|本期目录/Table of Contents|

[1]瞿 伟,高 源,陈海禄,等.利用GPS高精度监测数据开展青藏高原现今地壳运动与形变特征研究进展[J].地球科学与环境学报,2021,43(01):182-204.[doi:10.19814/j.jese.2020.08004]
 QU Wei,GAO Yuan,CHEN Hai-lu,et al.Review on Characteristics of Present Crustal Tectonic Movement and Deformation in Qinghai-Tibet Plateau, China Using GPS High Precision Monitoring Data[J].Journal of Earth Sciences and Environment,2021,43(01):182-204.[doi:10.19814/j.jese.2020.08004]
点击复制

利用GPS高精度监测数据开展青藏高原现今地壳运动与形变特征研究进展(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第43卷
期数:
2021年第01期
页码:
182-204
栏目:
地球信息科学
出版日期:
2021-01-15

文章信息/Info

Title:
Review on Characteristics of Present Crustal Tectonic Movement and Deformation in Qinghai-Tibet Plateau, China Using GPS High Precision Monitoring Data
作者:
瞿 伟1高 源1陈海禄1梁世川1韩亚茜1张 勤1王庆良2郝 明2
(1. 长安大学 地质工程与测绘学院,陕西 西安 710054; 2. 中国地震局第二监测中心,陕西 西安 710054)
Author(s):
QU Wei1 GAO Yuan1 CHEN Hai-lu1 LIANG Shi-chuan1 HAN Ya-xi1ZHANG Qin1 WANG Qing-liang2 HAO Ming2
(1. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, Shaanxi, China; 2. The Second Monitoring and Application Center, China Earthquake Administration, Xi’an 710054, Shaanxi, China)
关键词:
地壳运动 GPS 参考基准 运动学模型 应变场 滑动速率 构造动力学 青藏高原
Keywords:
Key words: crustal movement GPS reference datum kinematics model strain field slip rate tectonic dynamics Qinghai-Tibet Plateau
分类号:
P228; P313.4
DOI:
10.19814/j.jese.2020.08004
文献标志码:
A
摘要:
青藏高原由于所处大陆构造位置的特殊性,造就其成为全球现今地壳构造运动最为强烈的区域之一。青藏高原及其周边地区发育有多条深大活动断裂带,是强震易发区,同时也是研究大陆内板块构造运动机制的天然试验场。GPS以其时空分辨率高、覆盖范围广、观测精度高等特点,被广泛应用于地壳形变监测研究中。目前,通过已建立的中国地壳运动观测网络(CMONOC-Ⅰ)与中国大陆构造环境监测网络(CMONOC-Ⅱ)获得的GPS高精度地壳运动速度场,能够清晰地揭示青藏高原近20年来地壳构造运动与形变现状。通过系统总结利用GPS监测数据开展青藏高原现今地壳运动与形变特征的研究进展,回顾了用于监测青藏高原地壳运动的GPS数据来源与高精度数据处理方法及策略,探讨了不同参考基准对GPS速度场处理结果的影响,并分别从动力学和运动学两方面全面阐述了当前用于青藏高原地壳运动与形变分析模型。综合模型计算结果从浅部与深部两方面深入剖析了青藏高原现今地壳运动与形变特征,并从板块运动构造动力学机制角度详细解译了青藏高原现今区域动力学背景及其影响下的珠穆朗玛峰隆升机制。最后对利用GPS技术开展青藏高原地壳运动与形变监测成果作了概述总结,并进一步展望了未来青藏高原地壳形变监测研究的重要发展趋势。
Abstract:
Qinghai-Tibet Plateau is one of the regions with the strongest crustal tectonic movement in the world due to its special continental tectonic location. There are many large active faults in the block and its surrounding areas, which are prone to strong earthquakes. The area is also a natural test site for studying the mechanism of plate tectonic movement in the continent. Global Positioning System(GPS)is widely used in the study of crustal deformation monitoring due to its high temporal and spatial resolution, wide coverage, and high observation accuracy. The high-resolution GPS crustal movement velocity field obtainedby China crustal movement observation network(CMONOC-Ⅰ)and China continental tectonic environment monitoring network(CMONOC-Ⅱ), has clearly revealed the crustal tectonic movement and deformation of Qinghai-Tibet Plateau in the past 20 years. The research progress of current crustal movement and deformation characteristics of Qinghai-Tibet Plateau was systematically summarized based on GPS monitoring data, and the GPS data sources, and high-precision data processing methods and strategies for monitoring the crustal movement of Qinghai-Tibet Plateau were reviewed. The influence of different reference data on the processing results of GPS velocity field was discussed, and the current analysis models for crustal movement and deformation of Qinghai-Tibet Plateau were comprehensively explained from kinematics and dynamics. The current tectonic movement and deformation characteristics were deeply analyzed from both the shallow and deep of Qinghai-Tibet Plateau based on the calculations of integrated model. From the perspective of tectonic dynamic mechanism of plate movement, the current regional dynamics background of Qinghai-Tibet Plateau and the uplift mechanism of the mount Qomolangma region under its influence were interpreted in detail. Finally, the results of crustal movement and deformation of Qinghai-Tibet Plateau using GPS technology were summarized, and the important development trend of crustal deformation monitoring of Qinghai-Tibet Plateau in the future was also prospected.

参考文献/References:

[1] MOLNAR P,TAPPONNIER P.Cenozoic Tectonics of Asia:Effects of a Continental Collision[J].Science,1975,189:419-426.
[2]ENGLAND P,MOLNAR P.Active Deformation of Asia:From Kinematics to Dynamics[J].Science,1997,278:647-650.
[3]CHEN L,CAPITANIO F A,LIU L J,et al.Crustal Rheology Controls on the Tibetan Plateau Formation During India-Asia Convergence[J].Nature Communication,2017,8:15992.
[4]TAPPONNIER P,MOLNAR P.Active Faulting and Tectonics in China[J].Journal of Geophysical Research,1977,82(20):2905-2930.
[5]TAPPONNIER P,XU Z Q,ROGER F,et al.Oblique Stepwise Rise and Growth of the Tibet Plateau[J].Science,2001,294:1671-1677.
[6]牛之俊,马宗晋,陈鑫连,等.中国地壳运动观测网络[J].大地测量与地球动力学,2002,22(3):88-93.
NIU Zhi-jun,MA Zong-jin,CHEN Xin-lian,et al.Crustal Movement Observation Network of China[J].Journal of Geodesy and Geodynamics,2002,22(3):88-93.
[7]王 琪,游新兆,王文颖,等.跨喜马拉雅的GPS观测与地壳形变[J].地壳形变与地震,1998(3):43-50.
WANG Qi,YOU Xin-zhao,WANG Wen-ying,et al.GPS Measurement and Current Crustal Deformation Across the Himalaya[J].Crustal Deformation and Earthquake,1998(3):43-50.
[8]WANG Q,ZHANG P Z,FREYMUELLER J T,et al.Present-day Crustal Deformation China Constrained by Global Positioning System Measurements[J].Science,2001,294:574-577.
[9]LIU M,YANG Y Q.Extensional Collapse of the Tibetan Plateau:Results of Three-dimensional Finite Element Modeling[J].Journal of Geophysical Research:Solid Earth,2002,108(B8):2361.
[10]ZHANG P Z,SHEN Z K,WANG M,et al.Continuous Deformation of the Tibetan Plateau from GPS Data[J].Geology,2004,32(9):809-812.
[11]GAN W J,ZHANG P Z,SHEN Z K,et al.Present-day Crustal Motion Within the Tibetan Plateau Inferred from GPS Measurements[J].Journal of Geophysical Research,2007,112:B08416.
[12]郑文俊,张培震,袁道阳,等.GPS观测及断裂晚第四纪滑动速率所反映的青藏高原北部变形[J].地球物理学报,2009,52(10):2491-2508.
ZHENG Wen-jun,ZHANG Pei-zhen,YUAN Dao-yang,et al.Deformation on the Northern of the Tibetan Plateau from GPS Measurement and Geologic Rates of Late Quaternary Along the Major Fault[J].Chinese Journal of Geophysics,2009,52(10):2491-2508.
[13]HAO M,LI Y H,ZHUANG W Q.Crustal Movement and Strain Distribution in East Asia Revealed by GPS Observations[J].Scientific Reports,2019,9:16797.
[14]TIAN Z,FREYMUELLER J T,Yang Z Q.Spatio-temporal Variations of Afterslip and Viscoelastic Relaxation Following the Mw 7.8 Gorkha(Nepal)Earthquake[J].Earth and Planetary Science Letters,2020,532(15):116031.
[15]SHEN Z K,WANG M,LI Y X,et al.Crustal Deformation Along the Altyn Tagh Fault System,Western China,from GPS[J].Journal of Geophysical Research,2001,106(B12):30607-30621.
[16]SHEN Z K,LU J N,WANG M,et al.Contemporary Crustal Deformation Around the Southeast Borderland of the Tibetan Plateau[J].Journal of Geophysical Research,2005,110:B11409.
[17]瞿 伟,张 勤,杨成生,等.基于GPS速度场分析青藏块体东北缘应变特征[C]∥中国地球物理学会.中国地球物理学会第二十四届年会论文集.北京:中国地球物理学会,2008:327.
QU Wei,ZHANG Qin,YANG Cheng-sheng,et al.Strain Characteristics of the Northeastern Margin of the Tibetan Block Revealed by GPS Observations[C]∥Chinese Geophysical Society.Proceedings of the 24th Annual Meeting of the Chinese Geophysical Society.Beijing:Chinese Geophysical Society,2008:327.
[18]瞿 伟,张 勤,张冬菊,等.基于GPS速度场采用RELSM模型分析青藏块体东北缘的形变-应变特征[J].地球物理学进展,2009,24(1):67-74.
QU Wei,ZHANG Qin,ZHANG Dong-ju,et al.Ana-lysis of Deformation-strain Characteristics of the Northeast Margin of Qinghai-Tibet Block Using the RELSM Model Based on the GPS Velocity Field[J].Progress in Geophysics,2009,24(1):67-74.
[19]瞿 伟,张 勤,王庆良,等.青藏块体东北缘地壳水平应变场数值模拟研究[J].地球物理学进展,2010,25(3):783-788.
QU Wei,ZHANG Qin,WANG Qing-liang,et al.Numerical Simulation of the Crustal Horizontal Strain Field in Northeastern Margin of the Qinghai-Tibet Block[J].Progress in Geophysics,2010,25(3):783-788.
[20]WU Y Q,JIANG Z S,YANG G H,et al.Comparison of GPS Strain Rate Computing Methods and Their Reliability[J].Geophysical Journal International,2011,185(2):703-717.
[21]LOVELESS J P,MEADE B J.Partitioning of Loca-lized and Diffuse Deformation in the Tibetan Plateau from Joint Inversions of Geologic and Geodetic Observations[J].Earth and Planetary Science Letters,2011,303(1/2):11-24.
[22]李煜航,郝 明,季灵运,等.青藏高原东缘中南部主要活动断裂滑动速率及其地震矩亏损[J].地球物理学报,2014,57(4):1062-1078.
LI Yu-hang,HAO Ming,JI Ling-yun,et al.Fault Slip Rate and Seismic Moment Deficit on Major Active Faults in Mid and South Parts of the Eastern Margin of Tibet Plateau[J].Chinese Journal of Geophysics,2014,57(4):1062-1078.
[23]JIANG G Y,XU C J,WEN Y M,et al.Contemporary Tectonic Stressing Rates of Major Strike-slip Faults in the Tibetan Plateau from GPS Observations Using Least-squares Collocation[J].Tectonophysics,2014,615/616:85-95.
[24]GE W P,MOLNAR P,SHEN Z K,et al.Present-day Crustal Thinning in the Southern and Northern Tibetan Plateau Revealed by GPS Measurements[J].Geophysical Research Letters,2015,42(13):5227-5235.
[25]徐化超,王 辉,曹建玲.青藏高原东北缘主要断裂滑动速率及其动力学意义[J].地震,2018,38(3):13-23.
XU Hua-chao,WANG Hui,CAO Jian-ling.Slip Rates of the Major Faults in the Northeastern Tibetan Pla-teau and Their Geodynamic Implications[J].Earthquake,2018,38(3):13-23.
[26]SU X N,YAO L B,Wu W W,et al.Crustal Deformation on the Northeastern Margin of the Tibetan Plateau from Continuous GPS Observations[J].Remote Sensing,2019,11(1):34.
[27]WANG M,SHEN Z K.Present-day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications[J].Journal of Geophysical Research:Solid Earth,2020,125(2):18774.
[28]ZHENG G,WANG H,WRIGHT T J,et al.Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements[J].Journal of Geophysical Research:Solid Earth,2017,122(11):9290-9312.
[29]甘卫军,李 强,张 锐,等.中国大陆构造环境监测网络的建设与应用[J].工程研究:跨学科视野中的工程,2012,4(4):324-331.
GAN Wei-jun,LI Qiang,ZHANG Rui,et al.Construction and Application of Tectonic and Environmental Observation Network of Mainland China[J].Journal of Engineering Studies,2012,4(4):324-331.
[30]王 敏.GPS观测结果的精化分析与中国大陆现今地壳形变场研究[D].北京:中国地震局地质研究所,2009.
WANG Min.Analysis of GPS Data with High Precision and Study on Present-day Crustal Deformation in China[D].Beijing:Institute of Geology,China Earthquake Administration,2009.
[31]瞿 伟,王运生,张 勤,等.空间大地测量GPS揭示的汾渭盆地及其邻域现今地壳应变场变化特征[J].地球物理学报,2016,59(3):828-839.
QU Wei,WANG Yun-sheng,ZHANG Qin,et al.Current Crustal Deformation Variation Characteristics of the Fenwei Basin and Its Surrounding Areas Revealed by GPS Data[J].Chinese Journal of Geophysics,2016,59(3):828-839.
[32]ALTAMIMI Z,REBISCHUNG P,METIVIER L,et al.ITRF2014:A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions[J].Journal of Geophysical Research:Solid Earth,2016,121(8):6109-6131.
[33]邹镇宇,江在森,武艳强,等.基于GPS速度场变化结果研究汶川地震前后南北地震带地壳运动动态特征[J].地球物理学报,2015,58(5):1597-1609.
ZOU Zhen-yu,JIANG Zai-sen,WU Yan-qiang,et al.Dynamic Characteristics of Crustal Movement in North-south Seismic Belt from GPS Velocity Field Before and After the Wenchuan Earthquake[J].Chinese Journal of Geophysics,2015,58(5):1597-1609.
[34]CHAMBODUT A,PANET I,MANDEA M,et al.Wavelet Frames:An Alternative to Spherical Harmonic Representation of Potential Fields[J].Geophysical Journal International,2005,163(3):875-899.
[35]TAPE C,MUSE P,MARK S,et al.Multiscale Estimation of GPS Velocity Fields[J].Geophysical Journal International,2009,179(2):945-971.
[36]BOGDANNOVA I,VANDERGHEYNST P,ANTOINE J P,et al.Stereographic Wavelet Frames on the Sphere[J].Applied and Computational Harmonic Analysis,2005,19(2):223-252.
[37]苏小宁,孟国杰,王 振.基于多尺度球面小波解算GPS应变场的方法及应用[J].地球物理学报,2016,59(5):1585-1595.
SU Xiao-ning,MENG Guo-jie,WANG Zhen.Metho-dology and Application of GPS Strain Field Estimation Based on Multi-scale Spherical Wavelet[J].Chinese Journal of Geophysics,2016,59(5):1585-1595.
[38]KRARUP T.A Contribution to the Mathematical Foundation of Physical Geodesy[J].Mathematical Foundation of Geodesy,1969,44:29-90.
[39]EL-FIKY G S,KATO T,FUJII Y.Distribution of Vertical Crustal Movement Rates in the Tohoku District,Japan,Predicted by Least-squares Collocation[J].Journal of Geodesy,1997,71(7):432-442.
[40]武艳强,江在森,杨国华,等.利用最小二乘配置在球面上整体解算GPS应变场的方法及应用[J].地球物理学报,2009,52(7):1707-1714.
WU Yan-qiang,JIANG Zai-sen,YANG Guo-hua,et al.The Application and Method of GPS Strain Calculation in Whole Mode Using Least Square Collocation in Sphere Surface[J].Chinese Journal of Geophysics,2009,52(7):1707-1714.
[41]江在森,刘经南.应用最小二乘配置建立地壳运动速度场与应变场的方法[J].地球物理学报,2010,53(5):1109-1117.
JIANG Zai-sen,LIU Jing-nan.The Method in Esta-blishing Strain Field and Velocity Field of Crustal Movement Using Least Squares Collocation[J].Chinese Journal of Geophysics,2010,53(5):1109-1117.
[42]QU W,LU Z,ZHANG M,et al.Crustal Strain Fields in the Surrounding Areas of the Ordos Block,Central China,Estimated by the Least-squares Collocation Technique[J].Journal of Geodynamics,2017,106:1-11.
[43]QU W,CHEN H L,LIANG S C,et al.Adaptive Least-squares Collocation Algorithm Considering Distance Scale Factor for GPS Crustal Velocity Field Fitting and Estimation[J].Remote Sensing,2019,11(22):2692.
[44]SHEN Z K,JACKSON D D,GE B X.Crustal Deformation Across and Beyond the Los Angeles Basin from Geodetic Measurements[J].Journal of Geophy-sical Research,1996,101(B12):27957-27980.
[45]SHEN Z K,WANG M,ZENG Y,et al.Optimal Interpolation of Spatially Discretized Geodetic Data[J].Bulletin of the Seismological Society of America,2015,105(4):2117-2127.
[46]SAVAGE J C,BURFORD R O.Geodetic Determination of Relative Plate Motion in Central California[J].Journal of Geophysical Research:Solid Earth,1973,78(5):832-845.
[47]WALTERS R J,HOLLEY R J,PARSONS B,et al.Interseismic Strain Accumulation Across the North Anatolian Fault from Envisat InSAR Measurements[J].Geophysical Research Letters,2011,38(5):L05303.
[48]SAVAGE J C,SVARC J L,PRESCOTT W H.Geodetic Estimates of Fault Slip Rates in the San Francisco Bay Area[J].Journal of Geophysical Research:Solid Earth,1999,104(B3):4995-5002.
[49]SEGALL P.Earthquake and Volcano Deformation[M].Princeton:Princeton University Press,2010.
[50]KENNEDY J,EBERHART R C.Particle Swarm Optimization[C]∥IEEE.Proceeding of ICNN’95:International Conference on Neural Networks.Perth:IEEE,1995:1942-1948.
[51]EBERHART R C,SHI Y.Particle Warm Optimization:Developments,Applications and Resources[C]∥IEEE.Proceeding of the 2001 Congress on Evolutionary Computation.Seoul:IEEE,2001:81-86.
[52]张培震,甘卫军,沈正康,等.中国大陆现今构造作用的地块运动和连续变形耦合模型[J].地质学报,2005,79(6):748-756.
ZHANG Pei-zhen,GAN Wei-jun,SHEN Zheng-kang,et al.A Coupling Model of Rigid-block Movement and Continuous Deformation Patterns of the Present-day Deformation of China’s Continent and Its Vicinity[J].Acta Geologica Sinica,2005,79(6):748-756.
[53]李延兴,张静华,何建坤,等.由空间大地测量得到的太平洋板块现今构造运动与板内形变应变场[J].地球物理学报,2007,50(2):437-447.
LI Yan-xing,ZHANG Jing-hua,HE Jian-kun,et al.Current-day Tectonic Motion and Intraplate Deformation-strain Field Obtained from Space Geodesy in the Pacific Plate[J].Chinese Journal of Geophysics,2007,50(2):437-447.
[54]陶本藻.测量数据处理的统计理论和方法[M].北京:测绘出版社,2007.
TAO Ben-zao.Staistic Theory and Method of Surveying Data Processing[J].Beijing:Surveying and Mapping Publishing House,2007.
[55]MCCAFFREY R,STEIN S,FREYMUELLER J T.Crustal Block Rotations and Plate Coupling[J].Plate Boundary Zones,2002,30:101-122.
[56]MCCAFFREY R.Block Kinematics of the Pacific-North America Plate Boundary in the Southwestern United States from Inversion of GPS,Seismological,and Geologic Data[J].Journal of Geophysical Research:Solid Earth,2005,110(B7):B07401.
[57]MATSU’URA M,JACKSON D D,CHENG A.Dislocation Model for Aseismic Crustal Deformation at Hollister,California[J].Journal of Geophysical Research:Solid Earth,1986,91(B12):12661-12674.
[58]ENGLAND P,MCKENZIE D.A Thin Viscous Sheet Model for Continental Deformation[J].Geophysical Journal International,1982,70(2):295-321.
[59]郑 勇,傅容珊,熊 熊.中国大陆及周边地区现代岩石圈演化动力学模拟[J].地球物理学报,2006,49(2):415-427.
ZHENG Yong,FU Rong-shan,XIONG Xiong.Dynamic Simulation of Lithospheric Evolution from the Modern China Mainland and Its Surrounding Areas[J].Chinese Journal of Geophysics,2006,49(2):415-427.
[60]陆远忠,叶金铎,蒋 淳,等.中国强震前兆地震活动图像机理的三维数值模拟研究[J].地球物理学报,2007,50(2):499-508.
LU Yuan-zhong,YE Jin-duo,JIANG Chun,et al.3D Numerical Simulation on the Mechanism of Precursory Seismicity Pattern Before Strong Earthquake in China[J].Chinese Journal of Geophysics,2007,50(2):499-508.
[61]SUN Y J,LIU M.Rheological Control of Lateral Growth of the Tibetan Plateau:Numerical Results[J].Journal of Geophysical Research:Solid Earth,2018,123(11):10124-10141.
[62]GAO Y J,LUO G,SUN Y Q.Seismicity,Fault Slip Rates,and Fault Interactions in a Fault System[J].Journal of Geophysical Research:Solid Earth,2020,125(2):17379.
[63]LI Q S,LIU M,ZHANG H.A 3-D Viscoelastoplastic Model for Simulating Long-term Slip on Non-planar Faults[J].Geophysical Journal International,2009,176(1):293-306.
[64]范桃园,龙长兴,杨振宇,等.中国大陆现今地应力场黏弹性球壳数值模拟综合研究[J].地球物理学报,2012,55(4):1249-1260.
FAN Tao-yuan,LONG Chang-xing,YANG Zhen-yu,et al.Comprehensive Modeling on the Present Crustal Stress of China Mainland with the Viscoelastic Spherical Shell[J].Chinese Journal of Geophysics,2012,55(4):1249-1260.
[65]QU W,GAO Y,ZHANG Q,et al.Present Crustal Deformation and Stress-strain Fields of North China Revealed from GPS Observations and Finite Element Modelling[J].Journal of Asian Earth Sciences,2019,183:103959.
[66]李平恩,廖 力,奉建州,等.1900年以来巴颜喀拉块体应力演化与周缘强震关系的数值模拟研究[J].地球物理学报,2019,62(11):4170-4188.
LI Ping-en,LIAO Li,FENG Jian-zhou,et al.Numerical Simulation of Relationship Between Stress Evolution and Strong Earthquakes Around the Bayan Har Block Since 1900[J].Chinese Journal of Geophysics,2019,62(11):4170-4188.
[67]柳 畅,朱伯靖,石耀霖.粘弹性数值模拟龙门山断裂带应力积累及大震复发周期[J].地质学报,2012,86(1):157-169.
LIU Chang,ZHU Bo-jing,SHI Yao-lin.Stress Accumulation of the Longmenshan Fault and Recurrence Interval of Wenchuan Earthquake Based on Viscoelasticity Simulation[J].Acta Geologica Sinica,2012,86(1):157-169.
[68]ZHU S B,ZHANG P Z.FEM Simulation of Interseismic and Coseismic Deformation Associated with the 2008 Wenchuan Earthquake[J].Tectonophysics,2013,584:64-80.
[69]申文豪,薛腾飞,张景发,等.基于速率-状态摩擦定律的地震二维准动力学数值模拟:浅层正应力变化对断层演化的影响[J].地球物理学报,2018,61(8):3198-3210.
SHEN Wen-hao,XUE Teng-fei,ZHANG Jing-fa,et al.2-D Quasi-dynamics Numerical Simulation of Earthquake Based on Rate-state Friction Law:Effect of the Variations of Shallow Normal Stress on Fault Evolution[J].Chinese Journal of Geophysics,2018,61(8):3198-3210.
[70]马林飞,陶 玮,张 永,等.龙门山断层地震周期及其动力学过程模拟研究[J].地球物理学报,2018,61(5):1824-1839.
MA Lin-fei,TAO Wei,ZHANG Yong,et al.The Numerical Simulation Study of the Earthquake Cycles and the Dynamic Evolutionary Processes on the Longmenshan Fault[J].Chinese Journal of Geophy-sics,2018,61(5):1824-1839.
[71]朱守彪,邢会林,谢富仁,等.地震发生过程的有限单元法模拟:以苏门答腊俯冲带上的大地震为例[J].地球物理学报,2008,51(2):460-468.
ZHU Shou-biao,XING Hui-lin,XIE Fu-ren,et al.Simulation of Earthquake Processes by Finite Element Method:The Case of Megathrust Earthquakes on the Sumatra Subduction Zone[J].Chinese Journal of Geophysics,2008,51(2):460-468.
[72]LUO G,LIU M.Stress Evolution and Fault Interactions Before and After the 2008 Great Wenchuan Earthquake[J].Tectonophysics,2010,491(1/2/3/4):127-140.
[73]LUO G,LIU M.Stressing Rates and Seismicity on the Major Faults in Eastern Tibetan Plateau[J].Journal of Geophysical Research:Solid Earth,2018,123(9):10968-10986.
[74]尹 力,罗 纲,孙云强.青藏高原东缘中下地壳流与地壳变形[J].地球物理学报,2018,61(10):3933-3950.
YIN Li,LUO Gang,SUN Yun-qiang.Middle-lower Crust Flow and Crustal Deformation:Insights from a Finite Element Modeling[J].Chinese Journal of Geophysics,2018,61(10):3933-3950.
[75]LI P E,LIAO L,FENG J Z.The Relationship Between Stress Changes and Strong Earthquakes Since 1900 Around the Bayan Har Block in Northern Tibet,China[J].Journal of Asian Earth Sciences,2019,184:103974.
[76]SHEN Z K,WANG M,ZENG Y H,et al.Optimal Interpolation of Spatially Discretized Geodetic Data[J].Bulletin of the Seismological Society of America,2015,105(4):2117-2127.
[77]李长军,甘卫军,秦姗兰,等.青藏高原东南缘南段现今变形特征研究[J].地球物理学报,2019,62(12):4540-4553.
LI Zhang-jun,GAN Wei-jun,QIN Shan-lan,et al.Present-day Deformation Characteristics of the Southeast Borderland of the Tibetan Plateau[J].Chinese Journal of Geophysics,2019,62(12):4540-4553.
[78]张培震,王 琪,马宗晋.中国大陆现今构造运动的GPS速度场与活动地块[J].地学前缘,2002,9(2):430-441.
ZHANG Pei-zhen,WANG Qi,MA Zong-jin.GPS Velocity Field and Active Crustal Blocks of Contemporary Tectonic Deformation in Continental China[J].Earth Science Frontiers,2002,9(2):430-441.
[79]LI Y H,LIU M,WANG Q L,et al.Present-day Crustal Deformation and Strain Transfer in Northeastern Tibetan Plateau[J].Earth and Planetary Science Letters,2018,487:179-189.
[80]WANG H,LIU M,CAO J L,et al.Slip Rates and Seismic Moment Deficits on Major Active Faults in Mainland China[J].Journal of Geophysical Research:Solid Earth,2011,116(B2):B02405.
[81]张培震,邓起东,张竹琪,等.中国大陆的活动断裂、地震灾害及其动力过程[J].中国科学:地球科学,2013,43(10):1607-1620.
ZHANG Pei-zhen,DENG Qi-dong,ZHANG Zhu-qi,et al.Active Faults,Earthquake Hazards and Associated Geodynamic Processes in Continental China[J].Science China:Earth Sciences,2013,43(10):1607-1620.
[82]LI H B,VAN D W J,TAPPONNIER P,et al.Slip Rate on the Kunlun Fault at Hongshui Gou,and Recurrence Time of Great Events Comparable to the 14/11/2001,Mw~7.9 Kokoxili Earthquake[J].Earth and Planetary Science Letters,2005,237(1/2):285-299.
[83]ENGLAND P,HOUSEMAN G.Finite Strain Calculations of Continental Deformation 2:Comparison with the India-Asia Collision Zone[J].Journal of Geophysical Research,1986,91(B3):3664-3676.
[84]ROYDEN L H,BURCHFIEL B C,KING R W,et al.Surface Deformation and Lower Crustal Flow in Eastern Tibet[J].Science,1997,276:788-790.
[85]CLARK M K,ROYDEN L H.Topographic Ooze:Building the Eastern Margin of Tibet by Lower Crustal Flow[J].Geology,2000,28(8):703-706.
[86]郑 勇,陈 顒,傅容珊,等.应用非连续性模型模拟断层活动对青藏高原应力应变场的影响[J].地球物理学报,2007,50(5):1398-1408.
ZHENG Yong,CHEN Yong,FU Rong-shan,et al.Simulation of the Effects of Faults Movement on Stress and Defomation Fields of Tibetan Plateau by Discontinuous Movement Models[J].Chinese Journal of Geophysics,2007,50(5):1398-1408.
[87]王 辉,曹建玲,张 怀,等.川滇地区下地壳流动对上地壳运动变形影响的数值模拟[J].地震学报,2007,29(6):581-591.
WANG Hui,CAO Jian-ling,ZHANG Huai,et al.Numerical Simulation of the Influence of Lower Crustal Flow on the Deformation of the Sichuan-Yunnan Region[J].Acta Seismologica Sinica,2007,29(6):581-591.
[88]曹建玲,石耀霖,张 怀,等.青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J].科学通报,2009,54(2):224-234.
CAO Jian-ling,SHI Yao-lin,ZHANG Huai,et al.Numerical Simulation of GPS Observed Clockwise Rotation Around the Eastern Himalayan Syntax in the Tibetan Plateau[J].Chinese Science Bulletin,2009,54(2):224-234.
[89]王晓芳,何建坤.下地壳管道流动与青藏高原东缘大尺度构造地貌关系[J].中国科学:地球科学,2012,42(4):505-512.
WANG Xiao-fang,HE Jian-kun.Channel Flow of the Lower Crust and Its Relation to Large-scale Tectonic Geomorphology of the Eastern Tibetan Plateau[J].Science China:Earth Sciences,2012,42(4):505-512.
[90]LIU C,ZHU B J,YANG X L,et al.Geodynamic Background of the 2008 Wenchuan Earthquake Based on 3D Visco-elastic Numerical Modelling[J].Physics of the Earth and Planetary Interiors,2016,252:23-56.
[91]LI Y J,LIU S F,CHEN L W,et al.Mechanism of Crustal Deformation in the Sichuan-Yunnan Region,Southeastern Tibetan Plateau Insights from Numerical Modeling[J].Journal of Asian Earth Sciences,2017,146:142-151.
[92]LI Y J,LIU M,LI Y H,et al.Active Crustal Deformation in Southeastern Tibetan Plateau:The Kinematics and Dynamics[J].Earth and Planetary Science Letters,2019,523:115708.
[93]CHEN L,LIU L J,CAPITANIO F A,et al.The Role of Pre-existing Weak Zones in the Formation of the Himalaya and Tibetan Plateau:3-D Thermomechanical Modelling[J].Geophysical Journal International,2020,221(3):1971-1983.
[94]BAI D H,UNSWORTH M J,MEJU M A,et al.Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging[J].Nature Geoscience,2010,3(5):358-362.
[95]朱守彪,石耀霖.用遗传有限单元法反演川滇下地壳流动对上地壳的拖曳作用[J].地球物理学报,2004,47(2):232-239.
ZHU Shou-biao,SHI Yao-lin.Genetic Algorithm-finite Element Inversion of Drag Forces Exerted by the Lower Crust on the Upper Crust in the Sichuan-Yunnan Area[J].Chinese Journal of Geophysics,2004,47(2):232-239.
[96]祝爱玉,张东宁,朱 涛,等.地幔对流拖曳力影响青藏高原东北缘地壳运动格局的数值模拟研究[J].中国科学:地球科学,2019,49(2):353-367.
ZHU Ai-yu,ZHANG Dong-ning,ZHU Tao,et al.Influence of Mantle Convection to the Crustal Movement Pattern in the Northeastern Margin of the Tibetan Plateau Based on Numerical Simulation[J].Science China:Earth Sciences,2019,49(2):353-367.
[97]朱守彪,石耀霖.青藏高原地形扩展力以及下地壳对上地壳的拖曳力的遗传有限单元法反演[J].北京大学学报(自然科学版),2005,41(2):225-234.
ZHU Shou-biao,SHI Yao-lin.Genetic Algorithm-finite Element Inversion of Topographic Spreading Forces and Drag Forces of Lower Crust to Upper Crust in Tibetan Plateau[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2005,41(2):225-234.
[98]谢富仁,崔效锋,赵建涛,等.中国大陆及邻区现代构造应力场分区[J].地球物理学报,2004,47(4):654-662.
XIE Fu-ren,CUI Xiao-feng,ZHAO Jian-tao,et al.Regional Division of the Recent Tectonic Stress Field in China and Adjacent Areas[J].Chinese Journal of Geophysics,2004,47(4):654-662.
[99]邓起东,张培震,冉勇康,等.中国活动构造基本特征[J].中国科学:D辑,地球科学,2002,32(12):1020-1030,1057.
DENG Qi-dong,ZHANG Pei-zhen,RAN Yong-kang,et al.Basic Features of Chinese Active Structure[J].Science in China:Series D,Earth Sciences,2002,32(12):1020-1030,1057.
[100]POWELL C M A,CONAGHAN P J.Plate Tectonics and the Himalayas[J].Earth and Planetary Science Letters,1973,20(1):1-12.
[101]MOLNAR P,TAPPONNIER P.Cenozoic Tectonics of Asia:Effects of a Continental Collision[J].Science,1975,189:419-426.
[102]李廷栋.青藏高原隆升的过程和机制[J].地球学报,1995,16(1):1-9.
LI Ting-dong.The Uplifting Process and Mechanism of the Qinhai-Tibet Plateau[J].Acta Geoscientia Sini-ca,1995,16(1):1-9.
[103]BENDICK R,BILHAM R,FREYMUELLER J,et al.Geodetic Evidence for a Low Slip Rate in the Altyn Tagh Fault System[J].Nature,2000,404:69-72.
[104]ZHANG P Z,MOLNAR P,XU X W.Late Quaternary and Present-day Rates of Slip Along the Altyn Tagh Fault,Northern Margin of the Tibetan Plateau[J].Tectonics,2007,26(5):TC5010.
[105]张国民,马宏生,王 辉,等.中国大陆活动地块与强震活动关系[J].中国科学:D辑,地球科学,2004,34(7):591-599.
ZHANG Guo-min,MA Hong-sheng,WANG Hui,et al.Relationship Between Continental Active Blocks and Strong Earthquakes in China[J].Science in China:Series D,Earth Sciences,2004,34(7):591-599.
[106]CUNNINGHAM D,ZHANG J,Li Y F.Late Cenozoic Transpressional Mountain Building Directly North of the Altyn Tagh Fault in the Sanweishan and Nanjieshan,North Tibetan Foreland,China[J].Tectonophysics,2016,687:111-128.
[107]滕吉文,张洪双,孙若昧,等.青藏高原腹地东西分区和界带的地球物理场特征与动力学响应[J].地球物理学报,2011,54(10):2510-2527.
TENG Ji-wen,ZHANG Hong-shuang,SUN Ruo-mei,et al.Geophysical Field Characteristics and Dynamic Response of Segmentations in East-west Direction and Their Boundary Zone in Central Tibetan Plateau[J].Chinese Journal of Geophysics,2011,54(10):2510-2527.
[108]张 辉,高 原,石玉涛,等.基于地壳介质各向异性分析青藏高原东北缘构造应力特征[J].地球物理学报,2012,55(1):95-104.
ZHANG Hui,GAO Yuan,SHI Yu-tao,et al.Tecto-nic Stress Analysis Based on the Crustal Seismic An-isotropy in the Northeastern Margin of Tibetan Pla-teau[J].Chinese Journal of Geophysics,2012,55(1):95-104.
[109]WANG C Y,Han W B,WU J P,et al.Crustal Structure Beneath the Eastern Margin of the Tibetan Pla-teau and Its Tectonic Implications[J].Journal of Geophysical Research,2007,112(B7):B07307.
[110]邵若潼,沈旭章,张元生.青藏高原东北缘甘东南地区地壳各向异性特征及构造意义[J].地球物理学报,2019,62(9):3340-3353.
SHAO Ruo-tong,SHEN Xu-zhang,ZHANG Yuan-sheng.Crustal Anisotropy and Tectonic Implications Beneath Southeastern Gansu Province in Northeastern Margin of the Tibetan Plateau[J].Chinese Journal of Geophysics,2019,62(9):3340-3353.
[111]高 原,石玉涛,王 琼.青藏高原东南缘地震各向异性及其深部构造意义[J].地球物理学报,2020,63(3):802-816.
GAO Yuan,SHI Yu-tao,WANG Qiong.Seismic Ani-sotropy in the Southeastern Margin of the Tibetan Plateau and Its Deep Tectonic Significances[J].Chinese Journal of Geophysics,2020,63(3):802-816.
[112]LARSON K M,BURGMANN R,BILHAM R,et al.Kinematics of the India-Eurasia Collision Zone from GPS Measurements[J].Journal of Geophysical Research:Solid Earth,1999,104(B1):1077-1093.
[113]王阎昭,王恩宁,沈正康,等.基于GPS资料约束反演川滇地区主要断裂现今活动速率[J].中国科学:D辑,地球科学,2008,38(5):582-597.
WANG Yan-zhao,WANG En-ning,SHEN Zheng-kang,et al.Recent Activity Rates of Major Faults in Sichuan-Yunnan Region Based on GPS Observations[J].Science in China:Series D,Earth Sciences,2008,38(5):582-597.
[114]王 苏,徐晓雅,胡家富.青藏高原东南缘的地壳结构与动力学模式研究综述[J].地球物理学报,2015,58(11):4235-4253.
WANG Su,XU Xiao-ya,HU Jia-fu.Review on the Study of Crustal Structure and Geodynamic Models for the Southeast Margin of the Tibetan Plateau[J].Chinese Journal of Geophysics,2015,58(11):4235-4253.
[115]BILHAM R,LARSON K M,FREYMUELLER J T.GPS Measurements of Present-day Convergence Across the Nepal Himalaya[J].Nature,1997,386:61-64.
[116]BANERJEE P,BURGMANN R.Convergence Across the Northwest Himalaya from GPS Measurements[J].Geophysical Research Letters,2002,29(13):301-304.
[117]KUNDU B,YADAV R K,BALI B S,et al.Oblique Convergence and Slip Partitioning in the NW Himalaya:Implications from GPS Measurements[J].Tecto-nics,2014,33(10):2013-2024.
[118]BETTINELLI P,AVOUAC J P,FLOUZAT M,et al.Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements[J].Journal of Geodesy,2006,80(8):567-589.
[119]李 星.大地测量数据处理中心开展珠峰高程计算[N].中国自然资源报,2020-05-28(6).
LI Xing.Elevation of the Mount Everest Was Calculated by the Geodetic Data Processing Center[N].China Natural Resources News,2020-05-28(6).
[120]傅容珊,李力刚,黄建华,等.青藏高原隆升过程的三阶段模式[J].地球物理学报,1999,42(5):609-616.
FU Rong-shan,LI Li-gang,HUANG Jian-hua,et al.Three-step Model of the Qinghai-Xizang Plateau Uplift[J].Chinese Journal of Geophysics,1999,42(5):609-616.
[121]滕吉文,张中杰,胡家富,等.青藏高原整体隆升与地壳短缩增厚的物理-力学机制研究(上)[J].高校地质学报,1996,2(2):121-133.
TENG Ji-wen,ZHANG Zhong-jie,HU Jia-fu,et al.Physical-mechanical Mechanism for the Whole Uplift-ing of the Qinghai-Xizang Plateau and the Lateral Shortening and Vertical Thickening of the Crust[J].Geological Journal of Universities,1996,2(2):121-133.
[122]许志琴,杨经绥,姜 枚.青藏高原北部的碰撞造山及深部动力学:中法地学合作研究新进展[J].地球学报,2001,22(1):5-10.
XU Zhi-qin,YANG Jing-sui,JIANG Mei.Collision-orogeny of the Northern Qinghai-Tibet Plateau and Its Deep Dynamics[J].Acta Geoscientia Sinica,2001,22(1):5-10.
[123]孔祥儒,王谦身,熊绍柏.西藏高原西部综合地球物理与岩石圈结构研究[J].中国科学:D辑,地球科学,1996,26(4):308-315.
KONG Xiang-ru,WANG Qian-shen,XIONG Shao-bai.Research on Comprehensive Geophysics and Lithospheric Structure in the Western Tibetan Pla-teau[J].Science in China:Series D,Earth Sciences,1996,26(4):308-315.
[124]方小敏.青藏高原隆升阶段性[J].科技导报,2017,35(6):42-50.
FANG Xiao-min.Phased Uplift of the Tibetan Plateau[J].Science and Technology Review,2017,35(6):42-50.
[125]葛伟鹏.GPS观测研究现今青藏高原地壳形变机制:来自阿尔金断裂三维运动场及高原地壳减薄的证据[J].国际地震动态,2017(9):44-46.
GE Wei-peng.GPS Constrained Present-day Crustal Deformation Mechanism of Tibetan Plateau:Evidence from 3D Movements of Altyn Tagh Fault and Plateau Crustal Thinning[J].Recent Developments in World Seismology,2017(9):44-46.
[126]NIU Y L.What Drives the Continued India-Asia Convergence Since the Collision at 55 Ma?[J].Science Bulletin,2020,65(3):169-172.
[127]吴东霖,葛伟鹏,魏聪敏.利用Sentinel-1合成孔径雷达干涉测量技术监测海原断裂现今地壳变形特征[J].地震工程学报,2020,42(5):1055-1064.
WU Dong-lin,GE Wei-peng,WEI Cong-min.Characteristics of Present-day Crustal Deformation Along the Haiyuan Fault Zone Using PS-InSAR Method[J].China Earthquake Engineering Journal,2020,42(5):1055-1064.
[128]潘正洋,周 云,赵国强.基于弹性薄片格林函数的GPS应变求解方法对青藏高原东北缘三维构造变形特征的研究[J].大地测量与地球动力学,2020,40(4):351-356.
PAN Zheng-yang,ZHOU Yun,ZHAO Guo-qiang.Contemporary Crustal Deformation Within Northeast Tibet Constraint from 3-dimensional GPS Strain Analysis Based on the Green Function of Elastic Thin Sheet[J].Journal of Geodesy and Geodynamics,2020,40(4):351-356.
[129]简慧子,王丽凤,任治坤,等.基于GPS速度场研究鄂拉山断裂现今滑动速率和闭锁状态[J].地球物理学报,2020,63(3):1127-1142.
JIAN Hui-zi,WANG Li-feng,REN Zhi-kun,et al.Present-day Slip Rate and Interseismic Fault Coupling Along the Elashan Fault Using GPS[J].Chinese Journal of Geophysics,2020,63(3):1127-1142.
[130]庞亚瑾,杨少华,李海兵,等.青藏高原东北缘海原—六盘山断裂带现今地壳应力环境的数值分析[J].岩石学报,2019,35(6):1848-1856.
PANG Ya-jin,YANG Shao-hua,LI Hai-bing,et al.Numerical Modeling of Current Crustal Stress State in Haiyuan-Liupanshan Fault System of NE Tibet[J].Acta Petrologica Sinica,2019,35(6):1848-1856.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-08-04; 修回日期:2020-10-25投稿网址:http:∥jese.chd.edu.cn/
基金项目:国家自然科学基金项目(41674001); 国家重点研发计划项目(2018YFC1503604); 陕西省自然科学基金项目(2019JM-202); 陕西省留学人员科技活动择优资助项目(13)
作者简介:瞿 伟(1982-),男,江苏连云港人,教授,博士研究生导师,工学博士,博士后,E-mail:quwei@chd.edu.cn。
更新日期/Last Update: 2021-03-10