|本期目录/Table of Contents|

[1]马 哲,彭建兵*,赵鲁庆,等.三轴压缩条件下含界面重塑黄土力学特性试验[J].地球科学与环境学报,2022,44(06):1027-1036.[doi:10.19814/j.jese.2022.03028]
 MA Zhe,PENG Jian-bing*,ZHAO Lu-qing,et al.Experiment on Mechanical Properties of Interface Loess Under Triaxial Compression[J].Journal of Earth Sciences and Environment,2022,44(06):1027-1036.[doi:10.19814/j.jese.2022.03028]
点击复制

三轴压缩条件下含界面重塑黄土力学特性试验(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第44卷
期数:
2022年第06期
页码:
1027-1036
栏目:
纪念刘国昌先生诞辰110周年专辑
出版日期:
2022-11-15

文章信息/Info

Title:
Experiment on Mechanical Properties of Interface Loess Under Triaxial Compression
文章编号:
1672-6561(2022)06-1027-10
作者:
马 哲12彭建兵12*赵鲁庆12宁瑞浩12李泽坤12
(1. 长安大学 地质工程与测绘学院,陕西 西安 710054; 2. 长安大学 西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054)
Author(s):
MA Zhe12 PENG Jian-bing12* ZHAO Lu-qing12 NING Rui-hao12 LI Ze-kun12
(1. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi, China; 2. Key Laboratory of Western China's Mineral Resources and Geological Engineering of Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China)
关键词:
细观界面 马兰黄土 三轴压缩 应力-应变 变形规律 破坏特征 陕西
Keywords:
meso-interface Malan loess triaxial compression stress-strain deformation law failure characteristic Shaanxi
分类号:
P642
DOI:
10.19814/j.jese.2022.03028
文献标志码:
A
摘要:
黄土细观界面是广泛分布在黄土体中的一种结构缺陷,是黄土灾变的重要控制因素。为探究细观界面对黄土力学行为的影响,在土样侧壁标注网络剖分线,开展预制界面重塑黄土常规三轴压缩试验,获取破坏后试样侧壁网络剖分线,分析不同位置细观界面对土体强度及变形破坏特征的影响。结果表明:①试样变形主要分为轴向变形和弯曲变形,并以轴向变形为主; 破坏方式以“X”型破坏和45°剪切破坏为主; 根据破坏形态、破坏规模和破坏后应力-应变曲线类型,将破坏后的侧壁网络剖分线分为弱硬化型、屈服后弱硬化型、软化型和双峰值强软化型4种类型。②试样应力-应变曲线以软化型为主,受细观界面位置及围压影响。围压为300 kPa时,中部界面土样表现为弱硬化型; 围压为100 kPa时,中部界面土样表现为屈服后弱硬化型,顶部和底部界面土样表现为双峰值强软化型。③中部界面对土样强度的劣化作用最强,顶、底部界面次之。细观界面黄土的应力-应变特性和变形破坏特征,受界面位置、试验围压等因素共同影响,研究成果可为进一步研究细观界面黄土强度准则,揭示细观界面对黄土灾变机理提供参考。
Abstract:
Loess meso-interface is a structural defect widely distributed in loess, and is an important control factor for loess catastrophe. In order to find the influence of meso-interface on the mechanical behavior of loess, the network subdivision line was marked on the sidewall of the soil sample, and the conventional triaxial compression test of loess remodeled by the prefabricated interface was carried out, and the network subdivision of the sidewall of the sample after failure was obtained; the influences of meso-interfaces at different positions on soil strength and deformation and failure characteristics were analyzed. The results show that ① the deformation of the sample is mainly divided into axial deformation and bending deformation, and the main deformation is axial; the failure mode is mainly “X” type and 45° shear; according to the failure form, failure scale and stress-strain curve type after failure, the network subdivision line of the sidewall after failure is divided into 4 types, including weak hardening type, weak hardening type after yielding, softening type and double-peak strong softening type; ② the stress-strain curve of the sample is mainly softening type, which is affected by the position of the meso-interface and the confining pressure; when the middle interface of soil samples shows weak hardening type after yielding, and the top and bottom interfaces of soil samples show double-peak strong softening type; ③ the middle interface of soil sample has the strongest degradation effect on the soil strength, followed by the top and bottom interfaces. The stress-strain, deformation and failure characteristics of meso-interface loess are affected by the interface position, test confining pressure and other factors. The above results can provide a reference for the further research of the meso-interface loess strength criterion and the mechanism of meso-interface on the loess disaster.

参考文献/References:

[1] 徐张建,林在贯,张茂省.中国黄土与黄土滑坡[J].岩石力学与工程学报,2007,26(7):1297-1312.
XU Zhang-jian,LIN Zai-guan,ZHANG Mao-sheng.Loess in China and Loess Landslides[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(7):1297-1312.
[2] 卢全中,彭建兵,陈志新,等.黄土高原地区黄土裂隙发育特征及其规律研究[J].水土保持学报,2005,19(5):191-194.
LU Quan-zhong,PENG Jian-bing,CHEN Zhi-xin,et al.Research on Characteristics of Cracks and Fissures of Loess and Their Distribution in Loess Plateau of China[J].Journal of Soil and Water Conservation,2005,19(5):191-194.
[3] MCGOWN A,RADWAN A M.The Presence and Influence of Fissures in the Boulder Clays of West Central Scotland[J].Canadian Geotechnical Journal,1975,12(1):84-97.
[4] 蒋建平,章杨松,罗国煜.土体宏观结构面及其对土体破坏的影响[J].岩土力学,2002,23(4):482-485.
JIANG Jian-ping,ZHANG Yang-song,LUO Guo-yu.Macroscopical Structure Plane and Its Influence on Failure of Soil Mass[J].Rock and Soil Mechanics,2002,23(4):482-485.
[5] 雷祥义,魏青珂.陕北伤亡性黄土崩塌成因与对策研究[J].岩土工程学报,1998,20(1):64-69.
LEI Xiang-yi,WEI Qing-ke.Study on the Origin and Countermeasure of the Casualty Loess Landfalls in the Northern Shaanxi[J].Chinese Journal of Geotechnical Engineering,1998,20(1):64-69.
[6] 程龙虎,聂如松,刘 飞.裂隙性黄土单轴抗压试验研究[J].水文地质工程地质,2017,44(5):80-85,91.
CHENG Long-hu,NIE Ru-song,LIU Fei.An Experimental Study of the Uniaxial Compressive Strength of Fractured Loess[J].Hydrogeology and Engineering Geology,2017,44(5):80-85,91.
[7] 孙 萍,彭建兵,吴树仁,等.裂隙性黄土力学特性试验研究[J].中南大学学报(自然科学版),2015,46(6):2188-2195.
SUN Ping,PENG Jian-bing,WU Shu-ren,et al.An Experimental Study on Mechanical Properties of Frac-tured Loess[J].Journal of Central South University(Science and Technology),2015,46(6):2188-2195.
[8] 卢全中,陈树峰,彭建兵,等.三轴压缩条件下裂隙性黄土应力-应变特性及变形破坏机制[J].中国公路学报,2015,28(1):8-16.
LU Quan-zhong,CHEN Shu-feng,PENG Jian-bing,et al.Stress-strain Features and Deformation Failure Mechanisms of Fissured Loess Under Triaxial Compression[J].China Journal of Highway and Tran-sport,2015,28(1):8-16.
[9] 卢全中,葛修润,彭建兵,等.三轴压缩条件下裂隙性黄土的破坏特征[J].岩土力学,2009,30(12):3689-3694.
LU Quan-zhong,GE Xiu-run,PENG Jian-bing,et al.Failure Characteristics of Fissured Loess Under Triaxial Compression Condition[J].Rock and Soil Mechanics,2009,30(12):3689-3694.
[10] 王丽丽,李 宁,何 敏,等.基于一种重塑性制样方法的节理黄土力学特性试验研究[J].防灾减灾工程学报,2020,40(1):35-42.
WANG Li-li,LI Ning,HE Min,et al.Experimental Study on Mechanical Properties of Jointed Loess Based on a Remouldling Sample Method[J].Journal of Disaster Prevention and Mitigation Engineering,2020,40(1):35-42.
[11] 王丽丽,李 宁.垂直节理对黄土边坡稳定性影响分析[J].自然灾害学报,2021,30(6):136-146.
WANG Li-li,LI Ning.Stability Analysis of Loess Slope Considering the Effects of Vertical Joints[J].Journal of Natural Disasters,2021,30(6):136-146.
[12] 贾 晖,和耀林,杨世贤.节理对黄土破坏形态和力学性质的影响研究[J].中国农村水利水电,2011(11):77-81.
JIA Hui,HE Yao-lin,YANG Shi-xian.Rupture and Mechanics Behaivor of Loess Affected by Joints[J].China Rural Water and Hydropower,2011(11):77-81.
[13] 卢 杰,乐崇浩,卢全中,等.裂隙性黄土在减压三轴压缩下的变形破坏特征[J].人民长江,2016,47(12):84-88.
LU Jie,LE Chong-hao,LU Quan-zhong,et al.Deformation and Failure Characteristics of Fractured Loess Under Decompressed Triaxial Compression Condition[J].Yangtze River,2016,47(12):84-88.
[14] 祝艳波,李红飞,兰恒星,等.节理倾角对黄土力学特性影响试验研究[J].工程地质学报,2021,29(4):1178-1187.
ZHU Yan-bo,LI Hong-fei,LAN Heng-xing,et al.Experimental Study on Influence of Loess Joints Ang-le on Mechanical Properties of Loess[J].Journal of Engineering Geology,2021,29(4):1178-1187.
[15] 祝艳波,韩宇涛,兰恒星,等.接触角度对黄土-三趾马红土界面剪切力学特性影响研究[J].工程地质学报,2021,29(3):879-890.
ZHU Yan-bo,HAN Yu-tao,LAN Heng-xing,et al.Experimental Study on Influence of Contact Angle on Shear Strength of Interfaces Between Loess and Hip-parion Red Clay[J].Journal of Engineering Geology,2021,29(3):879-890.
[16] 祝艳波,韩宇涛,苗帅升,等.黄土-三趾马红土滑坡滑带土剪切力学特性影响因素[J].地球科学与环境学报,2021,43(4):744-759.
ZHU Yan-bo,HAN Yu-tao,MIAO Shuai-sheng,et al.Influencing Factors on the Shear of Sliding Zone of Loess-Hipparion Red Clay Landslide[J].Journal of Earth Sciences and Environment,2021,43(4):744-759.
[17] 祝艳波,刘振谦,李文杰,等.黄土-三趾马红土滑坡滑带土的长期强度影响因素研究[J].水文地质工程地质,2022,49(2):148-156.
ZHU Yan-bo,LIU Zhen-qian,LI Wen-jie,et al.Experimental Investigation of Influencing Factors on the Long-term Strength of Sliding Zones of the Loess-Hipparion Laterite Landslide [J].Hydrogeology and Engineering Geology,2022,49(2):148-156.
[18] 祝艳波,杨凡凡,苗帅升,等.黏结强度对异质土界面强度与变形特性影响试验研究[J].煤田地质与勘探,2022,50(10):96-107.
ZHU Yan-bo,YANG Fan-fan,MIAO Shuai-sheng,et al.Effect of Initial Adhesion on Shear Strength and Deformation Characteristics of Interfaces in Heterogeneous Soils[J].Coal Geology and Exploration,2022,50(10):96-107.
[19] 成玉祥,曹宝宝,张大伟.裂隙密度对黄土抗剪强度影响的试验研究[J].科学技术与工程,2019,19(28):284-289.
CHENG Yu-xiang,CAO Bao-bao,ZHANG Da-wei.Experimental Study on the Effect of Fractures Density on Shear Strength of Loess[J].Science Technology and Engineering,2019,19(28):284-289.
[20] 张大伟.裂隙黄土抗剪强度试验研究[D].西安:长安大学,2018.
ZHANG Da-wei.Experimental Study on Shear Strength of Fissured Loess[D].Xi'an:Chang'an University,2018.
[21] 王铁行,罗 扬,王娟娟.黄土节理抗剪强度特性试验研究[J].地下空间与工程学报,2013,9(3):497-501,551.
WANG Tie-hang,LUO Yang,WANG Juan-juan.Experimental Research on Shear Strength of the Loess Joints[J].Chinese Journal of Underground Space and Engineering,2013,9(3):497-501,551.
[22] 李同录,王 红,付昱凯,等.黄土垂直节理形成机理的试验模拟[J].地球科学与环境学报,2014,36(2):127-134.
LI Tong-lu,WANG Hong,FU Yu-kai,et al.Test Simulation on the Forming Mechanism of Loess Vertical Joints[J].Journal of Earth Sciences and Environment,2014,36(2):127-134.
[23] 叶万军,李长清,马伟超.干湿循环作用下黄土节理裂隙发育扩张的机制研究[J].科学技术与工程,2016,16(30):122-127.
YE Wan-jun,LI Chang-qing,MA Wei-chao.Mechanism Fractured Loess Expansion Joints Under the Effect of Wet-dry Cycle[J].Science Technology and Engineering,2016,16(30):122-127.
[24] 邹锡云,许 强,彭大雷,等.黑方台典型黄土洞穴形成的影响因素[J].科学技术与工程,2018,18(28):58-64.
ZOU Xi-yun,XU Qiang,PENG Da-lei,et al.Influenc-ing Factors of Formation of Typical Loess Sinkhole in Heifangtai[J].Science Technology and Engineering,2018,18(28):58-64.
[25] 王 平,王会娟,王丽丽,等.含构造节理黄土强度特性研究[J].自然灾害学报,2021,30(3):133-141.
WANG Ping,WANG Hui-juan,WANG Li-li,et al.Study on Strength Characteristics of Loess with Structural Joints[J].Journal of Natural Disasters,2021,30(3):133-141.
[26] 尹今朝,胡 同.湿陷性黄土力学性质与裂隙发展干湿循环效应[J].人民黄河,2022,44(2):143-146,152.
YIN Jin-zhao,HU Tong.Study on Mechanical Pro-perties and Cracking Behavior of Collapsible Loess Under Dry-wet Cycling Conditions[J].Yellow River,2022,44(2):143-146,152.
[27] 肖云飞,张 晨,徐 辉,等.成对节理对废弃黄土窑洞边坡稳定性的影响[J].科学技术与工程,2021,21(32):13808-13816.
XIAO Yun-fei,ZHANG Chen,XU Hui,et al.Influence of Paired Joints on Slope Stability of Abandoned Loess Cave[J].Science Technology and Engineering,2021,21(32):13808-13816.
[28] 许永刚,任建民.干湿循环下复合黄土裂隙演化与力学特性试验[J].水电能源科学,2022,40(7):193-197.
XU Yong-gang,REN Jian-min.Experimental Study on Crack Evolution and Mechanical Properties of Composite Loess Under Dry-wet Cycles[J].Water Resources and Power,2022,40(7):193-197.
[29] 赵海容,葛玉婷,杜岳涛,等.垂直裂隙对倾斜坡顶黄土边坡稳定性的影响[J].公路,2022(10):48-54.
ZHAO Hai-rong,GE Yu-ting,DU Yue-tao,et al.Effects of Vertical Cracks on Loess Slope Stability with Inclined Crest[J].Highway,2022(10):48-54.
[30] 吴瑞安,张永双,张俊才,等.川西松潘地区裂隙性黄土强度特性试验[J].科学技术与工程,2019,19(6):236-242.
WU Rui-an,ZHANG Yong-shuang,ZHANG Jun-cai,et al.Tests on Strength Properties of Fractured Loess in Songpan Area,Western Sichuan[J].Science Technology and Engineering,2019,19(6):236-242.
[31] GB/T 50123—2019,土工试验方法标准[S].
GB/T 50123—2019,Standard for Geotechnical Testing Method[S].
[32] 刘组典.黄土力学与工程[M].西安:陕西科学技术出版社,1996.
LIU Zu-dian.Mechanics and Engineering of Loess[M].Xi'an:Shaanxi Science and Technology Press,1996.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-03-17
基金项目:国家自然科学基金重大项目(41790441)
作者简介:马 哲(1998-),男,河南焦作人,工学硕士研究生,E-mail:1767394930@qq.com。

更新日期/Last Update: 2022-11-25