subduction[J].Gondwana Research,2020,80:335-349.
[22] WANG C,DING L,ZHANG L Y,et al.Early Jurassic High-Mg Andesites in the Quxu Area,Southern Lhasa Terrane:Implications for Magma Evolution Related to a Slab Rollback of the Neo-Tethyan Ocean[J].Geological Journal,2019,54(4):2508-2524.
[23] MENG Y K,DONG H,CONG Y,et al.The Early-stage Evolution of the Neo-Tethys Ocean:Evidence from Granitoids in the Middle Gangdese Batholith,Southern Tibet[J].Journal of Geodynamics,2016,94:34-49.
[24] 王旭辉,郎兴海,邓煜霖,等.西藏拉萨地体南缘汤白地区始新世辉绿岩脉:新特提斯洋壳断离的证据[J].中国地质,2019,46(6):1336-1355.
WANG Xu-hui,LANG Xing-hai,DENG Yu-lin,et al.Eocene Diabase Dikes in the Tangbai Area,Southern Margin of Lhasa Terrane,Tibet:Evidence for the Slab Break-off of the Neo-Tethys Ocean[J].Geology in China,2019,46(6):1336-1355.
[25] WEN D R,LIU D Y,CHUNG S L,et al.Zircon SH-RIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet[J].Chemical Geology,2008,252:191-201.
[26] ZHANG Z M,ZHAO G C,SANTOSH M,et al.Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith,Southeastern Tibet:Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?[J].Gondwana Research,2010,17(4):615-631.
[27] 董汉文,许志琴,李 源,等.冈底斯带东段墨脱地区早侏罗世辉长岩的成因及其构造意义[J].岩石学报,2016,32(12):3624-3634.
DONG Han-wen,XU Zhi-qin,LI Yuan,et al.Genesis and Geological Significance of Early Jurassic Gabbro in Medog Area,the Eastern Part of the Gangdese Magmatic Belt[J].Acta Petrologica Sinica,2016,32(12):3624-3634.
[28] LI S M,WANG Q,ZHU D C,et al.One or Two Early Cretaceous Arc Systems in the Lhasa Terrane,Southern Tibet[J].Journal of Geophysical Research:Solid Earth,2018,123(5):3391-3413.
[29] GUO L,LIU Y,LIU S,et al.Petrogenesis of Early to Middle Jurassic Granitoid Rocks from the Gangdese Belt,Southern Tibet:Implications for Early History of the Neo-Tethys[J].Lithos,2013,179:320-333.
[30] KANG Z Q,XU J F,WILDE S A,et al.Geochronology and Geochemistry of the Sangri Group Volcanic Rocks,Southern Lhasa Terrane:Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc[J].Lithos,2014,200/201:157-168.
[31] LEE H Y,CHUNG S L,LO C H,et al.Eocene Neo-tethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record[J].Tectonophysics,2009,477(1/2):20-35.
[32] HARRIS N B W,XU R H,LEWIS C L,et al.Isotope Geochemistry of the 1985 Tibet Geotraverse,Lhasa to Golmud[J].The Royal Society,1988,327:263-285.
[33] DONG X,ZHANG Z M,SANTOSH M,et al.Late Neoproterozoic Thermal Events in the Northern Lhasa Terrane,South Tibet:Zircon Chronology and Tectonic Implications[J].Journal of Geodynamics,2011,52:389-405.
[34] ZHANG Z M,DONG X,LIU F,et al.The Making of Gondwana:Discovery of 650 Ma HP Granulites from the North Lhasa,Tibet[J].Precambrian Research,2012,212/213:107-116.
[35] HOU Z Q,DUAN L F,LU Y J,et al.Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen[J].Economic Geology,2015,110:1541-1575.
[36] 张立雪,王 青,朱弟成,等.拉萨地体锆石Hf同位素填图:对地壳性质和成矿潜力的约束[J].岩石学报,2013,29(11):3681-3688.
ZHANG Li-xue,WANG Qing,ZHU Di-cheng,et al.Mapping the Lhasa Terrane Through Zircon Hf Isotopes:Constraints on the Nature of the Crust and Metallogenic Potential[J].Acta Petrologica Sinica,2013,29(11):3681-3688.
[37] 唐菊兴,李志军,董树义,等.西藏日喀则市汤白铜矿地质勘查报告[R].成都:成都理工大学,2005.
TANG Ju-xing,LI Zhi-jun,DONG Shu-yi,et al.Geologic Exploration Report of Tangbai Copper Deposit in Xigaze,Tibet[R].Chengdu:Chengdu University of Technology,2005.
[38] HOU Z Q,COOK N J.Metallogenesis of the Tibetan Collisional Orogen:A Review and Introduction to the Special Issue[J].Ore Geology Reviews,2009,36(1/2/3):2-24.
[39] WIEDENBECK M,ALLE P,CORFU F,et al.Three Natural Zircon Standards for U-Th-Pb,Lu-Hf,Trace Element and REE Analyses[J].Geostandards Newsletter,1995,19(1):1-23.
[40] JACKSON S E,PEARSON N J,GRIFFIN W L,et al.The Application of Laser Ablation-inductively Coupled Plasma-mass Spectrometry to In-situ U-Pb Zircon Geochronology[J].Chemical Geology,2004,211(1/2):1-69.
[41] 刘 栋,赵志丹,朱弟成,等.青藏高原南部拉萨地块中新世超钾质岩石中的锆石记录[J].岩石学报,2013,29(11):3703-3715.
LIU Dong,ZHAO Zhi-dan,ZHU Di-cheng,et al.Zircon Records of Miocene Ultrapotassic Rocks from Southern Lhasa Subterrane,Tibetan Plateau[J].Acta Petrologica Sinica,2013,29(11):3703-3715.
[42] CHEN S,WANG X H,NIU Y L,et al.Simple and Cost-effective Methods for Precise Analysis of Trace Element Abundances in Geological Materials with ICP-MS[J].Science Bulletin,2017,62(4):277-289.
[43] PIN C,GANNOUN A,DUPONT A.Rapid,Simultaneous Separation of Sr,Pb,and Nd by Extraction Chromatography Prior to Isotope Ratios Determination by TIMS and MC-ICP-MS[J].Journal of Analy-tical Atomic Spectrometry,2014,29:1858-1870.
[44] 濮 巍,高剑峰,赵葵东,等.利用DCTA和HIBA快速有效分离Rb-Sr、Sm-Nd的方法[J].南京大学学报(自然科学),2005,41(4):445-450.
PU Wei,GAO Jian-feng,ZHAO Kui-dong,et al.Se-paration Method of Rb-Sr,Sm-Nd Using DCTA and HIBA[J].Journal of Nanjing University(Natural Sciences),2005,41(4):445-450.
[45] WILSON M.Igneous Petrogenesis[M].Dordrecht:Springer,1989.
[46] PECCERILLO A,TAYLOR S R.Geochemistry of Eo-cene Calc-alkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey[J].Contributions to Mineralogy and Petrology,1976,58:63-81.
[47] XU W C,ZHANG H F,LUO B J,et al.Adakite-like Geochemical Signature Produced by Amphibole-dominated Fractionation of Arc Magmas:An Example from the Late Cretaceous Magmatism in Gangdese Belt,South Tibet[J].Lithos,2015,232:197-210.
[48] MENG F Y,ZHAO Z,ZHU D C,et al.Late Cretaceous Magmatism in Mamba Area,Central Lhasa Subterrane:Products of Back-arc Extension of Neo-Tethyan Ocean?[J].Gondwana Research,2014,26(2):505-520.
[49] DONG X,ZHANG Z M,KLEMD R,et al.Late Cretaceous Tectonothermal Evolution of the Southern Lhasa Terrane,South Tibet:Consequence of a Mesozoic Andean-type Orogeny[J].Tectonophysics,2018,730:100-113.
[50] MA L,WANG Q,WYMAN D A,et al.Late Cretaceous Back-arc Extension and Arc System Evolution in the Gangdese Area,Southern Tibet:Geochronological,Petrological,and Sr-Nd-Hf-O Isotopic Evidence from Dagze Diabases[J].Journal of Geophysical Research:Solid Earth,2015,120(9):6159-6181.
[51] WEN D R,CHUNG S L,SONG B,et al.Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics,SE Tibet:Petrogenesis and Tectonic Implications[J].Lithos,2008,105(1/2):1-11.
[52] JI W Q,WU F Y,CHUNG S L,et al.The Gangdese Magmatic Constraints on a Latest Cretaceous Litho-spheric Delamination of the Lhasa Terrane,Southern Tibet[J].Lithos,2014,210/211:168-180.
[53] 高家昊,曾令森,郭春丽,等.藏南冈底斯岩基晚白垩世构造岩浆作用:以拉萨白堆复合岩体中—基性岩脉群为例[J].岩石学报,2017,33(8):2412-2436.
GAO Jia-hao,ZENG Ling-sen,GUO Chun-li,et al.Late Cretaceous Tectonics and Magmatism in Gangdese Batholith,Southern Tibet:A Record from the Mafic-dioritic Dike Swarms Within the Baidui Complex,Lhasa[J].Acta Petrologica Sinica,2017,33(8):2412-2436.
[54] MA L,WANG Q,LI Z X,et al.Early Late Cretaceous(ca.93 Ma)Norites and Hornblendites in the Milin Area,Eastern Gangdese:Lithosphere Asthenosphere Interaction During Slab Roll-back and an Insight into Early Late Cretaceous(ca.100-80 Ma)Magmatic“Flare-up”in Southern Lhasa(Tibet)[J].Lithos,2013,172/173:17-30.
[55] 管 琪,朱弟成,赵志丹,等.西藏拉萨地块南缘晚白垩世镁铁质岩浆作用的年代学、地球化学及意义[J].岩石学报,2011,27(7):2083-2094.
GUAN Qi,ZHU Di-cheng,ZHAO Zhi-dan,et al.Zircon U-Pb Chronology,Geochemistry of the Late Cretaceous Mafic Magmatism in the Southern Lhasa Terrane and Its Implications[J].Acta Petrologica Sinica,2011,27(7):2083-2094.
[56] 管 琪,朱弟成,赵志丹,等.西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?[J].岩石学报,2010,26(7):2165-2179.
GUAN Qi,ZHU Di-cheng,ZHAO Zhi-dan,et al.Late Cretaceous Adakites in the Eastern Segment of the Gangdese Belt,Southern Tibet:Products of Neo-Te-thyan Ridge Subduction?[J].Acta Petrologica Sinica,2010,26(7):2165-2179.
[57] ZHANG L L,ZHU D C,WANG Q,et al.Late Cretaceous Volcanic Rocks in the Sangri Area,Southern Lhasa Terrane,Tibet:Evidence for Oceanic Ridge Sub-duction[J].Lithos,2019,326/327:144-157.
[58] 代作文,李光明,丁 俊,等.西藏努日晚白垩世埃达克岩:洋脊俯冲的产物[J].地球科学,2018,43(8):2727-2741.
DAI Zuo-wen,LI Guang-ming,DING Jun,et al.Late Cretaceous Adakite in Nuri Area,Tibet:Products of Ridge Subduction[J].Earth Science,2018,43(8):2727-2741.
[59] 侯德华,潘志龙,杨鑫朋,等.西藏札佐晚白垩世中期埃达克岩年代学、地球化学及其构造意义[J].沉积与特提斯地质,2021,DOI:10.19826/j.cnki.1009-3850.2021.01006.
HOU De-hua,PAN Zhi-long,YANG Xin-peng,et al.Geochronology,Geochemistry and Tectonic Significance of the Middle Late Cretaceous Adakite in Zazuo,Tibet[J].Sedimentary Geology and Tethyan Geology,2021,DOI:10.19826/j.cnki.1009-3850.2021.01006.
[60] 叶丽娟,赵志丹,刘 栋,等.西藏南木林晚白垩世辉绿岩与花岗质脉岩成因及其揭示的伸展背景[J].岩石学报,2015,31(5):1298-1312.
YE Li-juan,ZHAO Zhi-dan,LIU Dong,et al.Late Cretaceous Diabase and Granite Dike in Namling,Tibet:Petrogenesis and Implications for Extension[J].Acta Petrologica Sinica,2015,31(5):1298-1312.
[61] 唐 演,赵志丹,齐宁远,等.西藏冈底斯岩基南木林晚白垩世岩体和脉岩地球化学与岩石成因[J].岩石学报,2019,35(2):387-404.
TANG Yan,ZHAO Zhi-dan,QI Ning-yuan,et al.Geochemistry and Petrogenesis of Late Cretaceous Namling Gabbro and Dykes in Gangdese Batholith,Tibet[J].Acta Petrologica Sinica,2019,35(2):387-404.
[62] 朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J].地质通报,2008,27(9):1535-1550.
ZHU Di-cheng,PAN Gui-tang,WANG Li-quan,et al.Tempo-spatial Variations of Mesozoic Magmatic Ro-cks in the Gangdise Belt,Tibet,China,with a Discussion of Geodynamic Setting-related Issues[J].Geolo-gical Bulletin of China,2008,27(9):1535-1550.
[63] MA L,WANG Q,WYMAN D A,et al.Late Cretaceous Crustal Growth in the Gangdese Area,Southern Tibet:Petrological and Sr-Nd-Hf-O Isotopic Evidence from Zhengga Diorite-gabbro[J].Chemical Geology,2013,349/350:54-70.
[64] HE Q,LANG X H,LI L,et al.U-Pb Zircon Age and Geochemistry of the Cuocun Gabbro in the Southern Lhasa Terrane:Implications for Early Cretaceous Ro-llback of the Neo-Tethyan Oceanic Slab[J].Geologi-cal Journal,2020,56(3):1424-1444.
[65] DEPAOLO D J.Neodymium Isotope Geochemistry:An Introduction[M].Berlin:Springer-Verlag,1988.
[66] RUDNICK R,GAO S.The Role of Lower Crustal Recycling in Continent Formation[J].Geochimica and Cosmochimica Acta Supplement,2003,67:403.
[67] AYERS J.Trace Element Modeling of Aqueous Fluid-peridotite Interaction in the Mantle Wedge of Subduction Zones[J].Contributions to Mineralogy and Petrology,1998,132(4):390-404.
[68] CLASS C,MILLER D M,GOLDSTEIN S L,et al.Distinguishing Melt and Fluid Subduction Components in Umnak Volcanics,Aleutian Arc[J].Geochemistry,Geophysics,Geosystems,2000,6(1):1-28.
[69] KIMURA J,YOSHIDA T.Contributions of Slab Fluid,Mantle Wedge and Crust to the Origin of Quaternary Lavas in the NE Japan Arc[J].Journal of Petro-logy,2006,47(11):2185-2232.
[70] SUN S S,MCDONOUGH W F.Chemical and Isoto-pic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42:313-345.
[71] HAWKESWORTH C J,GALLAGHER K,HERGT J M,et al.Mantle and Slab Contribution in Arc Magmas[J].Annual Review of Earth and Planetary Sciences,1993,21(1):175-204.
[72] 陈炳辉,韦慧晓,黄志国,等.表生地质体的Ce异常及其影响因素综述[J].稀土,2007,28(4):79-83.
CHEN Bing-hui,WEI Hui-xiao,HUANG Zhi-guo,et al.Cerium Anomalies in Supergene Geological Bodies and Its Effecting Factors[J].Chinese Rare Earths,2007,28(4):79-83.
[73] KERRICH R,SAID N.Extreme Positive Ce-anomalies in a 3.0 Ga Submarine Volcanic Sequence,Murchison Province:Oxygenated Marine Bottom Waters[J].Chemical Geology,2011,280(1/2):232-241.
[74] LIU A L,WANG Q,ZHU D C,et al.Origin of the ca.50 Ma Linzizong Shoshonitic Volcanic Rocks in the Eastern Gangdese Arc,Southern Tibet[J].Li-thos,2018,304/305/306/307:374-387.
[75] CHAPPELL B W,WHITE A J R.Two Contrasting Granite Types[J].Australian Journal of Earth Sciences,1974,8:173-174.
[76] KING P L,WHITE A J R,CHAPPELL B W.Cha-racterization and Origin of Aluminous A-type Grani-tes from the Lachlan Fold Belt,Southeastern Austra-lia[J].Journal of Petrology,1997,38(3):371-391.
[77] YANG L Q,DENG J,DILEK Y,et al.Structure,Geochronology,and Petrogenesis of the Late Triassic Pu-ziba Granitoid Dikes in the Mianlue Suture Zone,Qinling Orogen,China[J].Geological Society of America Bulletin,2015,127(11/12):1831-1854.
[78] CHAPPELL B W,WHITE A J R.I- and S-types Gra-nites in the Lachland Fold Belt[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,1992,83:1-26.
[79] ROBERTS M P,CLEMENS J D.Origin of High-potassium,Calc-alkaline,I-type Granitoids[J].Geology,1993,21:825-828.
[80] HILDRETH W,MOORBATH S.Crustal Contributions to Arc Magmatism in the Andes of Central Chile[J].Contributions to Mineralogy and Petrology,1988,98:455-489.
[81] MACPHERSON C G,DREBER S T,THIRWALL M F.Adakites Without Slab Melting:High Pressure Di-fferentiation of Island Arc Magma,Mindanao,the Phi-lippines[J].Earth and Planetary Science Letters,2006,243(3/4):581-593.
[82] RAPP R P,WATSON E B.Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-mantle Recycling[J].Journal of Petrology,1995,36(4):891-931.
[83] HAWKINS J W,ISHIZUKA O.Petrologic Evolution of Palau,a Nascent Island Arc[J].Island Arc,2009,18(4):599-641.
[84] KEPEZHINSKAS P,MCDERMOTT F,DEFANT M J,et al.Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-component Model of Kamchatka Arc Petrogenesis[J].Geochimica and Cosmochimica Acta,1997,61(3):577-600.
[85] HE Y H,ZHAO G C,SUN M,et al.Petrogenesis and Tectonic Setting of Volcanic Rocks in the Xiaoshan and Waifangshan Areas Along the Southern Margin of the North China Craton:Constraints from Bulk-rock Geochemistry and Sr-Nd Isotopic Composition[J].Lithos,2010,114(1/2):186-199.
[86] 高永丰,侯增谦,魏瑞华.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义[J].岩石学报,2003,19(3):418-428.
GAO Yong-feng,HOU Zeng-qian,WEI Rui-hua.Neogene Prophyries from Gangdese:Petrological,Geochemical Charateristics and Geodynamic Significances[J].Acta Petrologica Sinica,2003,19(3):418-428.
[87] PEARCE J A,HARRIS N B W,TINDLE A G.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].Journal of Petrology,1984,25(4):956-983.
[88] CHEN L,QIN K Z,LI G M,et al.Zircon U-Pb Ages,Geochemistry,and Sr-Nd-Pb-Hf Isotopes of the Nuri Intrusive Rocks in the Gangdese Area,Southern Tibet:Constraints on Timing,Petrogenesis,and Tecto-nic Transformation[J].Lithos,2015,212/213/214/215:379-396.
[89] ZHANG L H,GUO Z F,ZHANG M L,et al.Post-collisional Potassic Magmatism in the Eastern Lhasa Terrane,South Tibet:Products of Partial Melting of Mélanges in a Continental Subduction Channel[J].Gondwana Research,2017,41:9-28.
[90] HAO L L,WANG Q,ZHANG C F,et al.Oceanic Pla-teau Subduction During Closure of the Bangong-Nujiang Tethyan Ocean:Insights from Central Tibetan Volcanic Rocks[J].Geological Society of America Bu-lletin,2018,131:864-880.
[91] MENG Y K,XIONG F H,XU Z Q,et al.Petrogenesis of Late Cretaceous Mafic Enclaves and Their Host Granites in the Nyemo Region of Southern Tibet:Implications for the Tectonic-magmatic Evolution of the Central Gangdese Belt[J].Journal of Asian Earth Sciences,2019,176:27-41.
[92] FAN J J,LI C,SUN Z M,et al.Early Cretaceous MO-RB-type Basalt and A-type Rhyolite in Northern Tibet:Evidence for Ridge Subduction in the Bangong-Nujiang Tethyan Ocean[J].Journal of Asian Earth Sciences,2018,154:187-201.
[93] WU C D,ZHENG Y C,XU B,et al.The Genetic Relationship Between JTA-like Magmas and Typical Adakites:An Example from the Late Cretaceous Nuri Complex,Southern Tibet[J].Lithos,2018,320/321:265-279.
[94] COLLINS W J,BEAMS S D,WHITE A J R,et al.Nature and Origin of A-type Granites with Particular Reference to Southeastern Australia[J].Contributions to Mineralogy and Petrology,1982,80(2):189-200.
[95] CHUNG S L,CHU M F,JI J Q,et al.The Nature and Timing of Crustal Thickening in Southern Tibet:Geochemical and Zircon Hf Isotopic Constraints from Po-stcollisional Adakites[J].Tectonophysics,2009,477(1/2):36-48.
[96] ALTHERR R,SIEBEL W.I-type Plutonism in a Continental Back-arc Setting:Miocene Granitoids and Mo-nzonites from the Central Aegean Sea,Greece[J].Contributions to Mineralogy and Petrology,2002,143:397-415.
[97] MARTIN H,SMITHIES R H,RAPP R,et al.An Overview of Adakite,Tonalite-trondhjemite-granodiorite(TTG),and Sanukitoid:Relationships and Some Implications for Crustal Evolution[J].Lithos,2005,79(1/2):1-24.
[98] PATIÑO DOUCE A E.What Do Experiments Tell Us About the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?[J].Geological Society,London,Special Publications,1999,168:55-75.
[99] 王海涛,曾令森,许翠萍,等.藏南冈底斯岩基东段米林地区晚侏罗世—白垩纪侵入岩的岩石成因和地球动力学意义[J].岩石学报,2020,36(10):3041-3062.
WANG Hai-tao,ZENG Ling-sen,XU Cui-ping,et al.Petrogenesis and Geodynamic Significances of Late Jurassic-Cretaceous Intrusion in the Mainling Area,Eastern Gangdese,Southern Tibet[J].Acta Petrologica Sinica,2020,36(10):3041-3062.
[100] 孟繁一,赵志丹,朱弟成,等.西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因[J].岩石学报,2010,26(7):2180-2192.
MENG Fan-yi,ZHAO Zhi-dan,ZHU Di-cheng,et al.Petrogenesis of Late Cretaceous Adakite-like Rocks in Mamba from the Eastern Gangdese,Tibet[J].Acta Petrologica Sinica,2010,26(7):2180-2192.
[101] ZENG L S,GAO L E,XIE K J,et al.Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Do-mes:Melting Thickened Lower Continental Crust[J].Earth and Planetary Science Letters,2011,303(3/4):251-266.
[102] CABANIS B,LECOLLE M.Le Diagramme La/10-Y/15-Nb/8:Un Outil Pour La Discrimination des Series Volcaniques et Lamise en Evidence des Processus de Mélange et/ou de Contamination Crustale[J].Compte Rendus de I'Academie des Sciences Series Ⅱ,1989,309:2023-2029.
[103] COLE R B,STEWART B W.Continental Margin Volcanism at Sites of Spreading Ridge Subduction:Examples from Southern Alaska and Western California[J].Tectonophysics,2009,464(1/2/3/4):118-136.
[104] TANG G J,WYMAN D A,WANG Q,et al.Asthenosphere-lithosphere Interaction Triggered by a Slab Window During Ridge Subduction:Trace Element and Sr-Nd-Hf-Os Isotopic Evidence from Late Carboniferous Tholeiites in the Western Junggar Area(NW China)[J].Earth and Planetary Science Letters,2012,329/330:84-96.
[105] 孙 敏,龙晓平,蔡克大,等.阿尔泰早古生代末期洋中脊俯冲:锆石Hf同位素组成突变的启示[J].中国科学:D辑,地球科学,2009,39(7):935-948.
SUN Min,LONG Xiao-ping,CAI Ke-da,et al.Early Paleozoic Ridge Subduction in the Chinese Altai:Insight from the Abrupt Change in Zircon Hf Isotopic Compositions[J].Science in China:Series D,Earth Sciences,2009,39(7):935-948.
[106] BREITSPRECHER K,THORKELSON D J,GROOME W G,et al.Geochemical Confirmation of the Kula-Fa-rallon Slab Window Beneath the Pacific Northwest in Eocene Time[J].Geology,2003,31(4):351-354.
[107] WEIS D,KIEFFER B,MAERSCHALK C,et al.High-precision Pb-Sr-Nd-Hf Isotopic Characterization of USGS BHVO-1 and BHVO-2 Reference Materials[J].Geochemistry,Geophysics,Geosystems,2005,6(2):Q02002.
[108] 唐功建,王 强.高镁安山岩及其地球动力学意义[J].岩石学报,2010,26(8):2495-2512.
TANG Gong-jian,WANG Qiang.High-Mg Andesites and Their Geodynamic Implications[J].Acta Petrolo-gica Sinica,2010,26(8):2495-2512.
[109] YIN J Y,YUAN C,SUN M,et al.Late Carboniferous High-Mg Dioritic Dikes in Western Junggar,NW China:Geochemical Features,Petrogenesis and Tectonic Implications[J].Gondwana Research,2010,17(1):145-152.
[110] COLE R B,NELSON S W,LAYER P W,et al.Eocene Volcanism Above a Depleted Mantle Slab Window in Southern Alaska[J].Geological Society of America Bulletin,2006,118(1/2):140-158.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-10-28; 修回日期:2021-12-13
基金项目:成都理工大学珠峰科学研究计划项目(2020ZF11407); 四川省科技计划项目(2020JDJQ0042); 国家自然科学基金项目(41502079,41972084); 国家重点研发计划项目(2018YFC0604105); 西北大学大陆动力学国家重点实验室开放基金项目(18LCD04); 自然资源部深地资源成矿作用与矿产预测重点实验室开放基金项目(ZS1911); 中国地质调查局地质调查项目(DD20190167,DD20160346)
作者简介:吕 娜(1994-),女,河北张家口人,理学硕士研究生,E-mail:844688306@qq.com。*通讯作者:郎兴海(1982-),男,云南景东人,教授,理学博士,E-mail:langxinghai@126.com。
更新日期/Last Update: 2022-02-25