|本期目录/Table of Contents|

[1]隋 旺 华.矿山采掘岩体渗透变形灾变机理及防控Ⅰ:顶板溃水溃砂[J].地球科学与环境学报,2022,44(06):903-921.[doi:10.19814/j.jese.2022.10001]
 SUI Wang-hua.Catastrophic Mechanism of Seepage Deformation and Failure of Mining Rock Mass and Its Prevention & Control Ⅰ: Water-sand Mixture Inrush from Seam Roof[J].Journal of Earth Sciences and Environment,2022,44(06):903-921.[doi:10.19814/j.jese.2022.10001]
点击复制

矿山采掘岩体渗透变形灾变机理及防控Ⅰ:顶板溃水溃砂(PDF)
分享到:

《地球科学与环境学报》[ISSN:1672-6561/CN:61-1423/P]

卷:
第44卷
期数:
2022年第06期
页码:
903-921
栏目:
纪念刘国昌先生诞辰110周年专辑
出版日期:
2022-11-15

文章信息/Info

Title:
Catastrophic Mechanism of Seepage Deformation and Failure of Mining Rock Mass and Its Prevention & Control Ⅰ: Water-sand Mixture Inrush from Seam Roof
文章编号:
1672-6561(2022)06-0903-19
作者:
隋 旺 华12
(1. 中国矿业大学 资源与地球科学学院,江苏 徐州 221116; 2. 中国矿业大学 矿山水害防治技术基础研究国家级专业中心实验室,江苏 徐州 221116)
Author(s):
SUI Wang-hua12
(1. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China; 2. Fundamental Research Laboratory for Mine Water Hazards Prevention and Control Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China)
关键词:
渗透变形 顶板突水 溃水溃砂 垮落带 裂隙带 临界水力坡度 安全水头 危险性评价
Keywords:
seepage deformation water inrush from seam roof water-sand mixture inrush caving zone fractured zone critical hydraulic gradient safe hydraulic head risk evaluation
分类号:
P64; TD12
DOI:
10.19814/j.jese.2022.10001
文献标志码:
A
摘要:
矿山采掘诱发顶板溃水溃砂灾害防控正成为制约矿山安全的重要瓶颈。从成灾机制、运动规律和危险性评价等方面综述了顶板溃水溃砂研究的主要进展和趋势。溃水溃砂的成灾工程地质机制分为4类:直接或间接揭露松散含水层、导水裂隙带沟通松散含水层渗透破坏、人为钻孔沟通松散含水层、软弱覆岩遇水劣化(崩解泥化)伴随顶板裂隙水或离层水突出的溃水溃砂成灾模式。溃水溃砂的运动规律研究获得了水砂混合物经出口、单裂隙、交叉裂隙网络和垮落带的运动特征,建立了溃水溃砂定性和定量的评价方法,提出了溃水溃砂主动防控方法等。最后,提出了顶板溃水溃砂机理及防控应该重点解决的关键科学和技术问题,包括建立顶板溃水溃砂工程地质数字孪生模型,揭示溃水溃砂通道形成机理,建立反映溃水溃砂全过程运动方程,加强监测预警技术、实际赋存环境模型试验技术、高效注浆关键设备等关键技术和设备研发等。
Abstract:
The prevention and control of the disaster of water-sand mixture inrush caused by mining is becoming one of important bottlenecks, which restricts mining safety. The state-of-the-art and trend of water-sand mixture inrush from seam roof were reviewed, including the catastrophic mechanism, movement law and risk evaluation. The engineering geological models of disaster formation are divided into four categories, including water-sand mixture inrush by direct or indirect exposure of unconsolidated aquifers, by seepage failure due to water-conducting fractured zone connecting, by man-made borehole drilling through unconsolidated aquifers, and by softened overburden with deterioration of water and inrush under the combined action of water pressure and mining pressure. In view of the seepage failure of water-sand mixture inrush, combined with the model test and theoretical derivation results, the basic movement law of the water-sand mixture flow through the orifice, single fracture, fracture network and caving zone was obtained, which lays the foundation for the establishment of a unified equation of the movement of water-sand mixture flow. An expression of critical hydraulic gradient from top to bottom seepage was derived, and the concept and calculation method of safe water head against water-sand mixture inrush were proposed. A qualitative and quantitative evaluation method for water-sand mixture was established, and a dynamically quantitative evaluation method for water-sand mixture inrush was realized. The successful application of active prevention and control measures was introduced by grouting to transform the properties of unconsolidated aquifers and backfill mining, in order to reduce overburden failure and prevent water-sand mixture inrush failure. Finally, the scientific problems of the mechanism of water-sand mixture inrush from seam roof and key technical issues, which should be solved in the next step of prevention and control, were proposed. The main scientific issues include that establishment of a digital twin model of the geological geology of water-sand mixture inrush from seam roof, revealing the formation mechanism of the water-sand mixture inrush pathway, the interaction between the water-sand mixture and the surrounding rocks, constructing the motion equation reflecting the whole process of water-sand mixture inrush, obtaining the grout propagation and solidification characteristics in the advanced area of preventing water-sand mixture inrush, etc. Research and development of key technologies include monitoring and early warning technology, actual environment modeling technology, and equipment for high-efficiency grouting.

参考文献/References:

[1] 刘国昌.在矿山水文地质勘探中对矿山井巷坚固性与露天开采边坡稳定性的工程地质评价[J].水文地质工程地质,1958(7):9-15.
LIU Guo-chang.Engineering Geological Evaluation on the Stability of Mine Shaft and Open Pit Slope in Mine Hydrogeological Exploration [J].Hydrogeology & Engineering Geology,1958(7):9-15.
[2] 刘国昌.高应力的地区矿区工程地质问题:以金川矿区为例[J].西安地质学院学报,1983,5(1):73-80.
LIU Guo-chang.Engineering Geological Problems in Mining Areas with High Geo-stress:A Case Study in the Jinchuan Mining Area[J].Journal of Xi'an College of Geology,1983,5(1):73-80.
[3] 隋旺华,蔡光桃,董青红.近松散层采煤覆岩采动裂缝水砂突涌临界水力坡度试验[J].岩石力学与工程学报,2007,26(10):2084-2091.
SUI Wang-hua,CAI Guang-tao,DONG Qing-hong.Experimental Research on Critical Percolation Gradient of Quicksand Across Overburden Fissures Due to Coal Mining near Unconsolidated Soil Layers[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2084-2091.
[4] 隋旺华,董青红,蔡光桃,等.采掘溃砂机理与预防[M].北京:地质出版社,2008.
SUI Wang-hua,DONG Qing-hong,CAI Guang-tao,et al.Quicksand Hazards in Underground Coal Mi-nes:Mechanism and Prevention[M].Beijing:Geolo-gical Publishing House,2008.
[5] 范立民,冀瑞君.西部高强度采煤矿井灾害新灾种:突水溃沙[J].地质评论,2015,61(增):13-15.
FAN Li-min,JI Rui-jun.A New Disaster of High Intensity Coal Mine in Western China:Water Inrush and Sand Burst[J].Geological Review,2015,61(S):13-15.
[6] 董书宁,姬亚东,王 皓,等.鄂尔多斯盆地侏罗纪煤田典型顶板水害防控技术与应用[J].煤炭学报,2020,45(7):2367-2375.
DONG Shu-ning,JI Ya-dong,WANG Hao,et al.Prevention and Control Technology and Application of Roof Water Disaster in Jurassic Coal Field of Ordos Basin[J].Journal of China Coal Society,2020,45(7):2367-2375.
[7] 隋旺华.基于结构水文地质学的采掘诱发高势能突水溃砂主动防控[J].工程地质学报,2022,30(1):101-109.
SUI Wang-hua.Active Prevention and Control of Water-sand Mixture Inrush with High Potential Energy due to Mining Based on Structural Hydrogeology[J].Journal of Engineering Geology,2022,30(1):101-109.
[8] 武 强.煤矿防治水手册[M].北京:煤炭工业出版社,2013.
WU Qiang.Water Prevention and Control Manual for Coal Mines[M].Beijing:China Coal Industry Publishing House,2013.
[9] 虎维岳.矿山水害防治理论与方法[M].北京:煤炭工业出版社,2005.
HU Wei-yue.Theory and Method of Mine Water Di-saster Prevention[M].Beijing:China Coal Industry Publishing House,2005.
[10] 丁 甲,董东林,胡志强,等.巨厚松散层下煤层开采的抗渗透性破坏和煤柱安全性研究:以口孜东矿为例[J].工程地质学报,2021,29(4):1071-1083.
DING Jia,DONG Dong-lin,HU Zhi-qiang,et al.Resistance to Permeability Damage and Coal Pillar Safety of Coal Mining Under Giant Thick Loose Seam:Take the Kouzidong Mine as an Example[J].Journal of Engineering Geology,2021,29(4):1071-1083.
[11] 崔广心,程锡禄.徐淮地区井壁破坏原因的初步研究[J].煤炭科学技术,1991,19(8):46-50.
CUI Guang-xin,CHENG Xi-lu.Occasions of Damaging Shaft Walls in Xuhuai District[J].Coal Science and Technology,1991,19(8):46-50.
[12] 隋旺华.矿山安全地质学:综述[J].工程地质学报,2021,29(4):901-916.
SUI Wang-hua.Mine Safety Geology:A Review[J].Journal of Engineering Geology,2021,29(4):901-916.
[13] SUI W H,SUN Y J.An Interdisciplinary Response to Mine Water Challenges[C]∥SUI W H,SUN Y J,WANG C S.The Proceedings of the 12th IMWA Congress.Xuzhou:China University of Mining and Technology Press,2014:1-10.
[14] 隋旺华.矿山采掘岩体渗透变形灾变机理及防控Ⅱ:底板突水[J].工程地质学报,2022,DOI:10.13544/j.cnki.jeg.2022-0668.
SUI Wang-hua.Catastrophic Mechanism of Seepage Deformation and Failure of Mining Rock Mass and Its Prevention & ControlⅡ:A Review of Water Inrush from Seam Floor[J].Journal of Engineering Geology,2022,DOI:10.13544/j.cnki.jeg.2022-0668.
[15] 侯素宽,李 强,王世骐,等.中国新近纪岩石地层划分和对比[J].地层学杂志,2021,45(3):426-439.
HOU Su-kuan,LI Qiang,WANG Shi-qi,et al.Litho-stratigraphic Subdivision and Correlation of the Neogene in China[J].Journal of Stratigraphy,2021,45(3):426-439.
[16] 孙 蕗,邓成龙,郝青振,等.中国第四纪岩石地层划分和对比[J].地层学杂志,2021,45(3):440-459.
SUN Lu,DENG Cheng-long,HAO Qing-zhen,et al.Lithostratigraphic Subdivision and Correlation of the Quaternary in China[J].Journal of Stratigraphy,2021,45(3):440-459.
[17] 隋旺华,刘佳维,高炳伦,等.采掘诱发高势能溃砂灾变机理与防控研究与展望[J].煤炭学报,2019,44(8):2419-2426.
SUI Wang-hua,LIU Jia-wei,GAO Bing-lun,et al.A Review on Disaster Mechanism of Quicksand with a High Potential Energy Due to Mining and Its Prevention and Control[J].Journal of China Coal Society,2019,44(8):2419-2426.
[18] 华能精煤神府公司大柳塔煤矿,西安矿业学院矿山压力研究所.大柳塔煤矿1203工作面矿压观测研究报告[J].陕西煤炭技术,1994(3/4):33-39.
Daliuta Coal Mine of Huaneng Clean Coal Shenfu Company,Institute of Mine Ground Pressure for Xi'an College of Mining and Technology.Research Report on Mine Pressure Measurement of Panel 1203 in the Daliuta Coal Mine[J].Shaanxi Coal Technology,1994(3/4):33-39.
[19] 沈慧珍.宿南矿区第四含水层水文地质特征研究[D].淮南:安徽理工大学,2005.
SHEN Hui-zhen.Study on Hydrogeological Characteristics of the Fourth Aquifer in the South Suzhou Mining Area[D].Huainan:Anhui University of Science & Technology,2005.
[20] 张文泉,王长浩,陈晓青.松散层下开采次生小断层影响工作面突砂机制:以山东省横河煤矿1931W工作面突砂事故为例[J].山东科技大学学报(自然科学版),2017,36(6):90-95.
ZHANG Wen-quan,WANG Chang-hao,CHEN Xiao-qing.Sand Inrush Mechanism Influenced by Secondary Faults in Working Face Under Alluvium Mining:Taking the 1931W Working Face Sand Inrush Accident in Henghe Coal Mine in Shandong Province as Example[J].Journal of Shandong University of Science and Technology(Natural Science),2017,36(6):90-95.
[21] 高兴栋.横河煤矿“10·31”溃沙事故成功抢救案例分析[J].山东煤炭科技,2016(6):196-199,201.
GAO Xing-dong.Analysis of Successful Rescue Cases of “10·31” Sand Inrush Accident in Henghe Coal Mine[J].Shandong Coal Science and Technology,2016(6):196-199,201.
[22] 李笔文.典型矿井薄基岩下开采抽冒溃砂特征与动态演化规律[D].徐州:中国矿业大学,2021.
LI Bi-wen.Characteristics and Dynamic Evolution Law of Sand Collapse Induced by Roof Caving During Mining Under Thin Bedrock in Typical Mines[D].Xuzhou:China University of Mining and Technology,2021.
[23] 吴永纯.鹤岗振兴煤矿井下泥石流事故原因分析[J].山东煤炭科技,2013(4):227-229.
WU Yong-chun.Analysis of the Cause of Underground Debris Flow Accident in the Zhenxing Coal Mine,Hegang[J].Shandong Coal Science and Technology,2013(4):227-229.
[24] 朱冠宇,姜 波,朱慎刚.朱仙庄煤矿“五含”水文地质特征及水害防治对策[J].煤田地质与勘探,2018,46(2):111-117.
ZHU Guan-yu,JIANG Bo,ZHU Shen-gang.Hydrogeological Characteristics and Prevention Countermeasures of “Fifth Aquifer” in Zhuxianzhuang Coal Mine[J].Coal Geology & Exploration,2018,46(2):111-117.
[25] 谢 聪.朱仙庄煤矿“四含”砂砾层劈裂注浆浆液扩散规律研究[D].徐州:中国矿业大学,2019.
XIE Cong.Investigation on Propagation Mechanism of Fracturing Grouting in the “Fourth Aquifer” of Gravel Layer in the Zhuxianzhuang Coalmine[D].Xuzhou:China University of Mining and Technology,2019.
[26] 蔡跃雨.朱仙庄矿“1·30”突水事故矿山救护工作探析[J].淮北职业技术学院学报,2018,17(3):115-116.
CAI Yue-yu.Analysis of Mine Rescue Work of Water Inrush Accident “1·30” in the Zhuxianzhuang Mine[J].Journal of Huaibei Vocational and Technical College,2018,17(3):115-116.
[27] 石志远.朱仙庄煤矿“五含”截流帷幕工程设计与应用[J].煤炭技术,2022,41(5):86-91.
SHI Zhi-yuan.Design and Application of “Fifth Aquifer” Closure Curtain Project in Zhuxianzhuang Coal Mine[J].Coal Technology,2022,41(5):86-91.
[28] 赵开全,张建华.祁东煤矿松散含水层下合理回采上限的分析[J].煤炭科学技术,2004,32(9):74-76.
ZHAO Kai-quan,ZHANG Jian-hua.Analysis on Rational Mining Top Limitation Under Soft Broken Aquifer in the Qidong Coalmine[J].Coal Science and Technology,2004,32(9):74-76.
[29] 杨本水,杨永林,赵传宏.祁东煤矿突水灾害的综合分析与快速治理技术[J].煤炭科学技术,2004,32(3):36-38.
YANG Ben-shui,YANG Yong-lin,ZHAO Chuan-hong.Comprehensive Analysis and Rapid Treatment Technology for Water Inrush Disaster in the Qidong Coalmine[J].Coal Science and Technology,2004,32(3):36-38.
[30] 檀双英,康永华,刘治国,等.祁东煤矿综采覆岩破坏特征[J].煤炭科学技术,2006,34(9):1-4.
TAN Shuang-ying,KANG Yong-hua,LIU Zhi-guo,et al.Features of Overburden Rock Fracture in Fully Mechanized Mining of the Qidong Coal Mine[J].Coal Science and Technology,2006,34(9):1-4.
[31] 张 蓓,张桂民,张 凯,等.钻孔导致突水溃沙事故机理及防治对策研究[J].采矿与安全工程学报,2015,32(2):219-226.
ZHANG Bei,ZHANG Gui-min,ZHANG Kai,et al.Water and Sands Bursting Mechanism Induced by Geological Borehole and Control Measures[J].Journal of Mining & Safety Engineering,2015,32(2):219-226.
[32] 吴广杰,常 巍.隆德煤矿突水溃沙的流体力学研究[C]∥北京力学会.北京力学会第二十四届学术年会会议论文集.北京:北京力学会,2018:904-909.
WU Guang-jie,CHANG Wei.Study on Fluid Mechanics of Water and Sand Inrush in the Longde Coal Mine[C]∥Beijing Society of Theoretical and Applied Mechanics.Proceedings of the 24th Annual Academic Conference of Beijing Society of Theoretical and Applied Mechanics.Beijing:Beijing Society of Theoretical and Applied Mechanics,2018:904-909.
[33] 付厚利.破裂井壁的地面深孔注浆加固及其安全保证技术[C]∥中国煤炭学会.全国矿山建设学术会议论文选集(上册).北京:中国煤炭学会,2003:272-276.
FU Hou-li.Cracking Wall of a Well's Floor Deep Bore Pour Plasm Reinforce and Its Safety Assuring Technique[C]∥China Coal Society.Selected Papers National Mine Construction Scientific Conference(I).Beijing:China Coal Society,2003:272-276.
[34] 王传团,张绍敏,周大鹏,等.金桥煤矿副井冻结管射孔注浆技术[J].建井技术,2004,25(1):1-3.
WANG Chuan-tuan,ZHANG Shao-min,ZHOU Da-peng,et al.Perforation Grouting Technology of Free-zing Pipe in the Auxiliary Shaft of the Jinqiao Coal Mine[J].Mine Construction Technology,2004,25(1):1-3.
[35] 栾元重,王宜振.金桥煤矿井筒变形实时测量与井筒破坏突变模型[J].焦作工学院学报(自然科学版),2001,20(2):90-93.
LUAN Yuan-zhong,WANG Yi-zhen.A Real Time Observation and Catastrophe Model of Shaft Damage for Jinqiao Shaft Deformation[J].Journal of Henan Polytechnic University(Natural Science),2001,20(2):90-93.
[36] 苗鑫淼.李粮店井田巨厚松散层水文地质结构与涌水沉降研究[D].徐州:中国矿业大学,2015.
MIAO Xin-miao.Research on the Hydrogeological Structure of Thick Loose Formation and Water Gushing Settlement in Liliangdian Mine[D].Xuzhou:China University of Mining and Technology,2015.
[37] 吕玉广,齐东合.内蒙古鄂托克前旗新上海一号煤矿111084工作面突水原因与机理[J].中国煤炭地质,2016,28(9):53-57.
LYU Yu-guang,QI Dong-he.No.111084 Working Face Water Bursting Causation and Mechanism in Xinshanghai No.1 Coal Mine,Otog Front Banner,Inner Mongolia[J].Coal Geology of China,2016,28(9):53-57.
[38] 董书宁,柳昭星,王 皓.厚基岩采场弱胶结岩层动力溃砂机制研究现状与展望[J].煤炭学报,2022,47(1):274-285.
DONG Shu-ning,LIU Zhao-xing,WANG Hao.Research Status and Prospect of the Mechanism of Dynamic Sand Inrush at Weakly Cemented Strata in Working Face with Thick Bedrock[J].Journal of China Coal Society,2022,47(1):274-285.
[39] 赵宝峰,朱明诚,李德彬.掘进巷道突水溃砂高压扰动注浆技术与应用[J].煤田地质与勘探,2022,50(6):65-72.
ZHAO Bao-feng,ZHU Ming-cheng,LI De-bin.High-pressure Jet Disturbance Grouting Technology for Water and Sand Inrush in Roadway Tunneling and Its Application[J].Coal Geology & Exploration,2022,50(6):65-72.
[40] 乔 伟,王志文,李文平,等.煤矿顶板离层水害形成机制、致灾机理及防治技术[J].煤炭学报,2021,46(2):507-522.
QIAO Wei,WANG Zhi-wen,LI Wen-ping,et al.Formation Mechanism,Disaster-causing Mechanism and Prevention Technology of Roof Bed Separation Water Disaster in Coal Mines[J].Journal of China Coal Society,2021,46(2):507-522.
[41] 陈北平.照金煤矿突水溃沙事故救援遇到的困难和应对策略[J].陕西煤炭,2017,36(3):51-54.
CHEN Bei-ping.Difficulties and Countermeasures of Water and Sand Inrush Accident Rescue in Zhaojin Coal Mine[J].Shaanxi Coal,2017,36(3):51-54.
[42] 任广艳.架间淋水冒险作业应急不力多人命殇:陕西省铜川市耀州区照金煤矿“4·25”重大水害事故分析[J].吉林劳动保护,2018(10):34-36.
REN Guang-yan.Analysis of “4·25” Major Water Disaster Accident in the Zhaojin Coal Mine,Yaozhou District,Tongchuan City,Shaanxi Province[J].Jilin Labour Protection,2018(10):34-36.
[43] 郭小铭,郭 康,刘英锋.深埋煤层开采顶板泥砂溃涌灾害多源信息评价[J].煤田地质与勘探,2020,48(1):113-119,128.
GUO Xiao-ming,GUO Kang,LIU Ying-feng.Multi-source Information Evaluation of Mud and Sand Inrush Disaster during the Mining of Deep-buried Coal Seam[J].Coal Geology & Exploration,2020,48(1):113-119,128.
[44] 许进鹏,周 宇,浦早红,等.离层积水量估算方法及离层突水预测:以陕西招贤煤矿1304工作面突水为例[J].煤炭学报,2022,47(8):3083-3090.
XU Jin-peng,ZHOU Yu,PU Zao-hong,et al.Calculation Method of Separated Water Accumulation in the Process of Separated Water Inrush and Its Forecast:Taking the Water Inrush at 1304 Working Face of Zhaoxian Coal Mine in Shaanxi Province as an Example[J].Journal of China Coal Society,2022,47(8):3083-3090.
[45] 李正杰,李连刚,纵 峰,等.高位离层突水诱导工作面切顶压架灾害预警研究[J].煤炭工程,2021,53(11):91-96.
LI Zheng-jie,LI Lian-gang,ZONG Feng,et al.Pre-warning of Roof Cutting and Supports Crushing Induced by Water Inrush from High Level Separation Layer[J].Coal Engineering,2021,53(11):91-96.
[46] 王志刚.崔木煤矿21301工作面压架突水原因及防治[J].煤炭技术,2017,36(2):193-195.
WANG Zhi-gang.Reason and Prevention of Support Crushing and Water Inrush Disaster at No.21301 Working Face in Cuimu Coal Mine[J].Coal Techno-logy,2017,36(2):193-195.
[47] 乔 伟,黄 阳,袁中帮,等.巨厚煤层综放开采顶板离层水形成机制及防治方法研究[J].岩石力学与工程学报,2014,33(10):2076-2084.
QIAO Wei,HUANG Yang,YUAN Zhong-bang,et al.Formation and Prevention of Water Inrush from Roof Bed Separation with Full-mechanized Caving Mining of Ultra Thick Coal Seam[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2076-2084.
[48] 贺江辉.煤层开采过程中覆岩离层动态演化研究及离层水害评价[D].徐州:中国矿业大学,2018.
HE Jiang-hui.Dynamic Evolution of Bed Separation in Coal Seam Mining and Assessment of Bed-separation Water Hazards[D].Xuzhou:China University of Mining and Technology,2018.
[49] 马荷雯.采动覆岩离层时空演化及突水危险源动态辨识[D].徐州:中国矿业大学,2020.
MA He-wen.Spatiotemporal Evolution of Bed Separation Due to Mining and the Dynamic Hazards Identification for Groundwater Inrush[D].Xuzhou:China University of Mining and Technology,2020.
[50] BEVERLOO W A,LENIGER H A,VAN DE VELDE J.The Flow of Granular Solids Through Orifices[J].Chemical Engineering Science,1961,15(3/4):260-269.
[51] 梁艳坤.基于颗粒流的采掘溃砂流动形态及溃砂量试验模拟[D].徐州:中国矿业大学,2012.
LIANG Yan-kun.Experimental Simulation for the Flow Character and Quantity of Quicksand Based on Granular Flow Theory[D].Xuzhou:China University of Mining and Technology,2012.
[52] 高炳伦.基于透明土的采掘溃砂流动形态试验研究[D].徐州:中国矿业大学,2015.
GAO Bing-lun.An Experimental Investigation on the Flow Pattern of Quicksand Due to Mining by Using Transparent Soils[D].Xuzhou:China University of Mining and Technology,2015.
[53] 高炳伦.采动裂隙水砂混合物运移规律模拟研究[D].徐州:中国矿业大学,2018.
GAO Bing-lun.Experimental and Simulation Investigation on Water and Sand Mixture Flow Through Mining-induced Fractures[D].Xuzhou:China University of Mining and Technology,2018.
[54] SUI W H,LIANG Y K,ZHANG X J,et al.An Experimental Investigation on the Speed of Sand Flow Through a Fixed Porous Bed[J].Scientific Reports,2017,7:54.
[55] LIANG Y K,SUI W H,JIANG T,et al.Experimental Investigation on the Transport Behavior of a Sand/Mud/Water Mixture Through a Mining-induced Caving Zone[J].Mine Water and the Environment,2022,41(4):629-639.
[56] LIANG Y K,ZHANG C L,WANG W X,et al.Model Test of the Water and Sand Mixture Inrush in the Mining-induced Caving Zone[J].Geofluids,2022,DOI:10.1155/2022/5104611.
[57] 许延春,王伯生,尤舜武.近松散含水层溃砂机理及判据研究[J].西安科技大学学报,2012,32(1):63-69.
XU Yan-chun,WANG Bo-sheng,YOU Shun-wu.Me-chanism and Criteria of Crushing Sand near Loosening Sand Stone Aquifer[J].Journal of Xi'an University of Science and Technology,2012,32(1):63-69.
[58] 许延春.含黏砂土流动性试验[J].煤炭学报,2008,33(5):496-499.
XU Yan-chun.Fluidity Test on Sand Blended with Clay[J].Journal of China Coal Society,2008,33(5):496-499.
[59] SUI W H,LIU J Y,DU Y.Permeability and Seepage Stability of Coal-reject and Clay Mix[J].Procedia Earth and Planetary Science,2009,1(1):888-894.
[60] 刘 勇.膏体充填开采覆岩破坏演化及突水溃砂风险评价[D].徐州:中国矿业大学,2019.
LIU Yong.Overburden Failure Evolution and Risk Evaluation on Water and Sand Inrush Due to Paste Backfilling Mining[D].Xuzhou:China University of Mining and Technology,2019.
[61] 兰恒星,包 含,孙巍锋,等.岩体多尺度异质性及其力学行为[J].工程地质学报,2022,30(1):37-52.
LAN Heng-xing,BAO Han,SUN Wei-feng,et al.Multi-scale Heterogeneity of Rock Mass and Its Mechanical Behavior[J].Journal of Engineering Geology,2022,30(1):37-52.
[62] LAN H X,CHEN J H,MACCIOTTA R.Universal Confined Tensile Strength of Intact Rock[J].Scienti-fic Reports,2019,9:6170.
[63] LAN H X,MARTIN C D,HU B.Effect of Heterogeneity of Brittle Rock on Micromechanical Extensile Behavior During Compression Loading[J].Journal of Geophysical Research:Solid Earth,2010,115(B1):B01202.
[64] LAN H X,MARTIN C D,ANDERSSON J C.Evolution of In-situ Rockmass Damage Induced by Mecha-nical-thermal Loading[J].Rock Mechanics and Rock Engineering,2013,46(1):153-168.
[65] 李连刚,赵世隆,乔 伟.采动覆岩高位离层水害防治地面抽排关键技术研究[J].煤炭科技,2021,42(4):69-77.
LI Lian-gang,ZHAO Shi-long,QIAO Wei.Research on Key Technology of Surface Drainage for Prevention and Control of Water Disaster in High Separated Strata of Mining Overburden[J].Coal Science & Technology Magazine,2021,42(4):69-77.
[66] ZHANG B Y,HE Q Y,LIN Z B,et al.Experimental Study on the Flow Behavior of Water-sand Mixtures in Fractured Rock Specimens[J].International Journal of Mining Science and Technology,2021,31(3):377-385.
[67] 李 智,隋旺华,张新佳.裂隙内部溃砂运移特点及应力波动研究[J].工程地质学报,2016,24(5):981-991.
LI Zhi,SUI Wang-hua,ZHANG Xin-jia.Experimental Investigation on Movement and Stress Fluctuation of Quicksand Inside Fissure[J].Journal of Engineering Geology,2016,24(5):981-991.
[68] 刘志耀,高 运,王田逢,等.溃水溃砂发生机理及控制方法研究[J].煤炭技术,2017,36(6):146-148.
LIU Zhi-yao,GAO Yun,WANG Tian-feng,et al.Stu-dy on Water Inrush and Sand Inrush Mechanism and Controlling Methods[J].Coal Technology,2017,36(6):146-148.
[69] 杨俊哲,张 彬,付兴玉,等.浅埋薄基岩工作面水砂溃涌通道形成机理[J].煤炭学报,2020,45(12):4144-4153.
YANG Jun-zhe,ZHANG Bin,FU Xing-yu,et al.Formation Mechanism of Water and Sand Inrush Channel in Shallow Buried Bedrock Face[J].Journal of China Coal Society,2020,45(12):4144-4153.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2022-10-01
基金项目:国家自然科学基金重点项目(42130706)
作者简介:隋旺华(1964-),男,山东临沂人,教授,博士研究生导师,工学博士,Email:suiwanghua@cumt.edu.cn。

更新日期/Last Update: 2022-11-25