|本期目录/Table of Contents|

[1]高 虓*,周 刚,Michael STEINER,等.内蒙古呼伦湖北岸软沉积物中微生物与无机碳的相互作用及其生物地球化学意义[J].地球科学与环境学报,2025,47(06):1015-1027.[doi:10.19814/j.jese.2025.05001]
 GAO Xiao*,ZHOU Gang,Michael STEINER,et al.Microbial-inorganic Carbon Interactions of Soft Sediments in the Northern Shore of Hulun Lake, Inner Mongolia, China and Their Biogeochemical Significance[J].Journal of Earth Sciences and Environment,2025,47(06):1015-1027.[doi:10.19814/j.jese.2025.05001]
点击复制

内蒙古呼伦湖北岸软沉积物中微生物与无机碳的相互作用及其生物地球化学意义(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第47卷
期数:
2025年第06期
页码:
1015-1027
栏目:
沉积地质与油气勘探
出版日期:
2025-12-10

文章信息/Info

Title:
Microbial-inorganic Carbon Interactions of Soft Sediments in the Northern Shore of Hulun Lake, Inner Mongolia, China and Their Biogeochemical Significance
文章编号:
1672-6561(2025)06-1015-13
作者:
高 虓1234*周 刚4Michael STEINER12韩作振123
(1. 山东科技大学 地球科学与工程学院,山东 青岛 266590; 2. 山东科技大学 山东省沉积成矿作用与沉积矿产重点实验室,山东 青岛 266590; 3. 青岛海洋科技中心 海洋矿产资源评价与探测技术功能实验室,山东 青岛 266237; 4. 山东科技大学 安全与环境工程学院,山东 青岛 266590)
Author(s):
GAO Xiao1234* ZHOU Gang4 Michael STEINER12 HAN Zuo-zhen123
(1. College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China; 2. Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, Shandong University of Science and Technology, Qingdao 266590, Shandong, China; 3. Laboratory for Marine Mineral Resources, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong, China; 4. College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China)
关键词:
生物地球化学 沉积物 无机碳 微生物 碳汇 碳酸盐泵 呼伦湖 内蒙古
Keywords:
biogeochemistry sediment inorganic carbon microorganism carbon sink carbonate pump Hulun Lake Inner Mongolia
分类号:
P571; P66
DOI:
10.19814/j.jese.2025.05001
文献标志码:
A
摘要:
微生物作为湖泊沉积物碳矿化的核心驱动力,主导有机质降解、无机碳转化与碳酸盐沉淀等关键生物地球化学过程,但其在湖泊碳汇形成中的作用研究仍不充分。以内蒙古呼伦湖为研究区域,综合运用16S rRNA测序、碳组分分析、水化学分析,并结合扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)及拉曼光谱等多种技术手段对沉积物与水样进行系统分析,最后基于分子动力学模拟探讨微生物驱动无机碳沉淀的路径机制。结果表明:内蒙古呼伦湖属于淡水湖泊,其沉积物中存在丰富的微生物群落,主要包括BD2-11_terrestrial_group、HalomonasNitrolancea等菌属及藻类微生物; 沉积物中无机碳(IC)含量、总碳(TC)和总有机碳(TOC)随深度的增加而增加,表现出明显的垂向分布趋势; 无机碳的碳同位素组成(δ13C)为-19.16‰~-11.39‰,整体偏负,暗示沉积碳酸盐矿物可能源自生物代谢产生的CO2; 矿物学分析均识别出典型的碳酸盐矿物特征峰,如方解石和白云石; 在含有富里酸的有机矿化体系中,CO2-3与Ca2+、Mg2+更易形成尺寸更大的团簇,且聚集过程明显快于无机矿化体系。
Abstract:
Microorganisms are the core driving force for carbon mineralization in lake sediments, playing a dominant role in key biogeochemical processes such as organic matter degradation, inorganic carbon transformation, and carbonate precipitation. However, research on their role in the formation of lake carbon sinks remains relatively limited. Hulun Lake in Inner Mongolia was selected as the study area; by integrating a suite of analytical techniques, including 16S rRNA gene sequencing, carbon component analysis, water chemistry measurements, scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), and Raman spectroscopy, a systematic investigation of lake sediments and water samples was conducted. Furthermore, molecular dynamics(MD)simulations were employed to explore the mechanistic pathways of microbially mediated inorganic carbon precipitation. The results show that Hulun Lake in Inner Mongolia is a freshwater system characterized by diverse and abundant microbial communities in its sediments, including bacterial genera such as BD2-11_terrestrial_group, Halomonas and Nitrolancea, as well as algal microorganisms; the contents of inorganic carbon(IC), total carbon(TC), and total organic carbon(TOC)all increase with depth, exhibiting a clear vertical distribution pattern; the δ13C values of inorganic carbon range from -19.16‰ to -11.39‰, indicating a generally negative bias that suggests the carbonates in the sediments may originate from CO2 produced by microbial metabolism; mineralogical analyses consistently identify characteristic peaks of carbonate minerals such as calcite and dolomite, further confirming the presence of inorganically precipitated carbonates in the sediments; in organic mineralization systems containing fulvic acid, CO2-3 forms larger ion clusters with Ca2+ and Mg2+ more readily, and these aggregates also nucleate significantly faster than in purely inorganic mineralization systems. In summary, this study further elucidates the mechanism of microbial action in the carbonate pump mechanism of lakes, expands the understanding of the biogeochemical functions of microorganisms in the lake carbon sink, and deepens the comprehension of the coupled process of “lake carbon sink-microbial action”.

参考文献/References:

[1] 谢树成,焦念志,罗根明,等.海洋生物碳泵的地质演化:微生物的碳汇作用[J].科学通报,2022,67(15):1715-1726.
XIE Shu-cheng,JIAO Nian-zhi,LUO Gen-ming,et al.Evolution of Biotic Carbon Pumps in Earth History:Microbial Roles as a Carbon Sink in Oceans[J].Chinese Science Bulletin,2022,67(15):1715-1726.
[2] MACREADIE P I,ANTON A,RAVEN J A,et al.The Future of Blue Carbon Science[J].Nature Communications,2019,10(1):3998.
[3] MCCUTCHEON J,POWER I M,SHUSTER J,et al.Carbon Sequestration in Biogenic Magnesite and Other Magnesium Carbonate Minerals[J].Environmental Science & Technology,2019,53(6):3225-3237.
[4] 黄 力,董海良,全哲学,等.水圈微生物:推动地球重要元素循环的隐形巨人[J].微生物学报,2020,60(9):1747-1750.
HUANG Li,DONG Hai-liang,QUAN Zhe-xue,et al.Microbiology in Hydrosphere:A Hidden Giant Behind the Cycling of Important Elements on Earth[J].Acta Microbiologica Sinica,2020,60(9):1747-1750.
[5] SABINE C L,FEELY R A,GRUBER N,et al.The Oceanic Sink for Anthropogenic CO2[J].Science,2004,305:367-371.
[6] SADERNE V,GERALDI N R,MARCEADIE P I,et al.Role of Carbonate Burial in Blue Carbon Bud-gets[J].Nature Communications,2019,10(1):1106.
[7] PAN Y W,LI Y F,CHEN C A,et al.New Pathway of Diatom-mediated Calcification and Its Impact on the Biological Pump[J].Science Bulletin,2023,68(21):2540-2543.
[8] 兰敏文,宋友桂,程良清.湖泊碳酸盐矿物的形成过程及古气候环境指示意义[J].地球科学与环境学报,2022,44(2):156-170.
LAN Min-wen,SONG You-gui,CHENG Liang-qing.Review on Formation of Lacustrine Carbonate Mine-rals and Their Paleoclimate Significance[J].Journal of Earth Sciences and Environment,2022,44(2):156-170.
[9] LI Y,ZHANG X Z,ZHANG Z S,et al.Global Lake Carbon Burial from Endorheic Zones Since the Last Glacial Maximum and the Future Projection[J].The Innovation Geoscience,2025,3(2):100132.
[10] GUO J Q,SHEN Y,YUAN H M,et al.Bacterial Reworking of Particulate Organic Matter in a Dynamic Marginal Sea:Implications for Carbon Sequestration[J].Organic Geochemistry,2023,179:104583.
[11] 类延斌,姚檀栋,张恩楼,等.羌塘高原湖水δ13CDIC值特征及影响因素分析[J].湖泊科学,2011,23(5):673-680.
LEI Yan-bin,YAO Tan-dong,ZHANG En-lou,et al.Characteristics of δ13CDIC Value in Lakes on Qiangtang Plateau and Its Affected Factors[J].Journal of Lake Sciences,2011,23(5):673-680.
[12] 李明慧,朱立平,鞠建廷,等.不同环境下湖泊矿物和湖水性质对碳埋藏的制约:以西藏郭扎错为例[J].地球学报,2024,45(5):769-776.
LI Ming-hui,ZHU Li-ping,JU Jian-ting,et al.Carbon Burial Inferred from Minerals and Lake Water Pro-perties:A Case Study of Guozha Co in Tibet[J].Acta Geoscientica Sinica,2024,45(5):769-776.
[13] 王 露,陈光杰,黄林培,等.近百年来湖泊有机碳与无机碳埋藏响应流域开发的协同变化:以石林喀斯特地区为例[J].湖泊科学,2022,34(5):1751-1764.
WANG Lu,CHEN Guang-jie,HUANG Lin-pei,et al.Synchronic Changes of Lake Organic and Inorganic Carbon Burial in Response to Catchment Development over the Past Century:A Case Study of Shilin Karst Area[J].Journal of Lake Sciences,2022,34(5):1751-1764.
[14] LI H M,ZHANG Z H,XIONG T Q,et al.Carbon Sequestration in the Form of Recalcitrant Dissolved Organic Carbon in a Seaweed(Kelp)Farming Environment[J].Environmental Science & Technology,2022,56(12):9112-9122.
[15] LI Y,FU C C,YE C L,et al.Increased Mineral-associated Organic Carbon and Persistent Molecules in Allochthonous Blue Carbon Ecosystems[J].Global Change Biology,2025,31(1):e70019.
[16] 赵东方,谭秀成,罗 冰,等.微生物诱导白云石沉淀研究进展及面临的挑战[J].沉积学报,2022,40(2):335-349.
ZHAO Dong-fang,TAN Xiu-cheng,LUO Bing,et al.A Review of Microbial Dolomite:Advances and Challenges[J].Acta Sedimentologica Sinica,2022,40(2):335-349.
[17] GAO X,HAN Z Z,ZHAO Y Y,et al.Interaction of Microorganisms with Carbonates from the Micro to the Macro Scales During Sedimentation:Insights into the Early Stage of Biodegradation[J].Journal of Environmental Management,2024,356:120714.
[18] 王雯雯,王书航,姜 霞,等.多方法研究呼伦湖表层沉积物有机质的赋存特征及来源[J].环境科学研究,2021,34(2):305-318.
WANG Wen-wen,WANG Shu-hang,JIANG Xia,et al.Occurrence Characteristics and Sources Analysis of Sediment Organic Matter of Lake Hulun by Multiple Methods[J].Research of Environmental Sciences,2021,34(2):305-318.
[19] 宋文杰,张 瑾,郭晶晶.呼伦湖沉积物中有机碳无机碳分布特征研究[J].环境与发展,2018,30(6):97-102.
SONG Wen-jie,ZHANG Jin,GUO Jing-jing.Characteristics of Organic Carbon and Inorganic Carbon Distribution in the Sediment of Hulunhu Lake[J].Environment and Development,2018,30(6):97-102.
[20] ZHANG F J,XUE B,YAO S C,et al.Organic Carbon Burial from Multi-core Records in Hulun Lake,the Largest Lake in Northern China[J].Quaternary Inter-national,2018,475:80-90.
[21] 张风菊,薛 滨,姚书春.1850年以来呼伦湖沉积物无机碳埋藏时空变化[J].湖泊科学,2019,31(6):1770-1782.
ZHANG Feng-ju,XUE Bin,YAO Shu-chun.Spatiotemporal Pattern of Inorganic Carbon Sequestration in Lake Hulun Since 1850[J].Journal of Lake Sciences,2019,31(6):1770-1782.
[22] 金章东.湖泊沉积物的矿物组成、成因、环境指示及研究进展[J].地球科学与环境学报,2011,33(1):34-44,77.
JIN Zhang-dong.Composition,Origin and Environmental Interpretation of Minerals in Lake Sediments and Recent Progress[J].Journal of Earth Sciences and Environment,2011,33(1):34-44,77.
[23] 张彦辉,安彦杰,朱 迟,等.水体无机碳条件对常见沉水植物生长和生理的影响[J].水生生物学报,2009,33(6):1020-1030.
ZHANG Yan-hui,AN Yan-jie,ZHU Chi,et al.Physiological Effects of Dissolved Inorganic Carbon on Common Submerged Macrophytes[J].Acta Hydrobiologica Sinica,2009,33(6):1020-1030.
[24] 金 鸽,安慧君,虎日乐.1991年~2018年呼伦湖区域气候特征及其对水域面积的影响[J].石河子大学学报(自然科学版),2022,40(1):68-74.
JIN Ge,AN Hui-jun,HU Ri-le.Regional Climate Cha-racteristics of Hulun Lake and Its Impact on Water Area from 1991 to 2018[J].Journal of Shihezi University(Natural Science),2022,40(1):68-74.
[25] GAO X,HAN Z Z,ZHOU G,et al.Salinity Influence on Adsorption of Lipid Molecules in Clay Minerals:Results from Experiments and Calculations[J].Journal of Environmental Chemical Engineering,2024,12(3):112878.
[26] 朱 莹,黎晏彰,鲁安怀,等.方解石-白云石-菱镁矿的中远红外光谱学特征研究[J].地学前缘,2022,29(1):459-469.
ZHU Ying,LI Yan-zhang,LU An-huai,et al.Middle and Far Infrared Spectroscopic Analysis of Calcite,Dolomite and Magnesite[J].Earth Science Frontiers,2022,29(1):459-469.
[27] LUO W X,WANG P,LIU J C,et al.Microbial Keystone Taxa and Network Complexity,Rather than Diversity,Sustain Soil Multifunctionality Along an Elevational Gradient in a Subtropical Karst Mountain[J].Catena,2025,256:109115.
[28] 刘小兰,宋志鑫,宋刚福,等.水体溶解性有机质与重金属影响机理的研究进展[J].环境科技,2024,37(2):62-67.
LIU Xiao-lan,SONG Zhi-xin,SONG Gang-fu,et al.Research Progress on Interaction Mechanism Between Dissolved Organic Matter and Heavy Metals in Water[J].Environmental Science and Technology,2024,37(2):62-67.
[29] 黄海涛,王 崇,耿康慧,等.富里酸对生物成因次生高铁矿物形成的影响[J].科学技术与工程,2023,23(8):3559-3568.
HUANG Hai-tao,WANG Chong,GENG Kang-hui,et al.Effect of Fulvic Acid on Biogenic Secondary High Iron Minerals Synthesis[J].Science Technology and Engineering,2023,23(8):3559-3568.
[30] GAO X,LI J,HU K M,et al.Calcification of Cell Membranes:From Ions to Minerals[J].Chemical Geo-logy,2023,617:121266.
[31] QIU X,WANG H M,YAO Y C,et al.High Salinity Facilitates Dolomite Precipitation Mediated by Halo-ferax Volcanii DS52[J].Earth and Planetary Science Letters,2017,472:197-205.
[32] 段 勇,药彦辰,邱 轩,等.三株嗜盐古菌诱导形成白云石[J].地球科学,2017,42(3):389-396.
DUAN Yong,YAO Yan-chen,QIU Xuan,et al.Dolomite Formation Facilitated by Three Halophilic Archaea[J].Earth Science,2017,42(3):389-396.
[33] LIU D,XU Y Y,YU Q Q,et al.Catalytic Effect of Microbially-derived Carboxylic Acids on the Precipitation of Mg-calcite and Disordered Dolomite:Implications for Sedimentary Dolomite Formation[J].Journal of Asian Earth Sciences,2020,193:104301.
[34] LIU W,CHANG C,YUN H,et al.A Laminated Microbial Ecosystem at the Summit of the Cambrian Explosion[J].Global and Planetary Change,2021,205,103619.
[35] CHEN Q R,TANG K,CHEN X F,et al.Microbial Sulfurization Stimulates Carbon Sequestration in Marine Oxygen Minimum Zones[J].Science Bulletin,2022,67(9):895-898.
[36] DUPRAZ C,REID R P,BRAISSANT O,et al.Proce-sses of Carbonate Precipitation in Modern Microbial Mats[J].Earth-science Reviews,2009,96(3):141-162.
[37] BOUSSAGOL P,VENNIN E,MONNA F,et al.Carbonate Mud Production in Lakes Is Driven by Degradation of Microbial Substances[J].Communications Earth & Environment,2024,5:533.
[38] 蒋宏忱,王北辰.青藏高原湖泊碳氮循环微生物作用[J].地球科学,2025,50(3):877-886.
JIANG Hong-chen,WANG Bei-chen.Microbial Role in Carbon and Nitrogen Cycling in Lakes on the Qinghai-Xizang Plateau[J].Earth Science,2025,50(3):877-886.
[39] 赖 珊,万宏滨,唐 芳,等.抚仙湖沉积物有机碳埋藏特征及来源解析[J].中国环境科学,2020,40(3):1246-1256.
LAI Shan,WAN Hong-bin,TANG Fang,et al.Cha-racteristics and Source Analysis of Organic Carbon Buried in Sediments of Fuxian Lake[J].China Environmental Science,2020,40(3):1246-1256.
[40] 韩 磊,胡 盎,任明磊,等.湖泊微生物群落及其介导的碳循环过程[J].生命科学,2023,35(12):1613-1629.
HAN Lei,HU Ang,REN Ming-lei,et al.Lake Microbial Communities and Their Mediated Carbon Cycling Processes[J].Chinese Bulletin of Life Sciences,2023,35(12):1613-1629.
[41] HUANG L J,LI F C,JI C,et al.Carbon Isotope Fractionation and Its Tracer Significance to Carbon Source During Precipitation of Calcium Carbonate in the Pre-sence of Bacillus Cereus LV-1[J].Chemical Geology,2022,609:121029.
[42] KEIR R S.The Dissolution Kinetics of Biogenic Calcium Carbonates in Seawater[J].Geochimica et Cosmochimica Acta,1980,44(2):241-252.
[43] 王伟颖,吕昌伟,何 江,等.湖泊水-沉积物界面DIC和DOC交换通量及耦合关系[J].环境科学,2015,36(10):3674-3682.
WANG Wei-ying,LYU Chang-wei,HE Jiang,et al.Exchange Fluxes and Coupling Relationship of Dissolved Inorganic Carbon and Dissolved Organic Carbon Across the Water-sediment Interface in Lakes[J].Environmental Science,2015,36(10):3674-3682.

相似文献/References:

[1]李成龙,盛雪芬,鲍睿,等.陆生蜗牛文石方解石化过程及其碳同位素组成变化高温实验[J].地球科学与环境学报,2018,40(03):275.
 LI Cheng-long,SHENG Xue-fen,BAO Rui,et al.High-temperature Experiment on Transformation from Aragonite to Calcite in Land Snail Shells and Its Impact on Carbon Isotope Composition Variations[J].Journal of Earth Sciences and Environment,2018,40(06):275.
[2]陈振宇,王松,赵元艺*.西藏多不杂铜矿区土壤与河床沉积物中重金属元素特征及其环境意义[J].地球科学与环境学报,2020,42(03):376.[doi:10.19814/j.jese.2020.03037]
 CHEN Zhen-yu,WANG Song,ZHAO Yuan-yi*.Characteristics and Environmental Significance of Heavy Metal Elements from Soil and River Bed Sediments in Duobuza Copper Mining Area, Tibet, China[J].Journal of Earth Sciences and Environment,2020,42(06):376.[doi:10.19814/j.jese.2020.03037]
[3]吴艳宏,罗朝逸,王治国,等.贡嘎山冰川退缩区土壤-植物-微生物功能多样性对磷循环的协同作用[J].地球科学与环境学报,2023,45(03):696.[doi:10.19814/j.jese.2022.12055]
 WU Yan-hong,LUO Chao-yi,WANG Zhi-guo,et al.Synergistic Effects of Soil-plant-microbe Functional Diversity on Phosphorus Cycling in the Glacier Retreat Area of Gongga Mountain, China[J].Journal of Earth Sciences and Environment,2023,45(06):696.[doi:10.19814/j.jese.2022.12055]

备注/Memo

备注/Memo:
收稿日期:2025-05-04; 修回日期:2025-08-13投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(42402130); 中国博士后科学基金项目(2024M751858,2025T180115); 山东博士后科学基金项目(SDBX2024034); 青岛市自然科学基金项目(24-4-4-zrjj-52-jch)
*通信作者:高 虓(1992-),男,山西武乡人,工学博士,博士后,E-mail:xiaogao92@sdust.edu.cn。
通信作者:韩作振(1965-),男,河南新乡人,教授,博士研究生导师,理学博士,E-mail:hanzuozhen@sdust.edu.cn。
更新日期/Last Update: 2025-12-10